Question: integral, dsolve

My problem is the following:

deq1:=2*[(y(x)*(diff(y(x), x, x))-1)/sqrt(1+(diff(y(x), x))^2)+(diff(y(x), x, x))/(1+(diff(y(x), x))^2)] = cos(x);
I do this way (error anyway):
deq := (y(x)*(diff(y(x), x, x))-1)*(1+(diff(y(x), x))^2)+(diff(y(x), x, x))*sqrt(1+(diff(y(x), x))^2)-cos(x)*sqrt(1+(diff(y(x), x))^2)*(1+(diff(y(x), x))^2) = 0
sol := dsolve([deq, y(0) = 0, (D(y))(0) = 0], y(x), numeric, range = 0 .. 3)

So, my question is, how can I determine the integral of the left side of deq1? (I mean the integral of 2*[(y(x)*(diff(y(x), x, x))-1)/sqrt(1+(diff(y(x), x))^2)+(diff(y(x), x, x))/(1+(diff(y(x), x))^2)] from 0 to pi/3)

Please Wait...