Question: Creating graphs of numbers of solutions of a certain type generated by solve

I am working on problems in identifiability and I am interested in how many Lie derivatives of two kinds are required to get a full result for a simple system, and more interestingly a way of visualising what comes out when too few Lie derivatives are used. 

The method is simple, I use Lie derivatives my own program GTS2 to get relationships that must be conserved for the output for two parameter vectors to give the same output (you can find it along with everything else for this question here.

An example of a list of parameter relationships is: 

[{R = R, Rh = Rh, alpha = alpha, C[T] = C[T], Ch[T] = Ch[T], k[a1] = -(k[a2]*C[T]*R-kh[a1]*Ch[T]*Rh-kh[a2]*Ch[T]*Rh)/(R*C[T]), k[a2] = k[a2], k[d1] = k[d1], k[d2] = k[d2], kh[a1] = kh[a1], kh[a2] = kh[a2], kh[d1] = -(k[d1]*x[2]-k[d1]*xh[1]-k[d1]*xh[2]-k[d2]*x[2]+kh[d2]*xh[2])/xh[1], kh[d2] = kh[d2], x[1] = -x[2]+xh[1]+xh[2], x[2] = x[2], xh[1] = xh[1], xh[2] = xh[2]},{...},{...}]

i.e. they will show that there are multiple relationships that satisfy the Lie derivative conditions (each relationship is in a seperate set within the list) and within each set some parameters can vary freely (like R and Rh in the above) and others are determined by the ones that vary freely (like k[a1] and kh[a2]).
 
I want to count the numbers of parameters that have their relationships determined in three different ways so i can plot these numbers as the numbers of both types of Lie-Derivatives vary. These numbers are:
 

  1. N_i number of identifiabile parameters; parameters that in all solutions are of the form {p=ph or ph=p}
  2. N_l number of locally identifiable parameters; parameters that in all solutions take either the form {p=ph or ph=p} or {p=some function of the parameters with hs at the end of their names or ph=some function of exclusively the parameters without hs at the end of their names}
  3. N_u number of unidentifiable parameters; parameters that are neither identifiable or n locally-identifiable. 

    I think its nice to have a link to a worksheet at the end of a question, so here_it_is_again.

Acknowledgement: most of the code in the above was based on snippets written by @Carl Love in response to my previous questions.

EDIT: I had some teaching to do, so uploaded the question early as i was writing in a computer room- as a result the maple worksheet I originally included was confusing, the worksheet I've included in this edit is much easier to understand.

TLDR: i am looking a way to count the numbers of outputs of various types from a program that is built around maples solve feature, and stuck

Please Wait...