Question: why maple recognize my system but doesn´t solve it?


 

diff(Q(t), t) = k*A*(T__1s(t)-T__2s(t))/d

diff(Q(t), t) = h__1(t)*A*(T__1(t)-T__1s(t))

diff(Q(t), t) = h__2(t)*A*(T__2s(t)-T__2(t))

Q(t) = m__1*c__p*(T__1i-T__1(t))

Q(t) = m__2*c__p*(T__2(t)-T__2i)

h__1(t) = k(T__1(t), T__1s(t))*(.825+.387*(g*h^3*c__p*beta(T__1(t), T__1s(t))*rho(T__1(t), T__1s(t))^2*(T__1(t)-T__1s(t))/(k(T__1(t), T__1s(t))*mu(T__1(t), T__1s(t))))^(1/6)/(1+(.492*k(T__1(t), T__1s(t))/(c__p*mu(T__1(t), T__1s(t))))^(9/16))^(8/27))^2/h

h__2(t) = k(T__2(t), T__2s(t))*(.825+.387*(g*h^3*c__p*beta(T__2(t), T__2s(t))*rho(T__2(t), T__2s(t))^2*(T__2s(t)-T__2(t))/(k(T__2(t), T__2s(t))*mu(T__2(t), T__2s(t))))^(1/6)/(1+(.492*k(T__2(t), T__2s(t))/(c__p*mu(T__2(t), T__2s(t))))^(9/16))^(8/27))^2/h

 

 

rho(T__1(t), T__1s(t)) = 999.9399+2.1082425*10^(-2)*(T__1(t)+T__1s(t))-1.77436275*10^(-3)*(T__1(t)+T__1s(t))^2+.438696375*10^(-5)*(T__1(t)+T__1s(t))^3-.6189861563*10^(-8)*(T__1(t)+T__1s(t))^4

beta(T__1(t), T__1s(t)) = -(4.216485*10^(-2)-7.097451*10^(-3)*(T__1(t)+T__1s(t))+2.63217825*10^(-5)*(T__1(t)+T__1s(t))^2-4.9518879*10^(-8)*(T__1(t)+T__1s(t))^3)/(999.9399+2.1082425*10^(-2)*(T__1(t)+T__1s(t))-1.77436275*10^(-3)*(T__1(t)+T__1s(t))^2+.438696375*10^(-5)*(T__1(t)+T__1s(t))^3-.6189861563*10^(-8)*(T__1(t)+T__1s(t))^4)
mu(T__1(t), T__1s(t)) = 2.414*10^(247.8/(.5*(T__1(t)+T__1s(t))+133)-5)

k(T__1(t), T__1s(t)) = -9.481411*10^(-6)*(T__1(t)+T__1s(t))^2+2.1356735*10^(-3)*(T__1(t)+T__1s(t))+.5599920949

 

 

rho(T__2(t), T__2s(t)) = 999.9399+2.1082425*10^(-2)*(T__2(t)+T__2s(t))-1.77436275*10^(-3)*(T__2(t)+T__2s(t))^2+.438696375*10^(-5)*(T__2(t)+T__2s(t))^3-.6189861563*10^(-8)*(T__2(t)+T__2s(t))^4

beta(T__2(t), T__2s(t)) = -(4.216485*10^(-2)-7.097451*10^(-3)*(T__2(t)+T__2s(t))+2.63217825*10^(-5)*(T__2(t)+T__2s(t))^2-4.9518879*10^(-8)*(T__2(t)+T__2s(t))^3)/(999.9399+2.1082425*10^(-2)*(T__2(t)+T__2s(t))-1.77436275*10^(-3)*(T__2(t)+T__2s(t))^2+.438696375*10^(-5)*(T__2(t)+T__2s(t))^3-.6189861563*10^(-8)*(T__2(t)+T__2s(t))^4)
mu(T__2(t), T__2s(t)) = 2.414*10^(247.8/(.5*(T__2(t)+T__2s(t))+133)-5)

k(T__2(t), T__2s(t)) = -9.481411*10^(-6)*(T__2(t)+T__2s(t))^2+2.1356735*10^(-3)*(T__2(t)+T__2s(t))+.5599920949

 

"`h__1`(t)=(-9.481411*10^(-6) (`T__1`(t)+`T__1s`(t))^(2)+2.1356735*10^(-3) (`T__1`(t)+`T__1s`(t))+0.5599920949)/(h) (0.825+(0.387 ((g h^(3) `c__p` (-(4.216485*10^(-2)-7.097451*10^(-3) (`T__1`(t)+`T__1s`(t))+2.63217825*10^(-5) (`T__1`(t)+`T__1s`(t))^(2)-4.9518879*10^(-8) (`T__1`(t)+`T__1s`(t))^(3))/(999.9399+2.1082425*10^(-2) (`T__1`(t)+`T__1s`(t))-1.77436275*10^(-3) (`T__1`(t)+`T__1s`(t))^(2)+0.438696375*10^(-5) (`T__1`(t)+`T__1s`(t))^(3)  -0.6189861563*10^(-8) (`T__1`(t)+`T__1s`(t))^(4))) (999.9399+2.1082425*10^(-2) (`T__1`(t)+`T__1s`(t))-1.77436275*10^(-3) (`T__1`(t)+`T__1s`(t))^(2)+0.438696375*10^(-5) (`T__1`(t)+`T__1s`(t))^(3)  -0.6189861563*10^(-8) (`T__1`(t)+`T__1s`(t))^(4))^(2) (`T__1`(t)-`T__1s`(t)))/((-9.481411*10^(-6) (`T__1`(t)+`T__1s`(t))^(2)+2.1356735*10^(-3) (`T__1`(t)+`T__1s`(t))+0.5599920949) 2.414*10^((247.8)/(0.5 (`T__1`(t)+`T__1s`(t))+133)-5)))^((1)/(6)))/((1+((0.492 (-9.481411*10^(-6) (`T__1`(t)+`T__1s`(t))^(2)+2.1356735*10^(-3) (`T__1`(t)+`T__1s`(t))+0.5599920949))/(`c__p` 2.414*10^((247.8)/(0.5 (`T__1`(t)+`T__1s`(t))+133)-5)))^((9)/(16)))^((8)/(27))))^(2)"

"`h__2`(t)=(-9.481411*10^(-6) (`T__2`(t)+`T__2s`(t))^(2)+2.1356735*10^(-3) (`T__2`(t)+`T__2s`(t))+0.5599920949)/(h) (0.825+(0.387 ((g h^(3) `c__p` (-(4.216485*10^(-2)-7.097451*10^(-3) (`T__2`(t)+`T__2s`(t))+2.63217825*10^(-5) (`T__2`(t)+`T__2s`(t))^(2)-4.9518879*10^(-8) (`T__2`(t)+`T__2s`(t))^(3))/(999.9399+2.1082425*10^(-2) (`T__2`(t)+`T__2s`(t))-1.77436275*10^(-3) (`T__2`(t)+`T__2s`(t))^(2)+0.438696375*10^(-5) (`T__2`(t)+`T__2s`(t))^(3)  -0.6189861563*10^(-8) (`T__2`(t)+`T__2s`(t))^(4))) (999.9399+2.1082425*10^(-2) (`T__2`(t)+`T__2s`(t))-1.77436275*10^(-3) (`T__2`(t)+`T__2s`(t))^(2)+0.438696375*10^(-5) (`T__2`(t)+`T__2s`(t))^(3)  -0.6189861563*10^(-8) (`T__2`(t)+`T__2s`(t))^(4))^(2) (`T__2s`(t)-`T__2`(t)))/((-9.481411*10^(-6) (`T__2`(t)+`T__2s`(t))^(2)+2.1356735*10^(-3) (`T__2`(t)+`T__2s`(t))+0.5599920949) 2.414*10^((247.8)/(0.5 (`T__2`(t)+`T__2s`(t))+133)-5)))^((1)/(6)))/((1+((0.492 (-9.481411*10^(-6) (`T__2`(t)+`T__2s`(t))^(2)+2.1356735*10^(-3) (`T__2`(t)+`T__2s`(t))+0.5599920949))/(`c__p` 2.414*10^((247.8)/(0.5 (`T__2`(t)+`T__2s`(t))+133)-5)))^((9)/(16)))^((8)/(27))))^(2)"

diff(Q(t), t) = k*A*(T__1s(t)-T__2s(t))/d, diff(Q(t), t) = A*(T__1(t)-T__1s(t))*(-9.481411*10^(-6)*(T__1(t)+T__1s(t))^2+2.1356735*10^(-3)*(T__1(t)+T__1s(t))+.5599920949)*(.825+.387*(((-g*h^3*c__p*(4.216485*10^(-2)-7.097451*10^(-3)*(T__1(t)+T__1s(t))+2.63217825*10^(-5)*(T__1(t)+T__1s(t))^2-4.9518879*10^(-8)*(T__1(t)+T__1s(t))^3)/(999.9399+2.1082425*10^(-2)*(T__1(t)+T__1s(t))-1.77436275*10^(-3)*(T__1(t)+T__1s(t))^2+.438696375*10^(-5)*(T__1(t)+T__1s(t))^3-.6189861563*10^(-8)*(T__1(t)+T__1s(t))^4))*((999.9399+2.1082425*10^(-2)*(T__1(t)+T__1s(t))-1.77436275*10^(-3)*(T__1(t)+T__1s(t))^2+.438696375*10^(-5)*(T__1(t)+T__1s(t))^3-.6189861563*10^(-8)*(T__1(t)+T__1s(t))^4)^2))*(T__1(t)-T__1s(t))/(2.414*10^(247.8/(.5*(T__1(t)+T__1s(t))+133)-5)*(-9.481411*10^(-6)*(T__1(t)+T__1s(t))^2+2.1356735*10^(-3)*(T__1(t)+T__1s(t))+.5599920949)))^(1/6)/(1+((.492*(-9.481411*10^(-6)*(T__1(t)+T__1s(t))^2+2.1356735*10^(-3)*(T__1(t)+T__1s(t))+.5599920949))/(2.414*c__p*10^(247.8/(.5*(T__1(t)+T__1s(t))+133)-5)))^(9/16))^(8/27))^2/h, diff(Q(t), t) = A*(T__2s(t)-T__2(t))*(-9.481411*10^(-6)*(T__2(t)+T__2s(t))^2+2.1356735*10^(-3)*(T__2(t)+T__2s(t))+.5599920949)*(.825+.387*(((-g*h^3*c__p*(4.216485*10^(-2)-7.097451*10^(-3)*(T__2(t)+T__2s(t))+2.63217825*10^(-5)*(T__2(t)+T__2s(t))^2-4.9518879*10^(-8)*(T__2(t)+T__2s(t))^3)/(999.9399+2.1082425*10^(-2)*(T__2(t)+T__2s(t))-1.77436275*10^(-3)*(T__2(t)+T__2s(t))^2+.438696375*10^(-5)*(T__2(t)+T__2s(t))^3-.6189861563*10^(-8)*(T__2(t)+T__2s(t))^4))*((999.9399+2.1082425*10^(-2)*(T__2(t)+T__2s(t))-1.77436275*10^(-3)*(T__2(t)+T__2s(t))^2+.438696375*10^(-5)*(T__2(t)+T__2s(t))^3-.6189861563*10^(-8)*(T__2(t)+T__2s(t))^4)^2))*(T__2s(t)-T__2(t))/(2.414*10^(247.8/(.5*(T__2(t)+T__2s(t))+133)-5)*(-9.481411*10^(-6)*(T__2(t)+T__2s(t))^2+2.1356735*10^(-3)*(T__2(t)+T__2s(t))+.5599920949)))^(1/6)/(1+((.492*(-9.481411*10^(-6)*(T__2(t)+T__2s(t))^2+2.1356735*10^(-3)*(T__2(t)+T__2s(t))+.5599920949))/(2.414*c__p*10^(247.8/(.5*(T__2(t)+T__2s(t))+133)-5)))^(9/16))^(8/27))^2/h, Q(t) = m__1*c__p*(T__1i-T__1(t)), Q(t) = m__2*c__p*(T__2(t)-T__2i)

diff(Q(t), t) = k*A*(T__1s(t)-T__2s(t))/d, diff(Q(t), t) = A*(T__1(t)-T__1s(t))*(-0.9481411000e-5*(T__1(t)+T__1s(t))^2+0.2135673500e-2*T__1(t)+0.2135673500e-2*T__1s(t)+.5599920949)*(.825+.387*(-.4142502071*g*h^3*c__p*(0.4216485000e-1-0.7097451000e-2*T__1(t)-0.7097451000e-2*T__1s(t)+0.2632178250e-4*(T__1(t)+T__1s(t))^2-0.4951887900e-7*(T__1(t)+T__1s(t))^3)*(999.9399+0.2108242500e-1*T__1(t)+0.2108242500e-1*T__1s(t)-0.1774362750e-2*(T__1(t)+T__1s(t))^2+0.4386963750e-5*(T__1(t)+T__1s(t))^3-0.6189861563e-8*(T__1(t)+T__1s(t))^4)*(T__1(t)-T__1s(t))/(10^(247.8/(.5*T__1(t)+.5*T__1s(t)+133)-5)*(-0.9481411000e-5*(T__1(t)+T__1s(t))^2+0.2135673500e-2*T__1(t)+0.2135673500e-2*T__1s(t)+.5599920949)))^(1/6)/(1+.4087338992*((-0.9481411000e-5*(T__1(t)+T__1s(t))^2+0.2135673500e-2*T__1(t)+0.2135673500e-2*T__1s(t)+.5599920949)/(c__p*10^(247.8/(.5*T__1(t)+.5*T__1s(t)+133)-5)))^(9/16))^(8/27))^2/h, diff(Q(t), t) = A*(T__2s(t)-T__2(t))*(-0.9481411000e-5*(T__2(t)+T__2s(t))^2+0.2135673500e-2*T__2(t)+0.2135673500e-2*T__2s(t)+.5599920949)*(.825+.387*(-.4142502071*g*h^3*c__p*(0.4216485000e-1-0.7097451000e-2*T__2(t)-0.7097451000e-2*T__2s(t)+0.2632178250e-4*(T__2(t)+T__2s(t))^2-0.4951887900e-7*(T__2(t)+T__2s(t))^3)*(999.9399+0.2108242500e-1*T__2(t)+0.2108242500e-1*T__2s(t)-0.1774362750e-2*(T__2(t)+T__2s(t))^2+0.4386963750e-5*(T__2(t)+T__2s(t))^3-0.6189861563e-8*(T__2(t)+T__2s(t))^4)*(T__2s(t)-T__2(t))/(10^(247.8/(.5*T__2(t)+.5*T__2s(t)+133)-5)*(-0.9481411000e-5*(T__2(t)+T__2s(t))^2+0.2135673500e-2*T__2(t)+0.2135673500e-2*T__2s(t)+.5599920949)))^(1/6)/(1+.4087338992*((-0.9481411000e-5*(T__2(t)+T__2s(t))^2+0.2135673500e-2*T__2(t)+0.2135673500e-2*T__2s(t)+.5599920949)/(c__p*10^(247.8/(.5*T__2(t)+.5*T__2s(t)+133)-5)))^(9/16))^(8/27))^2/h, Q(t) = m__1*c__p*(T__1i-T__1(t)), Q(t) = m__2*c__p*(T__2(t)-T__2i)

(1)

"(->)"

``

``

``

i have a system with 5 dif equations and five unknows. i have told to maple to solve it numerically with interactively solve comand (right cilck button). the window open like it normally does and i put values to my parameters, with an initial condition for the system (Q(0)=0). then i press numerically solve and that's all, the program just keep evaluating with no answer. i wait for 15 min, which i think is too much time, and got any answer yet.

hope you can help with this

thanks.. 
 

Download propuesta_transfer.mw

Please Wait...