Question: How do I solve a differential equation in Maple

restart; macro(x = eta); einf := 4; gm1 := 10; gm2 := 5; mf := .5; pr := 6.2; le := 10; nb := .2; nt := .2; r := 2; tr := 2; bi := .5; m := 2; tr1 := 1.5;
a1 := (m+1)*(1/2);
eqs1 := diff(f(x), [`$`(x, 3)])+a1*f(x)*(diff(f(x), [`$`(x, 2)]))-m*(diff(f(x), [`$`(xx, 2)]))^2+gm1*g(x)-gm2*h(x)-mf*(diff(f(x), [`$`(x, 1)])) = 0;
eqs2 := diff(g(x), [`$`(x, 2)])+a1*pr*f(x)*(diff(g(x), [`$`(x, 1)]))+pr*nb*(diff(g(x), [`$`(x, 1)]))*(diff(h(x), [`$`(x, 1)]))+pr*nt*(diff(g(x), [`$`(x, 1)]))^2+(4/3)*r1*(diff((1+(tr-1)*g(x))^3*(diff(g(x), [`$`(x, 1)])), x)) = 0;
eqs3 := diff(h(x), [`$`(x, 2)])+a1*le*f(x)*(diff(h(x), [`$`(x, 1)]))+nt*(diff(g(x), [`$`(x, 2)]))/nb = 0;
bcs1 := f(0) = 0, (D(f))(0) = 1, (D(f))(einf) = 0;
bcs2 := (D(g))(0) = bi*(g(0)-1), g(einf) = 0;
bcs3 := h(0) = 1, h(einf) = 0;
eqs := {bcs1, bcs2, bcs3, eqs1, eqs2, eqs3};
sol1 := dsolve(eqs, [f(x), g(x), h(x)], numeric, output = listprocedure);

If I typed the above line it's showing 

Error, (in dsolve/numeric/process_input) missing differential equations and initial or boundary conditions in the first argument: eqs

Kindly, I request you to do the needful as early as possible.

Please Wait...