Question: on pdsolve 2017, heat PDE, homogenous neumann B.C. problem

I am trying Maple 2017 pdsolve for heat PDE in 1D. It seems Maple can solve now  heat PDE with homogeneous dirichlet boundary conditions (good). But when I set the boundary conditions to homogeneous neumann B.C. instead, I get an answer when this B.C. is prescribed to the left side. When this B.C. is on the right side, I get an error. Which is strange.

I am newbie in Maple, so may be I am doing something wrong in the syntax?  In addition, the answer I get when homogeneous neumann B.C. is on the left side, does not match my hand solution, which I know is correct. I'll show this below.

First, here is the case where it works. homogeneous dirichlet boundary conditions on both sides:

restart;
pde:=diff(u(x,t),t)=k*diff(u(x,t),x$2);
bc:=u(0,t)=0,u(L,t)=0;
sol:=pdsolve([pde,bc]) assuming 0<L:

This answer is correct. Now when setting the right side to homogeneous neumann B.C. I get an error

restart;
pde:=diff(u(x,t),t)=k*diff(u(x,t),x$2);
bc:=u(0,t)=0,D[1](u)(L,t)=0;
pdsolve([pde,bc]) assuming 0<L;

I think may be it does not like `L` there in the B.C. But how else to tell it this B.C.? The above is the only syntax I know. And finally, when using homogeneous neumann B.C. on the left side, I get this result

restart;
pde:=diff(u(x,t),t)=k*diff(u(x,t),x$2);
bc:=D[1](u)(0,t)=0,u(L,t)=0;
pdsolve([pde,bc]) assuming 0<L;

The correct answer for this B.C. is

The answer should be series solution as well with eigenvalues. I think if I expand Maple solution in series may be I will get it to match my hand solution. I need to look at this more later.

my question is: Why do I get an error when homogeneous neumann B.C. is on the right side but not on the left side?

I suspect I am not entering the B.C. correctly? If so, How does one enter homogeneous neumann B.C. for this 1D heat PDE?

 

Please Wait...