Question: How to verify Fourier transform property?

Is there a way to verify the following Fourier transform property: F[f(x) exp(x)](k) = F[f(x)](k − b)? This is what I tried:
 

restart

with(inttrans)

constants := constants, b

false, gamma, infinity, true, Catalan, FAIL, Pi, b

(1)

left := fourier(f(x)*exp(I*b*x), x, k)/sqrt(2*Pi)

(1/2)*2^(1/2)*fourier(f(x)*exp(I*b*x), x, k)/Pi^(1/2)

(2)

right := fourier(f(x), x, k-b)/sqrt(2*Pi)

(1/2)*2^(1/2)*fourier(f(x), x, k-b)/Pi^(1/2)

(3)

simplify(left-right)

(1/2)*2^(1/2)*(fourier(f(x)*exp(I*b*x), x, k)-fourier(f(x), x, k-b))/Pi^(1/2)

(4)

NULL


 

Download First_Shifting_Theorem.mw

Please Wait...