Question: solving PDE's

I am trying to solve the following system of PDE's
dn := diff(n(x,t),t) = d*diff(n(x,t),[x,x])+n(x,t)*(r(n(x,t)+m(x,t)))*s[1](C[1](x,t))-n(x,t);
dm := diff(m(x,t),t) = d*diff(m(x,t),[x,x])+m(x,t)*(r(n(x,t)+m(x,t)))*s[1](C[1](x,t))-m(x,t);
dc1 := diff(C[1](x,t),t) = d[1]*diff(C[1](x,t),[x,x])+P[1]+(n(x,t)+m(x,t))*p[1](n(x,t)+m(x,t))+H*m(x,t)*p[1](n(x,t)+
m(x,t))-(P[1]+p[1](1))*C[1](x,t);

with initial and boundary conditions
IBC := n(x,0)=piecewise(x^2<1,0,x^2>1,1),m(x,0)=piecewise(x^2>1,0,x^2<1,1),C[1](x,0)=1,
C[1](infinity,t)=1,n(infinity,t)=1,m(infinity,t)=0,n(-infinity,t)=1,m(-infinity,t)=0,
C[1](-infinity,0)=1;

I have defined the known functions and values
a[i]:=i/(2*i):h[i]:=i/i:b[i]:=i/i: d:=0.01:d[1]:=1:N:=100:P[1]:=0:H:=1:
r:=y->(N-y)/(N-1);
s[1]:=y->a[i]+(1-a[i])*y;
p[1]:=y->h[i](1+b[i])/(1+b[i]*y^2);

however I can not get maple to solve these using the pdsolve command, can anyone point me in the right direction
Please Wait...