Question: Solve for Constant

> restart; with(DEtools); with(PDETools, declare); declare(diff(y(x), x), prime = x); [declare] y(x) will now be displayed as y derivatives with respect to x of functions of one variable will now be displayed with ' > dsolve(diff(y(x), x) = -(2*x-1)/(3*y(x)+7)); (1/2) 7 1 / 2 \ y(x) = - - + - \49 - 6 x + 6 x - 6 _C1/ , 3 3 (1/2) 7 1 / 2 \ y(x) = - - - - \49 - 6 x + 6 x - 6 _C1/ 3 3 > dsolve(diff(y(x), x) = (2*x*exp(x)-y(x)+6*x^2)/x); 3 2 x exp(x) - 2 exp(x) + 2 x + _C1 y(x) = ---------------------------------- x Question is how do I force the answer _C1=2x exp(x) - 2exp(x) + 2x-xy?
Please Wait...