Question: fsolve returns unevaluated

i have set of equations and variable that i want to solve them using fsolve, but after about 20mintues of computations, fsolve retrun these set unevaluated, could anyone help?


 

 restart:with(linalg):with(LinearAlgebra):with(orthopoly):Digits:=40:
M:=3:
N:=2:
l:=2:
for m from 0 to M-1 do
L[m]:=unapply(P(m,t),t);
end do:
for n from 1 to N do;
for m from 0 to M-1 do;
BB[n,m]:=unapply(piecewise((n-1)/N<=t and t<n/N, sqrt(N*(2*m+1))*L[m](2*N*t-2*n+1)),t);
end do:
end do:
##############################################
B:=Vector(N*M,1,[seq(seq(BB[n,m](t),m=0..M-1),n=1..N)]):
BS:=Vector(N*M,1,[seq(seq(BB[n,m](s),m=0..M-1),n=1..N)]):
f[1]:=unapply((23/35)*t,t):
f[2]:=unapply((11/12)*t,t):
P[1]:=evalf(Vector(N*M,1,[seq(seq(int((23/35)*t*BB[n,m](t),t=0..1,t=0..1),m=0..M-1),n=1..N)])):
P[2]:=evalf(Vector(N*M,1,[seq(seq(int((11/12)*t*BB[n,m](t),t=0..1,t=0..1),m=0..M-1),n=1..N)])):
p[1]:=Transpose(P[1]):P[1]^+:
p[2]:=Transpose(P[2]):P[2]^+:

 

#############################################
k:=Matrix(2,2,[[t*s^2,t*s^2],[s*t^2,s*t^2]]):

 

 

 

 

 

 

 

 

 

######################################

for i from 1 to 2 do;
for j from 1 to 2 do;
T[i,j]:=Matrix(N*M,N*M):

for n from 1 to M*N do;
for m from 1 to M*N do;
T[i,j](n,m):=evalf(int(int(B[n]*k(i,j)*BS[m],t=0..1),s=0..1)):
end do:
end do:
od:
od:
evalm(T[1,1]):
evalm(T[1,2]):
evalm(T[2,1]):
evalm(T[2,2]):

 

 

##########################################

X[1]:=Matrix(M*N,1):
for n from 1 to M*N do;
X[1](n,1):=Y[n,1]:
od:
evalm(X[1]):
#### yadet bashe k dar in mesal majhulat y1,y2
####ba bordarhaye X1, X2 neshun dadi...darvaghe
####dar mesale avale maghale 2ta y dashti k bayad moadele ash ro hal mikardi...
 

 

X[2]:=Matrix(M*N,1):
for n from 1 to M*N do;
X[2](n,1):=yY[n,1]:
od:
evalm(X[2]):

U[1,1]:=Matrix(M*N,1):
for n from 1 to M*N do;
U[1,1](n,1):=u[n,1]:
od:
evalm(U[1,1]):

U[1,2]:=Matrix(M*N,1):
for n from 1 to M*N do;
U[1,2](n,1):=uU[n,1]:
od:

evalm(U[1,2]):
Transpose(U[1,2]):

U[2,1]:=Matrix(N*M,1):
for n from 1 to M*N do;
U[2,1](n,1):=w[n,1]:
od:
evalm(U[2,1]):

U[2,2]:=Matrix(M*N,1):
for n from 1 to M*N do;
U[2,2](n,1):=wW[n,1]:
od:
evalm(U[2,2]):





 


A:=add(X[j], j=1..2):

z[1]:=Matrix(1,M*N):
z[2]:=Matrix(1,M*N):
for i from 1 to 2 do;
Z[i]:=Transpose(A)-add(Transpose(U[i,j]).T[i,j], j=1..2);
evalm(Z[i]):
z[i]:=Z[i]-convert(p[i],Matrix):
od:
evalm(z[1]):
##############
z[1](1,2):


##########################################
for s from 1 to M*N do;
t:=((2*s)-1)/(2*M*N);
ff[1,1]:=eval(VectorMatrixMultiply(Transpose(X[1]),eval(B,t=((2*s)-1)/(2*M*N))));
F[1,s]:=multiply(ff[1,1],ff[1,1]);
expand(%):
H[1,s]:=VectorMatrixMultiply(Transpose(U[1,1]),eval(B,t=((2*s)-1)/(2*M*N)));
hh[1,s]:=F[1,s]-H[1,s][1];
od:

 

ff[1,1]:


 

F[1,1]:

H[1,1]:

hh[1,2]:

 

for s from 1 to M*N do;
t:=((2*s)-1)/(2*M*N);
ff[2,1]:=eval(VectorMatrixMultiply(Transpose(X[1]),eval(B,t=((2*s)-1)/(2*M*N))));
G[1,s]:=multiply(ff[2,1],ff[2,1]);
expand(%):
J[1,s]:=VectorMatrixMultiply(Transpose(U[2,1]),eval(B,t=((2*s)-1)/(2*M*N)));
JJ[1,s]:=G[1,s]-J[1,s][1];
od:
JJ[1,1]:
JJ[1,2]:

for s from 1 to M*N do;
t:=((2*s)-1)/(2*M*N);
ff[1,2]:=eval(VectorMatrixMultiply(Transpose(X[2]),eval(B,t=((2*s)-1)/(2*M*N))));
GG[1,s]:=multiply(ff[1,2],ff[1,2]);
expand(%):
g[1,s]:=VectorMatrixMultiply(Transpose(U[1,2]),eval(B,t=((2*s)-1)/(2*M*N)));
gg[1,s]:=GG[1,s]-g[1,s][1];
od:
gg[1,1]:
gg[1,2]:

for s from 1 to M*N do;
t:=((2*s)-1)/(2*M*N);
ff[2,2]:=eval(VectorMatrixMultiply(Transpose(X[2]),eval(B,t=((2*s)-1)/(2*M*N))));
DD[1,s]:=multiply(ff[2,2],ff[2,2]);
expand(%):
d[1,s]:=VectorMatrixMultiply(Transpose(U[2,2]),eval(B,t=((2*s)-1)/(2*M*N)));
dd[1,s]:=DD[1,s]-d[1,s][1];
od:
dd[1,1]:
dd[1,2]:


eqq[1]:=seq(hh[1,s],s=1..M*N):

eqq[2]:=seq(gg[1,s],s=1..M*N):

 

eqq[3]:=seq(JJ[1,s],s=1..M*N):

eqq[4]:=seq(dd[1,s],s=1..M*N):
eqq[5]:=seq(z[1](1,s),s=1..M*N):
eqq[6]:=seq(z[2](1,s),s=1..M*N):

eq:=seq(eqq[s],s=1..M*N):

var[1]:=seq(X[1](s,1),s=1..M*N):
var[2]:=seq(X[2](s,1),s=1..M*N):
var[3]:=seq(U[1,1](s,1),s=1..M*N):
var[4]:=seq(U[1,2](s,1),s=1..M*N):
var[5]:=seq(U[2,1](s,1),s=1..M*N):
var[6]:=seq(U[2,2](s,1),s=1..M*N):

EQ:=Matrix(36,1):

for i to 6 do
EQ(6*i-5,1):=hh[1,i];
EQ(6*i-4,1):=gg[1,i];
EQ(6*i-3,1):=JJ[1,i];
EQ(6*i-2,1):=dd[1,i];
EQ(6*i-1,1):=z[1](1,i);
EQ(6*i,1):=z[2](1,i);
od:

 

indets(EQ);

{Y[1, 1], Y[2, 1], Y[3, 1], Y[4, 1], Y[5, 1], Y[6, 1], u[1, 1], u[2, 1], u[3, 1], u[4, 1], u[5, 1], u[6, 1], uU[1, 1], uU[2, 1], uU[3, 1], uU[4, 1], uU[5, 1], uU[6, 1], w[1, 1], w[2, 1], w[3, 1], w[4, 1], w[5, 1], w[6, 1], wW[1, 1], wW[2, 1], wW[3, 1], wW[4, 1], wW[5, 1], wW[6, 1], yY[1, 1], yY[2, 1], yY[3, 1], yY[4, 1], yY[5, 1], yY[6, 1]}

(1)

``

``

Var:=[seq](var[s],s=1..M*N);

[Y[1, 1], Y[2, 1], Y[3, 1], Y[4, 1], Y[5, 1], Y[6, 1], yY[1, 1], yY[2, 1], yY[3, 1], yY[4, 1], yY[5, 1], yY[6, 1], u[1, 1], u[2, 1], u[3, 1], u[4, 1], u[5, 1], u[6, 1], uU[1, 1], uU[2, 1], uU[3, 1], uU[4, 1], uU[5, 1], uU[6, 1], w[1, 1], w[2, 1], w[3, 1], w[4, 1], w[5, 1], w[6, 1], wW[1, 1], wW[2, 1], wW[3, 1], wW[4, 1], wW[5, 1], wW[6, 1]]

(2)

seq(indets(EQ[i][1]), i = 1 .. 36):

``

``

 

for i to 36 do
EQQ[i]:=simplify(expand(subs([seq](indets(EQ)[i]=AA[i],i=1..36),EQ[i][1])=0));
od;

(1/18)*(12*AA[8]*3^(1/2)-3*AA[9]*5^(1/2)-18*AA[7])*2^(1/2)-(8/3)*((1/6)*AA[3]*5^(1/2)+AA[1])*AA[2]*3^(1/2)+(2/3)*AA[1]*AA[3]*5^(1/2)+2*AA[1]^2+(8/3)*AA[2]^2+(5/18)*AA[3]^2 = 0

 

(1/18)*(12*AA[14]*3^(1/2)-3*AA[15]*5^(1/2)-18*AA[13])*2^(1/2)-(8/3)*((1/6)*AA[33]*5^(1/2)+AA[31])*AA[32]*3^(1/2)+(2/3)*AA[31]*AA[33]*5^(1/2)+2*AA[31]^2+(8/3)*AA[32]^2+(5/18)*AA[33]^2 = 0

 

(1/18)*(12*AA[20]*3^(1/2)-3*AA[21]*5^(1/2)-18*AA[19])*2^(1/2)-(8/3)*((1/6)*AA[3]*5^(1/2)+AA[1])*AA[2]*3^(1/2)+(2/3)*AA[1]*AA[3]*5^(1/2)+2*AA[1]^2+(8/3)*AA[2]^2+(5/18)*AA[3]^2 = 0

 

(1/18)*(12*AA[26]*3^(1/2)-3*AA[27]*5^(1/2)-18*AA[25])*2^(1/2)-(8/3)*((1/6)*AA[33]*5^(1/2)+AA[31])*AA[32]*3^(1/2)+(2/3)*AA[31]*AA[33]*5^(1/2)+2*AA[31]^2+(8/3)*AA[32]^2+(5/18)*AA[33]^2 = 0

 

AA[1]+AA[31]-0.1041666666666666666666666666666666666667e-1*AA[7]-0.6014065304058601713636966463562056829663e-2*AA[8]-0.3125000000000000000000000000000000000000e-1*AA[10]-0.6014065304058601713636966463562056829663e-2*AA[11]-0.1041666666666666666666666666666666666667e-1*AA[13]-0.6014065304058601713636966463562056829663e-2*AA[14]-0.3125000000000000000000000000000000000000e-1*AA[16]-0.6014065304058601713636966463562056829663e-2*AA[17]-.1161675426235042361515672880600823421682 = 0

 

AA[1]+AA[31]-0.1041666666666666666666666666666666666667e-1*AA[19]-0.9021097956087902570455449695343085244494e-2*AA[20]-0.2329237476562280933759555904928412745252e-2*AA[21]-0.7291666666666666666666666666666666666667e-1*AA[22]-0.2706329386826370771136634908602925573348e-1*AA[23]-0.2329237476562280933759555904928412745252e-2*AA[24]-0.1041666666666666666666666666666666666667e-1*AA[25]-0.9021097956087902570455449695343085244494e-2*AA[26]-0.2329237476562280933759555904928412745252e-2*AA[27]-0.7291666666666666666666666666666666666667e-1*AA[28]-0.2706329386826370771136634908602925573348e-1*AA[29]-0.2329237476562280933759555904928412745252e-2*AA[30]-.1620453040219171410085268329823612381694 = 0

 

(1/2)*(AA[9]*5^(1/2)-2*AA[7])*2^(1/2)-2*AA[1]*AA[3]*5^(1/2)+2*AA[1]^2+(5/2)*AA[3]^2 = 0

 

(1/2)*(AA[15]*5^(1/2)-2*AA[13])*2^(1/2)-2*AA[31]*AA[33]*5^(1/2)+2*AA[31]^2+(5/2)*AA[33]^2 = 0

 

(1/2)*(AA[21]*5^(1/2)-2*AA[19])*2^(1/2)-2*AA[1]*AA[3]*5^(1/2)+2*AA[1]^2+(5/2)*AA[3]^2 = 0

 

(1/2)*(AA[27]*5^(1/2)-2*AA[25])*2^(1/2)-2*AA[31]*AA[33]*5^(1/2)+2*AA[31]^2+(5/2)*AA[33]^2 = 0

 

AA[2]+AA[32]-0.9021097956087902570455449695343085244494e-2*AA[7]-0.5208333333333333333333333333333333333333e-2*AA[8]-0.2706329386826370771136634908602925573348e-1*AA[10]-0.5208333333333333333333333333333333333333e-2*AA[11]-0.9021097956087902570455449695343085244494e-2*AA[13]-0.5208333333333333333333333333333333333333e-2*AA[14]-0.2706329386826370771136634908602925573348e-1*AA[16]-0.5208333333333333333333333333333333333333e-2*AA[17]-0.6706936200477749554587801633123274049430e-1 = 0

 

AA[2]+AA[32]-0.6014065304058601713636966463562056829663e-2*AA[19]-0.5208333333333333333333333333333333333333e-2*AA[20]-0.1344785884099797529576133819368888753762e-2*AA[21]-0.4209845712841021199545876524493439780765e-1*AA[22]-0.1562500000000000000000000000000000000000e-1*AA[23]-0.1344785884099797529576133819368888753762e-2*AA[24]-0.6014065304058601713636966463562056829663e-2*AA[25]-0.5208333333333333333333333333333333333333e-2*AA[26]-0.1344785884099797529576133819368888753762e-2*AA[27]-0.4209845712841021199545876524493439780765e-1*AA[28]-0.1562500000000000000000000000000000000000e-1*AA[29]-0.1344785884099797529576133819368888753762e-2*AA[30]-0.9355689989796860791725737785335001844313e-1 = 0

 

(1/18)*(-12*AA[8]*3^(1/2)-3*AA[9]*5^(1/2)-18*AA[7])*2^(1/2)+(8/3)*((1/6)*AA[3]*5^(1/2)+AA[1])*AA[2]*3^(1/2)+(2/3)*AA[1]*AA[3]*5^(1/2)+2*AA[1]^2+(8/3)*AA[2]^2+(5/18)*AA[3]^2 = 0

 

(1/18)*(-12*AA[14]*3^(1/2)-3*AA[15]*5^(1/2)-18*AA[13])*2^(1/2)+(8/3)*((1/6)*AA[33]*5^(1/2)+AA[31])*AA[32]*3^(1/2)+(2/3)*AA[31]*AA[33]*5^(1/2)+2*AA[31]^2+(8/3)*AA[32]^2+(5/18)*AA[33]^2 = 0

 

(1/18)*(-12*AA[20]*3^(1/2)-3*AA[21]*5^(1/2)-18*AA[19])*2^(1/2)+(8/3)*((1/6)*AA[3]*5^(1/2)+AA[1])*AA[2]*3^(1/2)+(2/3)*AA[1]*AA[3]*5^(1/2)+2*AA[1]^2+(8/3)*AA[2]^2+(5/18)*AA[3]^2 = 0

 

(1/18)*(-12*AA[26]*3^(1/2)-3*AA[27]*5^(1/2)-18*AA[25])*2^(1/2)+(8/3)*((1/6)*AA[33]*5^(1/2)+AA[31])*AA[32]*3^(1/2)+(2/3)*AA[31]*AA[33]*5^(1/2)+2*AA[31]^2+(8/3)*AA[32]^2+(5/18)*AA[33]^2 = 0

 

AA[3]+AA[33]-0.2329237476562280933759555904928412745252e-2*AA[7]-0.1344785884099797529576133819368888753762e-2*AA[8]-0.6987712429686842801278667714785238235753e-2*AA[10]-0.1344785884099797529576133819368888753762e-2*AA[11]-0.2329237476562280933759555904928412745252e-2*AA[13]-0.1344785884099797529576133819368888753762e-2*AA[14]-0.6987712429686842801278667714785238235753e-2*AA[16]-0.1344785884099797529576133819368888753762e-2*AA[17] = 0

 

AA[3]+AA[33] = 0

 

(1/18)*(12*AA[11]*3^(1/2)-3*AA[12]*5^(1/2)-18*AA[10])*2^(1/2)-(8/3)*((1/6)*AA[6]*5^(1/2)+AA[4])*AA[5]*3^(1/2)+(2/3)*AA[4]*AA[6]*5^(1/2)+2*AA[4]^2+(8/3)*AA[5]^2+(5/18)*AA[6]^2 = 0

 

(1/18)*(12*AA[17]*3^(1/2)-3*AA[18]*5^(1/2)-18*AA[16])*2^(1/2)-(8/3)*((1/6)*AA[36]*5^(1/2)+AA[34])*AA[35]*3^(1/2)+(2/3)*AA[34]*AA[36]*5^(1/2)+2*AA[34]^2+(8/3)*AA[35]^2+(5/18)*AA[36]^2 = 0

 

(1/18)*(12*AA[23]*3^(1/2)-3*AA[24]*5^(1/2)-18*AA[22])*2^(1/2)-(8/3)*((1/6)*AA[6]*5^(1/2)+AA[4])*AA[5]*3^(1/2)+(2/3)*AA[4]*AA[6]*5^(1/2)+2*AA[4]^2+(8/3)*AA[5]^2+(5/18)*AA[6]^2 = 0

 

(1/18)*(12*AA[29]*3^(1/2)-3*AA[30]*5^(1/2)-18*AA[28])*2^(1/2)-(8/3)*((1/6)*AA[36]*5^(1/2)+AA[34])*AA[35]*3^(1/2)+(2/3)*AA[34]*AA[36]*5^(1/2)+2*AA[34]^2+(8/3)*AA[35]^2+(5/18)*AA[36]^2 = 0

 

AA[4]+AA[34]-0.7291666666666666666666666666666666666667e-1*AA[7]-0.4209845712841021199545876524493439780765e-1*AA[8]-.2187500000000000000000000000000000000000*AA[10]-0.4209845712841021199545876524493439780765e-1*AA[11]-0.7291666666666666666666666666666666666667e-1*AA[13]-0.4209845712841021199545876524493439780765e-1*AA[14]-.2187500000000000000000000000000000000000*AA[16]-0.4209845712841021199545876524493439780765e-1*AA[17]-.3485026278705127084547018641802470265047 = 0

 

AA[4]+AA[34]-0.3125000000000000000000000000000000000000e-1*AA[19]-0.2706329386826370771136634908602925573348e-1*AA[20]-0.6987712429686842801278667714785238235753e-2*AA[21]-.2187500000000000000000000000000000000000*AA[22]-0.8118988160479112313409904725808776720045e-1*AA[23]-0.6987712429686842801278667714785238235753e-2*AA[24]-0.3125000000000000000000000000000000000000e-1*AA[25]-0.2706329386826370771136634908602925573348e-1*AA[26]-0.6987712429686842801278667714785238235753e-2*AA[27]-.2187500000000000000000000000000000000000*AA[28]-0.8118988160479112313409904725808776720045e-1*AA[29]-0.6987712429686842801278667714785238235753e-2*AA[30]-.4861359120657514230255804989470837145084 = 0

 

(1/2)*(AA[12]*5^(1/2)-2*AA[10])*2^(1/2)-2*AA[4]*AA[6]*5^(1/2)+2*AA[4]^2+(5/2)*AA[6]^2 = 0

 

(1/2)*(AA[18]*5^(1/2)-2*AA[16])*2^(1/2)-2*AA[34]*AA[36]*5^(1/2)+2*AA[34]^2+(5/2)*AA[36]^2 = 0

 

(1/2)*(AA[24]*5^(1/2)-2*AA[22])*2^(1/2)-2*AA[4]*AA[6]*5^(1/2)+2*AA[4]^2+(5/2)*AA[6]^2 = 0

 

(1/2)*(AA[30]*5^(1/2)-2*AA[28])*2^(1/2)-2*AA[34]*AA[36]*5^(1/2)+2*AA[34]^2+(5/2)*AA[36]^2 = 0

 

AA[5]+AA[35]-0.2706329386826370771136634908602925573348e-1*AA[7]-0.1562500000000000000000000000000000000000e-1*AA[8]-0.8118988160479112313409904725808776720045e-1*AA[10]-0.1562500000000000000000000000000000000000e-1*AA[11]-0.2706329386826370771136634908602925573348e-1*AA[13]-0.1562500000000000000000000000000000000000e-1*AA[14]-0.8118988160479112313409904725808776720045e-1*AA[16]-0.1562500000000000000000000000000000000000e-1*AA[17]-0.6706936200477749554587801633123274049430e-1 = 0

 

AA[5]+AA[35]-0.6014065304058601713636966463562056829663e-2*AA[19]-0.5208333333333333333333333333333333333333e-2*AA[20]-0.1344785884099797529576133819368888753762e-2*AA[21]-0.4209845712841021199545876524493439780765e-1*AA[22]-0.1562500000000000000000000000000000000000e-1*AA[23]-0.1344785884099797529576133819368888753762e-2*AA[24]-0.6014065304058601713636966463562056829663e-2*AA[25]-0.5208333333333333333333333333333333333333e-2*AA[26]-0.1344785884099797529576133819368888753762e-2*AA[27]-0.4209845712841021199545876524493439780765e-1*AA[28]-0.1562500000000000000000000000000000000000e-1*AA[29]-0.1344785884099797529576133819368888753762e-2*AA[30]-0.9355689989796860791725737785335001844313e-1 = 0

 

(1/18)*(-12*AA[11]*3^(1/2)-3*AA[12]*5^(1/2)-18*AA[10])*2^(1/2)+(8/3)*((1/6)*AA[6]*5^(1/2)+AA[4])*AA[5]*3^(1/2)+(2/3)*AA[4]*AA[6]*5^(1/2)+2*AA[4]^2+(8/3)*AA[5]^2+(5/18)*AA[6]^2 = 0

 

(1/18)*(-12*AA[17]*3^(1/2)-3*AA[18]*5^(1/2)-18*AA[16])*2^(1/2)+(8/3)*((1/6)*AA[36]*5^(1/2)+AA[34])*AA[35]*3^(1/2)+(2/3)*AA[34]*AA[36]*5^(1/2)+2*AA[34]^2+(8/3)*AA[35]^2+(5/18)*AA[36]^2 = 0

 

(1/18)*(-12*AA[23]*3^(1/2)-3*AA[24]*5^(1/2)-18*AA[22])*2^(1/2)+(8/3)*((1/6)*AA[6]*5^(1/2)+AA[4])*AA[5]*3^(1/2)+(2/3)*AA[4]*AA[6]*5^(1/2)+2*AA[4]^2+(8/3)*AA[5]^2+(5/18)*AA[6]^2 = 0

 

(1/18)*(-12*AA[29]*3^(1/2)-3*AA[30]*5^(1/2)-18*AA[28])*2^(1/2)+(8/3)*((1/6)*AA[36]*5^(1/2)+AA[34])*AA[35]*3^(1/2)+(2/3)*AA[34]*AA[36]*5^(1/2)+2*AA[34]^2+(8/3)*AA[35]^2+(5/18)*AA[36]^2 = 0

 

AA[6]+AA[36]-0.2329237476562280933759555904928412745252e-2*AA[7]-0.1344785884099797529576133819368888753762e-2*AA[8]-0.6987712429686842801278667714785238235753e-2*AA[10]-0.1344785884099797529576133819368888753762e-2*AA[11]-0.2329237476562280933759555904928412745252e-2*AA[13]-0.1344785884099797529576133819368888753762e-2*AA[14]-0.6987712429686842801278667714785238235753e-2*AA[16]-0.1344785884099797529576133819368888753762e-2*AA[17] = 0

 

AA[6]+AA[36] = 0

(3)

fsolve({seq}(EQQ[i],i=1..36),{seq}(AA[i],i=1..36));

fsolve({AA[3]+AA[33] = 0, AA[6]+AA[36] = 0, (1/2)*(AA[9]*5^(1/2)-2*AA[7])*2^(1/2)-2*AA[1]*AA[3]*5^(1/2)+2*AA[1]^2+(5/2)*AA[3]^2 = 0, (1/2)*(AA[12]*5^(1/2)-2*AA[10])*2^(1/2)-2*AA[4]*AA[6]*5^(1/2)+2*AA[4]^2+(5/2)*AA[6]^2 = 0, (1/2)*(AA[15]*5^(1/2)-2*AA[13])*2^(1/2)-2*AA[31]*AA[33]*5^(1/2)+2*AA[31]^2+(5/2)*AA[33]^2 = 0, (1/2)*(AA[18]*5^(1/2)-2*AA[16])*2^(1/2)-2*AA[34]*AA[36]*5^(1/2)+2*AA[34]^2+(5/2)*AA[36]^2 = 0, (1/2)*(AA[21]*5^(1/2)-2*AA[19])*2^(1/2)-2*AA[1]*AA[3]*5^(1/2)+2*AA[1]^2+(5/2)*AA[3]^2 = 0, (1/2)*(AA[24]*5^(1/2)-2*AA[22])*2^(1/2)-2*AA[4]*AA[6]*5^(1/2)+2*AA[4]^2+(5/2)*AA[6]^2 = 0, (1/2)*(AA[27]*5^(1/2)-2*AA[25])*2^(1/2)-2*AA[31]*AA[33]*5^(1/2)+2*AA[31]^2+(5/2)*AA[33]^2 = 0, (1/2)*(AA[30]*5^(1/2)-2*AA[28])*2^(1/2)-2*AA[34]*AA[36]*5^(1/2)+2*AA[34]^2+(5/2)*AA[36]^2 = 0, (1/18)*(-12*AA[8]*3^(1/2)-3*AA[9]*5^(1/2)-18*AA[7])*2^(1/2)+(8/3)*((1/6)*AA[3]*5^(1/2)+AA[1])*AA[2]*3^(1/2)+(2/3)*AA[1]*AA[3]*5^(1/2)+2*AA[1]^2+(8/3)*AA[2]^2+(5/18)*AA[3]^2 = 0, (1/18)*(12*AA[8]*3^(1/2)-3*AA[9]*5^(1/2)-18*AA[7])*2^(1/2)-(8/3)*((1/6)*AA[3]*5^(1/2)+AA[1])*AA[2]*3^(1/2)+(2/3)*AA[1]*AA[3]*5^(1/2)+2*AA[1]^2+(8/3)*AA[2]^2+(5/18)*AA[3]^2 = 0, (1/18)*(-12*AA[11]*3^(1/2)-3*AA[12]*5^(1/2)-18*AA[10])*2^(1/2)+(8/3)*((1/6)*AA[6]*5^(1/2)+AA[4])*AA[5]*3^(1/2)+(2/3)*AA[4]*AA[6]*5^(1/2)+2*AA[4]^2+(8/3)*AA[5]^2+(5/18)*AA[6]^2 = 0, (1/18)*(12*AA[11]*3^(1/2)-3*AA[12]*5^(1/2)-18*AA[10])*2^(1/2)-(8/3)*((1/6)*AA[6]*5^(1/2)+AA[4])*AA[5]*3^(1/2)+(2/3)*AA[4]*AA[6]*5^(1/2)+2*AA[4]^2+(8/3)*AA[5]^2+(5/18)*AA[6]^2 = 0, (1/18)*(-12*AA[14]*3^(1/2)-3*AA[15]*5^(1/2)-18*AA[13])*2^(1/2)+(8/3)*AA[32]*((1/6)*AA[33]*5^(1/2)+AA[31])*3^(1/2)+(2/3)*AA[31]*AA[33]*5^(1/2)+2*AA[31]^2+(8/3)*AA[32]^2+(5/18)*AA[33]^2 = 0, (1/18)*(12*AA[14]*3^(1/2)-3*AA[15]*5^(1/2)-18*AA[13])*2^(1/2)-(8/3)*AA[32]*((1/6)*AA[33]*5^(1/2)+AA[31])*3^(1/2)+(2/3)*AA[31]*AA[33]*5^(1/2)+2*AA[31]^2+(8/3)*AA[32]^2+(5/18)*AA[33]^2 = 0, (1/18)*(-12*AA[17]*3^(1/2)-3*AA[18]*5^(1/2)-18*AA[16])*2^(1/2)+(8/3)*AA[35]*((1/6)*AA[36]*5^(1/2)+AA[34])*3^(1/2)+(2/3)*AA[34]*AA[36]*5^(1/2)+2*AA[34]^2+(8/3)*AA[35]^2+(5/18)*AA[36]^2 = 0, (1/18)*(12*AA[17]*3^(1/2)-3*AA[18]*5^(1/2)-18*AA[16])*2^(1/2)-(8/3)*AA[35]*((1/6)*AA[36]*5^(1/2)+AA[34])*3^(1/2)+(2/3)*AA[34]*AA[36]*5^(1/2)+2*AA[34]^2+(8/3)*AA[35]^2+(5/18)*AA[36]^2 = 0, (1/18)*(-12*AA[20]*3^(1/2)-3*AA[21]*5^(1/2)-18*AA[19])*2^(1/2)+(8/3)*((1/6)*AA[3]*5^(1/2)+AA[1])*AA[2]*3^(1/2)+(2/3)*AA[1]*AA[3]*5^(1/2)+2*AA[1]^2+(8/3)*AA[2]^2+(5/18)*AA[3]^2 = 0, (1/18)*(12*AA[20]*3^(1/2)-3*AA[21]*5^(1/2)-18*AA[19])*2^(1/2)-(8/3)*((1/6)*AA[3]*5^(1/2)+AA[1])*AA[2]*3^(1/2)+(2/3)*AA[1]*AA[3]*5^(1/2)+2*AA[1]^2+(8/3)*AA[2]^2+(5/18)*AA[3]^2 = 0, (1/18)*(-12*AA[23]*3^(1/2)-3*AA[24]*5^(1/2)-18*AA[22])*2^(1/2)+(8/3)*((1/6)*AA[6]*5^(1/2)+AA[4])*AA[5]*3^(1/2)+(2/3)*AA[4]*AA[6]*5^(1/2)+2*AA[4]^2+(8/3)*AA[5]^2+(5/18)*AA[6]^2 = 0, (1/18)*(12*AA[23]*3^(1/2)-3*AA[24]*5^(1/2)-18*AA[22])*2^(1/2)-(8/3)*((1/6)*AA[6]*5^(1/2)+AA[4])*AA[5]*3^(1/2)+(2/3)*AA[4]*AA[6]*5^(1/2)+2*AA[4]^2+(8/3)*AA[5]^2+(5/18)*AA[6]^2 = 0, (1/18)*(-12*AA[26]*3^(1/2)-3*AA[27]*5^(1/2)-18*AA[25])*2^(1/2)+(8/3)*AA[32]*((1/6)*AA[33]*5^(1/2)+AA[31])*3^(1/2)+(2/3)*AA[31]*AA[33]*5^(1/2)+2*AA[31]^2+(8/3)*AA[32]^2+(5/18)*AA[33]^2 = 0, (1/18)*(12*AA[26]*3^(1/2)-3*AA[27]*5^(1/2)-18*AA[25])*2^(1/2)-(8/3)*AA[32]*((1/6)*AA[33]*5^(1/2)+AA[31])*3^(1/2)+(2/3)*AA[31]*AA[33]*5^(1/2)+2*AA[31]^2+(8/3)*AA[32]^2+(5/18)*AA[33]^2 = 0, (1/18)*(-12*AA[29]*3^(1/2)-3*AA[30]*5^(1/2)-18*AA[28])*2^(1/2)+(8/3)*AA[35]*((1/6)*AA[36]*5^(1/2)+AA[34])*3^(1/2)+(2/3)*AA[34]*AA[36]*5^(1/2)+2*AA[34]^2+(8/3)*AA[35]^2+(5/18)*AA[36]^2 = 0, (1/18)*(12*AA[29]*3^(1/2)-3*AA[30]*5^(1/2)-18*AA[28])*2^(1/2)-(8/3)*AA[35]*((1/6)*AA[36]*5^(1/2)+AA[34])*3^(1/2)+(2/3)*AA[34]*AA[36]*5^(1/2)+2*AA[34]^2+(8/3)*AA[35]^2+(5/18)*AA[36]^2 = 0, AA[3]+AA[33]-0.2329237476562280933759555904928412745252e-2*AA[7]-0.1344785884099797529576133819368888753762e-2*AA[8]-0.6987712429686842801278667714785238235753e-2*AA[10]-0.1344785884099797529576133819368888753762e-2*AA[11]-0.2329237476562280933759555904928412745252e-2*AA[13]-0.1344785884099797529576133819368888753762e-2*AA[14]-0.6987712429686842801278667714785238235753e-2*AA[16]-0.1344785884099797529576133819368888753762e-2*AA[17] = 0, AA[6]+AA[36]-0.2329237476562280933759555904928412745252e-2*AA[7]-0.1344785884099797529576133819368888753762e-2*AA[8]-0.6987712429686842801278667714785238235753e-2*AA[10]-0.1344785884099797529576133819368888753762e-2*AA[11]-0.2329237476562280933759555904928412745252e-2*AA[13]-0.1344785884099797529576133819368888753762e-2*AA[14]-0.6987712429686842801278667714785238235753e-2*AA[16]-0.1344785884099797529576133819368888753762e-2*AA[17] = 0, AA[1]+AA[31]-0.1041666666666666666666666666666666666667e-1*AA[7]-0.6014065304058601713636966463562056829663e-2*AA[8]-0.3125000000000000000000000000000000000000e-1*AA[10]-0.6014065304058601713636966463562056829663e-2*AA[11]-0.1041666666666666666666666666666666666667e-1*AA[13]-0.6014065304058601713636966463562056829663e-2*AA[14]-0.3125000000000000000000000000000000000000e-1*AA[16]-0.6014065304058601713636966463562056829663e-2*AA[17]-.1161675426235042361515672880600823421682 = 0, AA[2]+AA[32]-0.9021097956087902570455449695343085244494e-2*AA[7]-0.5208333333333333333333333333333333333333e-2*AA[8]-0.2706329386826370771136634908602925573348e-1*AA[10]-0.5208333333333333333333333333333333333333e-2*AA[11]-0.9021097956087902570455449695343085244494e-2*AA[13]-0.5208333333333333333333333333333333333333e-2*AA[14]-0.2706329386826370771136634908602925573348e-1*AA[16]-0.5208333333333333333333333333333333333333e-2*AA[17]-0.6706936200477749554587801633123274049430e-1 = 0, AA[4]+AA[34]-0.7291666666666666666666666666666666666667e-1*AA[7]-0.4209845712841021199545876524493439780765e-1*AA[8]-.2187500000000000000000000000000000000000*AA[10]-0.4209845712841021199545876524493439780765e-1*AA[11]-0.7291666666666666666666666666666666666667e-1*AA[13]-0.4209845712841021199545876524493439780765e-1*AA[14]-.2187500000000000000000000000000000000000*AA[16]-0.4209845712841021199545876524493439780765e-1*AA[17]-.3485026278705127084547018641802470265047 = 0, AA[5]+AA[35]-0.2706329386826370771136634908602925573348e-1*AA[7]-0.1562500000000000000000000000000000000000e-1*AA[8]-0.8118988160479112313409904725808776720045e-1*AA[10]-0.1562500000000000000000000000000000000000e-1*AA[11]-0.2706329386826370771136634908602925573348e-1*AA[13]-0.1562500000000000000000000000000000000000e-1*AA[14]-0.8118988160479112313409904725808776720045e-1*AA[16]-0.1562500000000000000000000000000000000000e-1*AA[17]-0.6706936200477749554587801633123274049430e-1 = 0, AA[1]+AA[31]-0.1041666666666666666666666666666666666667e-1*AA[19]-0.9021097956087902570455449695343085244494e-2*AA[20]-0.2329237476562280933759555904928412745252e-2*AA[21]-0.7291666666666666666666666666666666666667e-1*AA[22]-0.2706329386826370771136634908602925573348e-1*AA[23]-0.2329237476562280933759555904928412745252e-2*AA[24]-0.1041666666666666666666666666666666666667e-1*AA[25]-0.9021097956087902570455449695343085244494e-2*AA[26]-0.2329237476562280933759555904928412745252e-2*AA[27]-0.7291666666666666666666666666666666666667e-1*AA[28]-0.2706329386826370771136634908602925573348e-1*AA[29]-0.2329237476562280933759555904928412745252e-2*AA[30]-.1620453040219171410085268329823612381694 = 0, AA[2]+AA[32]-0.6014065304058601713636966463562056829663e-2*AA[19]-0.5208333333333333333333333333333333333333e-2*AA[20]-0.1344785884099797529576133819368888753762e-2*AA[21]-0.4209845712841021199545876524493439780765e-1*AA[22]-0.1562500000000000000000000000000000000000e-1*AA[23]-0.1344785884099797529576133819368888753762e-2*AA[24]-0.6014065304058601713636966463562056829663e-2*AA[25]-0.5208333333333333333333333333333333333333e-2*AA[26]-0.1344785884099797529576133819368888753762e-2*AA[27]-0.4209845712841021199545876524493439780765e-1*AA[28]-0.1562500000000000000000000000000000000000e-1*AA[29]-0.1344785884099797529576133819368888753762e-2*AA[30]-0.9355689989796860791725737785335001844313e-1 = 0, AA[4]+AA[34]-0.3125000000000000000000000000000000000000e-1*AA[19]-0.2706329386826370771136634908602925573348e-1*AA[20]-0.6987712429686842801278667714785238235753e-2*AA[21]-.2187500000000000000000000000000000000000*AA[22]-0.8118988160479112313409904725808776720045e-1*AA[23]-0.6987712429686842801278667714785238235753e-2*AA[24]-0.3125000000000000000000000000000000000000e-1*AA[25]-0.2706329386826370771136634908602925573348e-1*AA[26]-0.6987712429686842801278667714785238235753e-2*AA[27]-.2187500000000000000000000000000000000000*AA[28]-0.8118988160479112313409904725808776720045e-1*AA[29]-0.6987712429686842801278667714785238235753e-2*AA[30]-.4861359120657514230255804989470837145084 = 0, AA[5]+AA[35]-0.6014065304058601713636966463562056829663e-2*AA[19]-0.5208333333333333333333333333333333333333e-2*AA[20]-0.1344785884099797529576133819368888753762e-2*AA[21]-0.4209845712841021199545876524493439780765e-1*AA[22]-0.1562500000000000000000000000000000000000e-1*AA[23]-0.1344785884099797529576133819368888753762e-2*AA[24]-0.6014065304058601713636966463562056829663e-2*AA[25]-0.5208333333333333333333333333333333333333e-2*AA[26]-0.1344785884099797529576133819368888753762e-2*AA[27]-0.4209845712841021199545876524493439780765e-1*AA[28]-0.1562500000000000000000000000000000000000e-1*AA[29]-0.1344785884099797529576133819368888753762e-2*AA[30]-0.9355689989796860791725737785335001844313e-1 = 0}, {AA[1], AA[2], AA[3], AA[4], AA[5], AA[6], AA[7], AA[8], AA[9], AA[10], AA[11], AA[12], AA[13], AA[14], AA[15], AA[16], AA[17], AA[18], AA[19], AA[20], AA[21], AA[22], AA[23], AA[24], AA[25], AA[26], AA[27], AA[28], AA[29], AA[30], AA[31], AA[32], AA[33], AA[34], AA[35], AA[36]})

(4)

``


 

Download ttttt33.mw

Please Wait...