Question: How do I use simplification correctly?

Hello!

I am truing to simplify kretchmann variable in the following worksheet:

 

 
M > 

# Obtaining Ricci and Kretchmann;
with(DifferentialGeometry):with(Tensor):

DGsetup([t, r, theta, phi], M);
g := evalDG(-(1-2*M*mu/r)^(1/mu)*dt &t dt+(1-2*M*mu/r)^(-1/mu)*`&t`(dr, dr)+r^2*(1-2*M*mu/r)^(1-1/mu)*(`&t`(dtheta, dtheta)+sin(theta)^2*`&t`(dphi, dphi)));
C := Christoffel(g):

`frame name: M`

 

_DG([["tensor", M, [["cov_bas", "cov_bas"], []]], [[[1, 1], -(-(2*M*mu-r)/r)^(1/mu)], [[2, 2], (-(2*M*mu-r)/r)^(-1/mu)], [[3, 3], r^2*(-(2*M*mu-r)/r)^((mu-1)/mu)], [[4, 4], r^2*(-(2*M*mu-r)/r)^((mu-1)/mu)*sin(theta)^2]]])

(1.1)

Rie := CurvatureTensor(C):
R := RicciScalar(g,Rie);
h := InverseMetric(g):
kretchmann := ContractIndices(RaiseLowerIndices(g, Rie, [1]), RaiseLowerIndices(h, Rie, [2, 3, 4]), [[1, 1], [2, 2], [3, 3], [4, 4]]);

2*(-(2*M*mu-r)/r)^(1/mu)*M^2*(mu^2-1)/(r^2*(2*M*mu-r)^2)

 

4*(-(2*M*mu-r)/r)^(-2*(mu-1)/mu)*M^2*(M*mu^2+2*M*mu+M-2*r)^2/(r^6*(2*M*mu-r)^2)+4*(-(2*M*mu-r)/r)^(2/mu)*M^2*(M*mu^2+M*mu-r)^2/((2*M*mu-r)^4*r^4)+20*(-(2*M*mu-r)/r)^(2/mu)*(M*mu+M-r)^2*M^2/((2*M*mu-r)^4*r^4)+4*(-(2*M*mu-r)/r)^(-2*(mu-1)/mu)*M^2*(M*mu^2+M*mu-r)^2/(r^6*(2*M*mu-r)^2)+4*(-(2*M*mu-r)/r)^(-2*(mu-1)/mu)*M^2*(M*mu+M-r)^2/(r^6*(2*M*mu-r)^2)

(1.2)
M > 

# simplification

M > 

simplify(normal(R),symbolic)

2*(-1)^(1/mu)*(2*M*mu-r)^((1-2*mu)/mu)*r^((-1-2*mu)/mu)*M^2*(mu^2-1)

(1.3)
M > 

simplify(kretchmann,size,symbolic)

4*(-(2*M*mu-r)/r)^(-2*(mu-1)/mu)*M^2*(M*mu^2+2*M*mu+M-2*r)^2/(r^6*(2*M*mu-r)^2)+4*(-(2*M*mu-r)/r)^(2/mu)*M^2*(M*mu^2+M*mu-r)^2/((2*M*mu-r)^4*r^4)+20*(-(2*M*mu-r)/r)^(2/mu)*(M*mu+M-r)^2*M^2/((2*M*mu-r)^4*r^4)+4*(-(2*M*mu-r)/r)^(-2*(mu-1)/mu)*M^2*(M*mu^2+M*mu-r)^2/(r^6*(2*M*mu-r)^2)+4*(-(2*M*mu-r)/r)^(-2*(mu-1)/mu)*M^2*(M*mu+M-r)^2/(r^6*(2*M*mu-r)^2)

(1.4)
M > 

 


 

Download RicciScalarKretchmann.mw

The problem is that I cannot obtain a good form of it. With Mathematica FullSimplify[] function I got the following form (LaTeX code incoming): $K =& 4 M^2 \Bigl(A-B r+C r^2\Bigr)(r-2 M \mu)^{\frac{2}{\mu}-4}r^{-\frac{2}{\mu}-4},\
    A =&M^2 (\mu (3 \mu+2)+7) (\mu+1)^2,\,B = 8 M (\mu+2) (\mu+1),\, C = 12$, i.e. terms $(r-2 M \mu)$ and $r$ got fully factorized. However, I could never achieve the same form in Maple. Any help?


I am sorry if this is a silly and many-times-answered question, but I tried consulting with Maple help and googling solutions without any success.

Regards,
Nick

Please Wait...