Question: How to determine eigenvalues?

hi.how i can determind  eignvalue of matrix in the form parametric?

thanks1.mw

T := Matrix(5, 5, {(1, 1) = -b*beta*k/(c*u)-d, (1, 2) = 0, (1, 3) = -beta*lambda*c*u/(b*beta*k+c*d*u), (1, 4) = 0, (1, 5) = 0, (2, 1) = b*beta*k/(c*u), (2, 2) = -s*(lambda*c*k*beta/(b*beta*k+c*d*u)-a)/P-a, (2, 3) = beta*lambda*c*u/(b*beta*k+c*d*u), (2, 4) = -s*b/c, (2, 5) = r*(s-p)/s, (3, 1) = 0, (3, 2) = k, (3, 3) = -u, (3, 4) = 0, (3, 5) = 0, (4, 1) = 0, (4, 2) = -s*(lambda*c*k*beta/(b*beta*k+c*d*u)-a)/P, (4, 3) = 0, (4, 4) = -s*b/c-b, (4, 5) = r*(s+c)/s, (5, 1) = 0, (5, 2) = s*(lambda*c*k*beta/(b*beta*k+c*d*u)-a)/P, (5, 3) = 0, (5, 4) = s*b/c, (5, 5) = -r})

Matrix(5, 5, {(1, 1) = -b*beta*k/(c*u)-d, (1, 2) = 0, (1, 3) = -beta*lambda*c*u/(b*beta*k+c*d*u), (1, 4) = 0, (1, 5) = 0, (2, 1) = b*beta*k/(c*u), (2, 2) = -s*(lambda*c*k*beta/(b*beta*k+c*d*u)-a)/P-a, (2, 3) = beta*lambda*c*u/(b*beta*k+c*d*u), (2, 4) = -s*b/c, (2, 5) = r*(s-p)/s, (3, 1) = 0, (3, 2) = k, (3, 3) = -u, (3, 4) = 0, (3, 5) = 0, (4, 1) = 0, (4, 2) = -s*(lambda*c*k*beta/(b*beta*k+c*d*u)-a)/P, (4, 3) = 0, (4, 4) = -s*b/c-b, (4, 5) = r*(s+c)/s, (5, 1) = 0, (5, 2) = s*(lambda*c*k*beta/(b*beta*k+c*d*u)-a)/P, (5, 3) = 0, (5, 4) = s*b/c, (5, 5) = -r})

(1)

``

 

Download 1.mw

 

Please Wait...