Question: Fourier transforms

There are discrepancies between Maple's solution of Fourier transforms and the results printed in USA NIST Handbook of Mathematical Functions, page 30

fourier(exp(-a*abs(x))/sqrt(abs(x)),x,s) assuming a>0;
            /   /   (1/2)   (1/2)                (1/2)  
        1   |   |2 2      Pi      signum(s - _U1)       
       ---- |int|-------------------------------------,
       2 Pi |   |       /   2    \                      
            |   |       |_U1     |          (1/2)       
            |   |     a |---- + 1| (s - _U1)            
            |   |       |  2     |                      
            \   \       \ a      /                      

                                    \\
                                    ||
         _U1 = -infinity .. infinity||
                                    ||
                                    ||
                                    ||
                                    ||
                                    //


For this transform of
                 "exp(-a*abs(x))/sqrt(abs(x))"

 the result in the NIST table is
          "sqrt(a + sqrt(a^2 + s^2))/sqrt(a^2 + s^2)"

 .
fourier(sinh(a*t)/sinh(Pi*t),x,s) assuming a>-Pi, a<Pi;
                    2 sinh(a t) Pi Dirac(s)
                    -----------------------
                          sinh(Pi t)       

For this transform of sinh(a*x)/sinh(Pi*x)   the result in the NIST table is
                         "1/sqrt(2*Pi)"  "sin(a)/(cosh(s) + cos(a))"

 
fourier(cosh(a*t)/cosh(Pi*t),x,s) assuming a>-Pi, a<Pi;
                    2 cosh(a t) Pi Dirac(s)
                    -----------------------
                          cosh(Pi t)       

For this transform of cosh(a*x)/cosh(Pi*x) the result in the NIST table is  
                          "sqrt(2/Pi) cos(a/2)*cosh(s/2)/(cosh(s) + cos(a))"

These disparities are significant, apart from the fact that Maple failed to solve the first example above.

 

Please Wait...