Question: Some Symbolic Calculations and Defining a procedure for a new integral operation

EDIT TIME: 14:30 CET

where P(1) and P(2) are NxN matrix functions.

 

My trial code for STEP 0

 alpha times integral w.r.t. x

 Int_x__alpha:=proc(term,alpha): 
 return
select(has,term,x).P(alpha)^T.remove(has,term,x)
end proc: 

 alpha times integral w.r.t. t

Int_t__alpha:=proc(term,alpha):   #alpha times integral w.r.t. t
 return
remove(has,term,t).P(alpha).select(has,term,t)
end proc:

when I run the last procedure for the testing

 Int_t__alpha(Psi(x)^T.C. Psi(t),2);

I get

But it must be 

Because the multiplication is not commutative in Matrices. So, the last procedure must be corrected. 

DETAILS for the procedures:

-------------------------------------------------------------------------------------------------------------------------------------

MAIN QUESTION:

Suppose that we have a PDE as follows 

                                             ...(3)

 

subject to appropriate Initial and Boundary conditions.

-------------------------------------------------------------------------------------------------------------------------------------

STEP 1

  • Find the highest derivative w.r.t. x and w.r.t. t. Then, Let the trial function be the summation derivative of these highest derivatives. I mean

Trial Function:                                           ...(4)

where Psi(x), Psi(t) are Nx1 vectors and C is a NxN matrix.

I can't write a maple code for selecting the trial function.  May be you can.
trial_function:=diff(u(x,t),x,t)=Psi(x)^T.C. Psi(t); 

# I deliberately used ^T instead of ^+ for Transpose.
# If I use ^+, the transpose sign doesn't appear in 2d output. May be you have an other idea.

 

-------------------------------------------------------------------------------------------------------------------------------------

STEP 2

  • Integrate the Eq.4  w.r.t. t from 0 to t, we have
STEP2:=int(  lhs(trial_function) ,t=0..t)=Int_t__alpha(rhs(trial_function),1);


The code must be improved. Firstly, substitute t=s in lhs(trial_function) and then integrate s=0..t 

-------------------------------------------------------------------------------------------------------------------------------------

STEP 3

 

int(lhs(STEP2),x=0..x)= Int_x__alpha(rhs(STEP2),1);

The code must be improved.

-------------------------------------------------------------------------------------------------------------------------------------
STEP 4

  • Integrate Eq.4 w.r.t x

-------------------------------------------------------------------------------------------------------------------------------------
STEP 5

  • Substitute Eq. (5), Eq. (6), Eq. (7) to Eq. (3),
  • I mean substituting  u_x(x,t), u_t(x,t), u(x,t) to PDE.

-------------------------------------------------------------------------------------------------------------------------------------

STEP 6

DOWNLOAD ALL MAPLE CODE: all_code.mw

Please Wait...