Question: Solving a system of PDEs

Hi There,

I'm having a problem trying to solve the folllowing system of PDEs.

PDE1:=diff(P[e](x, t), t) = 5e(-5)*diff(P[e](x, t), x, x));

PDE2:= diff(P[s](x, t), t) = 5e(-10)*(diff(P[s](x, t), x, x));

IBC:={5e-5*(D[1](P[e]))(0.2e-3, t) = 5*10^(-10)*(D[1](P[s]))(0.2e-3, t), P[e](0, t) = 1, P[e](x, 0) = 0.1e-1, P[s](0.215e-3, t) = 0};

Sol:= pdsolve({PDE1,PDE2},IBC,[P[e](x,t),P[s](x,t),numeric);

Error, (in pdsolve/numeric) initial/boundary conditions must be defined at one or two pints for each independent varaible.

The PDEs in the system are coupled at one of the boundaries, hence the BC {5e-5*(D[1](P[e]))(0.2e-3, t) = 5*10^(-10)*(D[1](P[s]))(0.2e-3, t)}.

Any help on how I can get Maple to return the solution either numerically or symbolically?

Thanks

Mohamed

Please Wait...