Question: Plot a graph for varioation of more than one variable

 

Hi everyone, now I try to plot a graph by varying more than one variable. Is it possible to vary for more than one variable at a time (vary the two or more variable at one once) Please anybody can help in this regard?
 

``

``

``

``

w := .572433:

``

for j to nops(N) do sol1 := dsolve([diff(diff(diff(f(eta), eta), eta), eta)+w*x(f(eta)*(diff(diff(f(eta), eta), eta))-(m*m)*(diff(f(eta), eta))-(diff(f(eta), eta))^2) = 0, y*(diff(diff(theta(eta), eta), eta))/(pr*z)-b*f(eta)*(diff(f(eta), eta))*(diff(theta(eta), eta))-b*f(eta)^2*(diff(diff(theta(eta), eta), eta))+f(eta)*(diff(theta(eta), eta)) = 0, f(0) = N[j], (D(f))(0) = 1, (D(f))(20) = 0, theta(0) = 1, theta(20) = 0], numeric, method = bvp); plots[odeplot](sol1, [eta, ((D@@2)(f))(eta)], color = red); plots[odeplot](sol1, color = red); plots[odeplot](sol1, [eta, theta(eta)], color = K[j], linestyle = L[j]); fplt[j] := plots[odeplot](sol1, [eta, f(eta)], color = K[j], axes = boxed, linestyle = L[j]); tplt[j] := plots[odeplot](sol1, [[eta, theta(eta)]], color = K[j], axes = box, linestyle = L[j]) end do:

 

 

sol1(0)

[eta = 0., f(eta) = HFloat(29.999999999999986), diff(f(eta), eta) = HFloat(0.9999999999999996), diff(diff(f(eta), eta), eta) = HFloat(7.515045554999997), theta(eta) = HFloat(0.9999999999999996), diff(theta(eta), eta) = HFloat(-0.42693869190857225)]

(1)

odeplot(sol1, [x, y(x)], -4 .. 4, numpoints = 25)

odeplot(sol1, [1.32156, 5.29387], -4 .. 4, numpoints = 25)

(2)

 

 

``

``

NULL

NULL

NULL

NULL

``


 

Download MHD_cchf.mw
 

``

``

``

``

w := .572433:

``

for j to nops(N) do sol1 := dsolve([diff(diff(diff(f(eta), eta), eta), eta)+w*x(f(eta)*(diff(diff(f(eta), eta), eta))-(m*m)*(diff(f(eta), eta))-(diff(f(eta), eta))^2) = 0, y*(diff(diff(theta(eta), eta), eta))/(pr*z)-b*f(eta)*(diff(f(eta), eta))*(diff(theta(eta), eta))-b*f(eta)^2*(diff(diff(theta(eta), eta), eta))+f(eta)*(diff(theta(eta), eta)) = 0, f(0) = N[j], (D(f))(0) = 1, (D(f))(20) = 0, theta(0) = 1, theta(20) = 0], numeric, method = bvp); plots[odeplot](sol1, [eta, ((D@@2)(f))(eta)], color = red); plots[odeplot](sol1, color = red); plots[odeplot](sol1, [eta, theta(eta)], color = K[j], linestyle = L[j]); fplt[j] := plots[odeplot](sol1, [eta, f(eta)], color = K[j], axes = boxed, linestyle = L[j]); tplt[j] := plots[odeplot](sol1, [[eta, theta(eta)]], color = K[j], axes = box, linestyle = L[j]) end do:

 

 

sol1(0)

[eta = 0., f(eta) = HFloat(29.999999999999986), diff(f(eta), eta) = HFloat(0.9999999999999996), diff(diff(f(eta), eta), eta) = HFloat(7.515045554999997), theta(eta) = HFloat(0.9999999999999996), diff(theta(eta), eta) = HFloat(-0.42693869190857225)]

(1)

odeplot(sol1, [x, y(x)], -4 .. 4, numpoints = 25)

odeplot(sol1, [1.32156, 5.29387], -4 .. 4, numpoints = 25)

(2)

 

 

``

``

NULL

NULL

NULL

NULL

``


 

Download MHD_cchf.mw

 

Please Wait...