Question: Solving linear system

Suppose that S={p1, p2, p3, p4},  where

              p1(x)=  71+73x−153x2−259x3−108x4+245x5,

              p2(x)=  37+189x+287x2−167x3+279x4−51x5,

              p3(x)=  -199−200x−62x2+59x3+262x4−70x5,

              p4(x)= 48+295x+18x2+235x3+209x4+279x5,  and

                p(x)= 6143+20711x+8974x2−30368x3+18964x4+17937x5.

 

To avoid typing errors, you can copy and past the following sequences to your Maple worksheet.

      71, 73, -153, -259, -108, 245

   37, 189, 287, -167, 279, -51

   -199, -200, -62, 59, 262, -70

   48, 295, 18, 235, 209, 279

   6143, 20711, 8974, -30368, 18964, 17937

 

 

The polynomial p  is a linear combination of S  written in the form

 

αp1+βp2+γp3+δp4 .

 

Find a possible set of values for α, β, γ, δ.  Enter the values of α, β, γ, δ  as a sequence in the box below

 

[α,β,γ,δ]=

 

CAN ANYONE HELP ME WITH THIS QUESTION WITH A STEP BY STEP SOLUTION. TIA.

 

Please Wait...