Question: is correct this answer for differential equations??

hi..

is correct this answer for differential equations??

i think order of result should be in (10^6 or 10^9 or higher) range....

please check it

thanks

hpp.mw
 

restart

L := 100*10^(-9):

Eq1 := {-(1017/1600000000000000000000000000000000000000000)*(diff(w(x), x, x, x, x, x, x))+(26169/40000000000000000000000000)*(diff(w(x), x, x, x, x))-0.8325000000e-4*omega^2+1.560937500*10^(-21)*omega^2*(diff(w(x), x, x)), w(0) = 0, w(1/10000000) = 0, (D(w))(0) = 0, (D(w))(1/10000000) = 0, ((D@@2)(w))(0) = 0, ((D@@2)(w))(1/10000000) = 0}:

sys := subs(omega^2 = omega2, Eq1);

{-(1017/1600000000000000000000000000000000000000000)*(diff(diff(diff(diff(diff(diff(w(x), x), x), x), x), x), x))+(26169/40000000000000000000000000)*(diff(diff(diff(diff(w(x), x), x), x), x))-0.8325000000e-4*omega2+0.1560937500e-20*omega2*(diff(diff(w(x), x), x)), w(0) = 0, w(1/10000000) = 0, (D(w))(0) = 0, (D(w))(1/10000000) = 0, ((D@@2)(w))(0) = 0, ((D@@2)(w))(1/10000000) = 0}

 

{-(5085/8)*(diff(diff(diff(diff(diff(diff(g1(y), y), y), y), y), y), y))+6542250*(diff(diff(diff(diff(g1(y), y), y), y), y))-0.8325000000e-4*omega2+0.1560937500e-6*omega2*(diff(diff(g1(y), y), y)), 10000000*(D(g1))(0) = 0, 10000000*(D(g1))(1) = 0, 100000000000000*((D@@2)(g1))(0) = 0, 100000000000000*((D@@2)(g1))(1) = 0, g1(0) = 0, g1(1) = 0}

 

{-(5085/8)*(diff(diff(diff(diff(diff(diff(g1(y), y), y), y), y), y), y))+6542250*(diff(diff(diff(diff(g1(y), y), y), y), y))-0.8325000000e-4*omega2+0.1560937500e-6*omega2*(diff(diff(g1(y), y), y))}, {10000000*(D(g1))(0) = 0, 10000000*(D(g1))(1) = 0, 100000000000000*((D@@2)(g1))(0) = 0, 100000000000000*((D@@2)(g1))(1) = 0, g1(0) = 0, g1(1) = 0}

 

{g1(0) = 0, g1(1) = 0, (D(g1))(0) = 0, (D(g1))(1) = 0, ((D@@2)(g1))(0) = 0, ((D@@2)(g1))(1) = 0}

 

{diff(diff(diff(diff(diff(diff(g1(y), y), y), y), y), y), y), diff(diff(diff(diff(diff(g1(y), y), y), y), y), y), diff(diff(diff(diff(g1(y), y), y), y), y), diff(diff(diff(g1(y), y), y), y), diff(diff(g1(y), y), y), diff(g1(y), y)}

 

{-(1017/1600000000000000000000000000000000000000000)*(diff(diff(diff(diff(diff(diff(w(x), x), x), x), x), x), x))+(26169/40000000000000000000000000)*(diff(diff(diff(diff(w(x), x), x), x), x))-0.8325000000e-4*omega2+0.1560937500e-20*omega2*(diff(diff(w(x), x), x))}

 

{-(5085/8)*(diff(diff(diff(diff(diff(diff(g1(y), y), y), y), y), y), y))+6542250*(diff(diff(diff(diff(g1(y), y), y), y), y))-0.8325000000e-4*omega2+0.1560937500e-6*omega2*(diff(diff(g1(y), y), y))}

 

{diff(diff(diff(diff(diff(diff(g1(y), y), y), y), y), y), y) = 10292.62537*(diff(diff(diff(diff(g1(y), y), y), y), y))-0.1309734513e-6*omega2+0.2455752212e-9*omega2*(diff(diff(g1(y), y), y))}

 

{diff(diff(diff(diff(diff(diff(g1(y), y), y), y), y), y), y) = 10292.62537*(diff(diff(diff(diff(g1(y), y), y), y), y))-0.1309734513e13*omega3+2455752212.*omega3*(diff(diff(g1(y), y), y))}

 

{diff(diff(diff(diff(diff(diff(g1(y), y), y), y), y), y), y) = 10292.62537*(diff(diff(diff(diff(g1(y), y), y), y), y))-0.1309734513e13*omega3+2455752212.*omega3*(diff(diff(g1(y), y), y)), g1(0) = 0, g1(1) = 0, (D(g1))(0) = 0, (D(g1))(1) = 0, ((D@@2)(g1))(0) = 0, ((D@@2)(g1))(1) = 0}

 

{((D@@3)(g1))(0), ((D@@3)(g1))(1), ((D@@4)(g1))(0), ((D@@4)(g1))(1), ((D@@5)(g1))(0), ((D@@5)(g1))(1)}

 

((D@@3)(g1))(0)

 

((D@@3)(g1))(1)

 

((D@@4)(g1))(0)

 

((D@@4)(g1))(1)

 

((D@@5)(g1))(0)

 

((D@@5)(g1))(1)

 

((D@@5)(g1))(1), ((D@@4)(g1))(0), ((D@@5)(g1))(0), ((D@@3)(g1))(1), ((D@@4)(g1))(1), ((D@@3)(g1))(0)

 

HFloat(-8.852947665097804e-24), HFloat(-8.991820290300328e-22), HFloat(8.852947665097804e-24), HFloat(-9.672787782157173e-20), HFloat(-8.991820290300328e-22), HFloat(9.672787782157165e-20)

(1)

sqrt(8.85294766509780*10^(-21)*10^19);

.2975390338

(2)

NULL


 

Download hpp.mw

 

Please Wait...