Question: Solving equations

Reduce::nsmet: This system cannot be solved with the methods \
available to Reduce. >>

 

Reduce[{77187/296464 + (5241 Sqrt[15/2])/74116 - (
     11475 Cos[(Sqrt[1/30 (143 - 8 Sqrt[30])] t \[Tau])/\[HBar]])/
     74116 - (
     2475 Sqrt[15/2]
       Cos[(Sqrt[1/30 (143 - 8 Sqrt[30])] t \[Tau])/\[HBar]])/
     37058 + (
     6075 Cos[(Sqrt[1/30 (143 + 8 Sqrt[30])] t \[Tau])/\[HBar]])/
     74116 + (
     1485 Sqrt[15/2]
       Cos[(Sqrt[1/30 (143 + 8 Sqrt[30])] t \[Tau])/\[HBar]])/
     74116 - (
     3 Sqrt[15/2 (40433 + 296 Sqrt[18529])]
       Cos[(Sqrt[1/15 (143 - Sqrt[18529])] t \[Tau])/\[HBar]])/
     37058 - (
     10125 Sqrt[15/(2 (40433 + 296 Sqrt[18529]))]
       Cos[(Sqrt[1/15 (143 + Sqrt[18529])] t \[Tau])/\[HBar]])/
     37058 == 1 && \[HBar] > 0 && \[Tau] > 0 && t >= 0,
  77187/296464 + (222 Sqrt[30])/18529 -
     33/8 Sqrt[15/37058]
       Cos[(Sqrt[1/15 (143 - Sqrt[18529])] t \[Tau])/\[HBar]] - (
     5241 Sqrt[15/2]
       Cos[(Sqrt[1/15 (143 - Sqrt[18529])] t \[Tau])/\[HBar]])/
     148232 - (
     1350 Cos[(Sqrt[1/15 (143 - Sqrt[18529])] t \[Tau])/(
       2 \[HBar])] Cos[(
       Sqrt[143/60 + Sqrt[18529]/60] t \[Tau])/\[HBar]])/18529 + (
     495 Sqrt[15/2]
       Cos[(Sqrt[1/15 (143 - Sqrt[18529])] t \[Tau])/(
       2 \[HBar])] Cos[(
       Sqrt[143/60 + Sqrt[18529]/60] t \[Tau])/\[HBar]])/10588 +
     33/8 Sqrt[15/37058]
       Cos[(Sqrt[1/15 (143 + Sqrt[18529])] t \[Tau])/\[HBar]] - (
     5241 Sqrt[15/2]
       Cos[(Sqrt[1/15 (143 + Sqrt[18529])] t \[Tau])/\[HBar]])/
     148232 - (
     8775 Sin[(Sqrt[1/15 (143 - Sqrt[18529])] t \[Tau])/(
       2 \[HBar])] Sin[(
       Sqrt[143/60 + Sqrt[18529]/60] t \[Tau])/\[HBar]])/37058 - (
     6435 Sqrt[15/2]
       Sin[(Sqrt[1/15 (143 - Sqrt[18529])] t \[Tau])/(
       2 \[HBar])] Sin[(
       Sqrt[143/60 + Sqrt[18529]/60] t \[Tau])/\[HBar]])/74116 ==
    0 && \[HBar] > 0 && \[Tau] > 0 && t >= 0,
  77187/296464 + (222 Sqrt[30])/18529 -
     33/8 Sqrt[15/37058]
       Cos[(Sqrt[1/15 (143 - Sqrt[18529])] t \[Tau])/\[HBar]] - (
     5241 Sqrt[15/2]
       Cos[(Sqrt[1/15 (143 - Sqrt[18529])] t \[Tau])/\[HBar]])/
     148232 - (
     1350 Cos[(Sqrt[1/15 (143 - Sqrt[18529])] t \[Tau])/(
       2 \[HBar])] Cos[(
       Sqrt[143/60 + Sqrt[18529]/60] t \[Tau])/\[HBar]])/18529 + (
     495 Sqrt[15/2]
       Cos[(Sqrt[1/15 (143 - Sqrt[18529])] t \[Tau])/(
       2 \[HBar])] Cos[(
       Sqrt[143/60 + Sqrt[18529]/60] t \[Tau])/\[HBar]])/10588 +
     33/8 Sqrt[15/37058]
       Cos[(Sqrt[1/15 (143 + Sqrt[18529])] t \[Tau])/\[HBar]] - (
     5241 Sqrt[15/2]
       Cos[(Sqrt[1/15 (143 + Sqrt[18529])] t \[Tau])/\[HBar]])/
     148232 - (
     8775 Sin[(Sqrt[1/15 (143 - Sqrt[18529])] t \[Tau])/(
       2 \[HBar])] Sin[(
       Sqrt[143/60 + Sqrt[18529]/60] t \[Tau])/\[HBar]])/37058 - (
     6435 Sqrt[15/2]
       Sin[(Sqrt[1/15 (143 - Sqrt[18529])] t \[Tau])/(
       2 \[HBar])] Sin[(
       Sqrt[143/60 + Sqrt[18529]/60] t \[Tau])/\[HBar]])/74116 ==
    0 && \[HBar] > 0 && \[Tau] > 0 && t >= 0,
  77187/296464 + (5241 Sqrt[15/2])/74116 - (
     11475 Cos[(Sqrt[1/30 (143 - 8 Sqrt[30])] t \[Tau])/\[HBar]])/
     74116 - (
     2475 Sqrt[15/2]
       Cos[(Sqrt[1/30 (143 - 8 Sqrt[30])] t \[Tau])/\[HBar]])/
     37058 + (
     6075 Cos[(Sqrt[1/30 (143 + 8 Sqrt[30])] t \[Tau])/\[HBar]])/
     74116 + (
     1485 Sqrt[15/2]
       Cos[(Sqrt[1/30 (143 + 8 Sqrt[30])] t \[Tau])/\[HBar]])/
     74116 - (
     3 Sqrt[15/2 (40433 + 296 Sqrt[18529])]
       Cos[(Sqrt[1/15 (143 - Sqrt[18529])] t \[Tau])/\[HBar]])/
     37058 - (
     10125 Sqrt[15/(2 (40433 + 296 Sqrt[18529]))]
       Cos[(Sqrt[1/15 (143 + Sqrt[18529])] t \[Tau])/\[HBar]])/
     37058 == 0 && \[HBar] > 0 && \[Tau] > 0 && t >= 0}, {t}, Reals]

 

 

Is there an easy way to convert Mathematica output into Maple?

 

 I need to solve these equations for t but Mathematica won't do it. When I solve the density of the first element, it becomes 0.997 but it should be exactly 1. I'm quite convinced it's a problem with Mathematica because I have tested another solution which yielded a general expression. I suspect that this occurs because of a double square root but I don't know for sure. Unfortunately the help here is only limited to Maple and I'd have to convert everything to Maple syntax which is a pain..

Please Wait...