Question: Positivity of a finite double sum

If we consider the finite double sum I:=\sum{r=0}^{i}\sum{r=0}^{j}\frac{(-1)^k(i+j-r-s)! (\mu+\frac{1}{2})_{i+j-r-s}}{r!s!(i-r)!(j-s)!(k-r-s)!(\mu+\frac{1}{2})_{i-r}(\mu+\frac{1}{2})_{j-s}} where j positive integer j positive integer k positive integer such that 0\leq k\leq min(2i,2j) \mu a positive real Question: How we can use maple to justify that I is nonegative Thank you
Please Wait...