Question: Uses of Math Container embedded component?

mathcontainerUses_Doubt.mw
 

restart; d[1] := [2.36, 26.90], [2.75, 30.0], [3.14, 31.9], [3.53, 32.8], [3.93, 33.4], [4.32, 32.8], [4.71, 31.9]

[2.36, 26.90], [2.75, 30.0], [3.14, 31.9], [3.53, 32.8], [3.93, 33.4], [4.32, 32.8], [4.71, 31.9]

(1)

NULL

d[2] := [2.36, 32.40], [2.75, 34.90], [3.14, 36.90], [3.53, 38.00], [3.93, 38.40], [4.32, 37.8], [4.71, 36.5]

[2.36, 32.40], [2.75, 34.90], [3.14, 36.90], [3.53, 38.00], [3.93, 38.40], [4.32, 37.8], [4.71, 36.5]

(2)

d[3] := [2.36, 27.9], [2.75, 28.3], [3.14, 30.0], [3.53, 30.9], [3.93, 31.3], [4.32, 30.8], [4.71, 29.7]

[2.36, 27.9], [2.75, 28.3], [3.14, 30.0], [3.53, 30.9], [3.93, 31.3], [4.32, 30.8], [4.71, 29.7]

(3)

y := a*x^2+b*x+c; for i to 3 do d[i] := [d[i]]; c[i] := CurveFitting[LeastSquares](d[i], x, curve = y) end do

HFloat(8.047886108501745)+HFloat(11.793324911833839)*x-HFloat(1.5172878997894277)*x^2

(4)

 

curve1 := [c[1], c[2]]; k[1] := [1, 2]; curve1p := [d[1], d[2]]; l[1] := "plot 1"

"plot 1"

(5)

curve2 := [c[2], c[3]]; k[2] := [2, 3]; curve2p := [d[2], d[3]]; l[2] := "plot 2"

"plot 2"

(6)

curve3 := [c[1], c[3]]; k[3] := [1, 3]; curve3p := [d[1], d[3]]; l[3] := "plot 3"

"plot 3"

(7)
Table 1

 

xlabel := "Brake Power"; ylabel := "Efficiency"

"Efficiency"

(8)

p1 := plot(curve1, x = 2.0 .. 5.0, labels = [xlabel, ylabel], labeldirections = ["horizontal", "vertical"], color = [black], linestyle = [1, 2], thickness = [3, 1], title = Title, caption = "Fig. 1 cool  Example 1", legend = ["curve1", "curve2"]); p2 := plot(curve1p, style = point, color = [black], symbol = [soliddiamond, box], symbolsize = 10); plots:-display(p1, p2)

 

p1 := plot(curve2, x = 2.0 .. 5.0, labels = [xlabel, ylabel], labeldirections = ["horizontal", "vertical"], color = [black], linestyle = [1, 2], thickness = [3, 1], title = Title, caption = "Fig. 1 cool  Example 1", legend = ["curve1", "curve2"]); p2 := plot(curve2p, style = point, color = [black], symbol = [box, point], symbolsize = 10); plots:-display(p1, p2)

 

p1 := plot(curve3, x = 2.0 .. 5.0, labels = [xlabel, ylabel], labeldirections = ["horizontal", "vertical"], color = [black], linestyle = [1, 2], thickness = [3, 1], title = Title, caption = "Fig. 1 cool  Example 1", legend = ["curve1", "curve2"]); p2 := plot(curve3p, style = point, color = [black], symbol = [soliddiamond, point], symbolsize = 10); plots:-display(p1, p2)

 

 

"for j from 1 to 3 do  print( Report on l[j]); for i in k[j] do x1(i):=solve((ⅆ)/(ⅆ x)c[i]);  y1(i):=eval( c[i], [x = x1(i)]):  print( Maximum brake thermal efficiency of,y1(i) "%"occurs at brake power value of , x1(i)kW);  end do;  end do;"

Maximum*brake*thermal*efficiency*of, HFloat(30.964188366461613)*"%"*occurs*at*brake*power*value*of, 3.886317459*kW

(9)

NULL


 

Download mathcontainerUses_Doubt.mw

Can any one state the uses of mathcontainer?

1. It can store only one algebraic expression at a time?

2. Can it handle list of algebraic expressions?

3. Can it store list data points (x,y) for a list of curves?

4. Can there be any use for click to edit this component?

More than a simple Yes or No a simple example for each yes answer would be very helpful.

I enclose a document with list of coordinates for for three curves, expression for curve fitting, three expressions derived for these plot points (coordinates), a command for optimum y for each of the three curves (maximum y and corresponding x value), 

Thanks for answering.

Ramakrishnan V

Please Wait...