MaplePrimes Questions

Do others see this problem? I do not understand what is going on. I am seeing this problem on many integrals

restart;
int(integrand)
   #Large output displayed
   #echo the input
int(...)
    #Large output displayed
    #echo the input 
int(...)
    #echo the input only. Large output gone
int(...)
   #echo the input only. Large output gone

restart;
int(...)
   #Large output displayed
   #echo the input 
int(...)
   #echo the input only. Large output gone
int(...)
   #echo the input only. Large output gone

In all the above, it is the same command used.

i.e. first time (sometimes needs two times), Maple displays large out. But looking at the end of this output, the very last line, we see the same integral/command is returned.

But second time and any attempt after that, it no longer gives that large output, but returns back/echos the command on the screen only.

Attached is worksheet showing this. This is new behaviour in Maple 2023 and I am baffled by it. Do others see it? Why does it happen. I will report it if others confirm it. I just wanted to make sure first it is not just me seeing this. 

Is it possible the large output is side effect and is being printed by error to the screen by internal Maple code? But why does it stop the second/third time?
 

interface(version);

`Standard Worksheet Interface, Maple 2023.0, Windows 10, March 6 2023 Build ID 1689885`

restart;

int((b*g*x+a*g)^2/(A+B*ln(e*(b*x+a)/(d*x+c))),x)

(a*d-b*c)*e*d*g^2*(a^2*d^2-2*a*b*c*d+b^2*c^2)*((1/6)*(2*B^2*b^2*e^2*ln((a*d-b*c)*e*_z/d+b*e/d)^2-6*B^2*b*d*e*ln((a*d-b*c)*e*_z/d+b*e/d)^2*((a*d-b*c)*e*_z/d+b*e/d)+6*B^2*d^2*ln((a*d-b*c)*e*_z/d+b*e/d)^2*((a*d-b*c)*e*_z/d+b*e/d)^2+4*A*B*b^2*e^2*ln((a*d-b*c)*e*_z/d+b*e/d)-12*A*B*b*d*e*ln((a*d-b*c)*e*_z/d+b*e/d)*((a*d-b*c)*e*_z/d+b*e/d)+12*A*B*d^2*ln((a*d-b*c)*e*_z/d+b*e/d)*((a*d-b*c)*e*_z/d+b*e/d)^2-3*B^2*b^2*e^2*ln((a*d-b*c)*e*_z/d+b*e/d)+7*B^2*b*d*e*ln((a*d-b*c)*e*_z/d+b*e/d)*((a*d-b*c)*e*_z/d+b*e/d)-4*B^2*d^2*ln((a*d-b*c)*e*_z/d+b*e/d)*((a*d-b*c)*e*_z/d+b*e/d)^2+2*A^2*b^2*e^2-6*A^2*b*d*e*((a*d-b*c)*e*_z/d+b*e/d)+6*A^2*d^2*((a*d-b*c)*e*_z/d+b*e/d)^2-3*A*B*b^2*e^2+7*A*B*b*d*e*((a*d-b*c)*e*_z/d+b*e/d)-4*A*B*d^2*((a*d-b*c)*e*_z/d+b*e/d)^2+2*B^2*b^2*e^2-4*B^2*b*d*e*((a*d-b*c)*e*_z/d+b*e/d)+2*B^2*d^2*((a*d-b*c)*e*_z/d+b*e/d)^2)/((-((a*d-b*c)*e*_z/d+b*e/d)*d+e*b)^3*(A+B*ln((a*d-b*c)*e*_z/d+b*e/d))^3*d^3)+(1/3)*intat(B*(B^2*_a^2+2*A*B*_a-3*B^2*_a+A^2-3*A*B+3*B^2)/((B*_a+A)^4*d^3*(e*b-exp(_a)*d)), _a = ln((a*d-b*c)*e*_z/d+b*e/d)))

e*(a*d-b*c)^3*d^3*((1/6)*(2*B^2*b^2*e^2*ln((a*d-b*c)*e*_z/d+b*e/d)^2-6*B^2*b*d*e*ln((a*d-b*c)*e*_z/d+b*e/d)^2*((a*d-b*c)*e*_z/d+b*e/d)+6*B^2*d^2*ln((a*d-b*c)*e*_z/d+b*e/d)^2*((a*d-b*c)*e*_z/d+b*e/d)^2+4*A*B*b^2*e^2*ln((a*d-b*c)*e*_z/d+b*e/d)-12*A*B*b*d*e*ln((a*d-b*c)*e*_z/d+b*e/d)*((a*d-b*c)*e*_z/d+b*e/d)+12*A*B*d^2*ln((a*d-b*c)*e*_z/d+b*e/d)*((a*d-b*c)*e*_z/d+b*e/d)^2-3*B^2*b^2*e^2*ln((a*d-b*c)*e*_z/d+b*e/d)+7*B^2*b*d*e*ln((a*d-b*c)*e*_z/d+b*e/d)*((a*d-b*c)*e*_z/d+b*e/d)-4*B^2*d^2*ln((a*d-b*c)*e*_z/d+b*e/d)*((a*d-b*c)*e*_z/d+b*e/d)^2+2*A^2*b^2*e^2-6*A^2*b*d*e*((a*d-b*c)*e*_z/d+b*e/d)+6*A^2*d^2*((a*d-b*c)*e*_z/d+b*e/d)^2-3*A*B*b^2*e^2+7*A*B*b*d*e*((a*d-b*c)*e*_z/d+b*e/d)-4*A*B*d^2*((a*d-b*c)*e*_z/d+b*e/d)^2+2*B^2*b^2*e^2-4*B^2*b*d*e*((a*d-b*c)*e*_z/d+b*e/d)+2*B^2*d^2*((a*d-b*c)*e*_z/d+b*e/d)^2)/((-((a*d-b*c)*e*_z/d+b*e/d)*d+e*b)^3*(A+B*ln((a*d-b*c)*e*_z/d+b*e/d))^3*d^3)+(1/3)*intat(B*(B^2*_a^2+2*A*B*_a-3*B^2*_a+A^2-3*A*B+3*B^2)/((B*_a+A)^4*d^3*(e*b-exp(_a)*d)), _a = ln((a*d-b*c)*e*_z/d+b*e/d)))

-g^2*((1/6)*(2*B^2*b^2*e^2*ln(e*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)/d)^2-6*B^2*b*e^2*ln(e*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)/d)^2*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)+6*B^2*ln(e*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)/d)^2*e^2*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)^2+4*A*B*b^2*e^2*ln(e*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)/d)-12*A*B*b*e^2*ln(e*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)/d)*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)+12*A*B*ln(e*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)/d)*e^2*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)^2-3*B^2*b^2*e^2*ln(e*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)/d)+7*B^2*b*e^2*ln(e*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)/d)*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)-4*B^2*ln(e*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)/d)*e^2*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)^2+2*A^2*b^2*e^2-6*A^2*b*e^2*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)+6*A^2*e^2*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)^2-3*A*B*b^2*e^2+7*A*B*b*e^2*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)-4*A*B*e^2*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)^2+2*B^2*b^2*e^2-4*B^2*b*e^2*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)+2*B^2*e^2*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)^2)*e*(a*d-b*c)^3/((e*b-e*(a*d/(_z*d+c)-b*c/(_z*d+c)+b))^3*(A+B*ln(e*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)/d))^3)+(1/3)*intat(B*(B^2*_a^2+2*A*B*_a-3*B^2*_a+A^2-3*A*B+3*B^2)/((B*_a+A)^4*d^3*(e*b-exp(_a)*d)), _a = ln(e*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)/d))*d^3*e*(a*d-b*c)^3)/d^3

e*(a*d-b*c)*d*(a^2*d^2-2*a*b*c*d+b^2*c^2)*((1/6)*(2*B^2*b^2*e^2*ln((a*d-b*c)*e*_z/d+b*e/d)^2-6*B^2*b*d*e*ln((a*d-b*c)*e*_z/d+b*e/d)^2*((a*d-b*c)*e*_z/d+b*e/d)+6*B^2*d^2*ln((a*d-b*c)*e*_z/d+b*e/d)^2*((a*d-b*c)*e*_z/d+b*e/d)^2+4*A*B*b^2*e^2*ln((a*d-b*c)*e*_z/d+b*e/d)-12*A*B*b*d*e*ln((a*d-b*c)*e*_z/d+b*e/d)*((a*d-b*c)*e*_z/d+b*e/d)+12*A*B*d^2*ln((a*d-b*c)*e*_z/d+b*e/d)*((a*d-b*c)*e*_z/d+b*e/d)^2-3*B^2*b^2*e^2*ln((a*d-b*c)*e*_z/d+b*e/d)+7*B^2*b*d*e*ln((a*d-b*c)*e*_z/d+b*e/d)*((a*d-b*c)*e*_z/d+b*e/d)-4*B^2*d^2*ln((a*d-b*c)*e*_z/d+b*e/d)*((a*d-b*c)*e*_z/d+b*e/d)^2+2*A^2*b^2*e^2-6*A^2*b*d*e*((a*d-b*c)*e*_z/d+b*e/d)+6*A^2*d^2*((a*d-b*c)*e*_z/d+b*e/d)^2-3*A*B*b^2*e^2+7*A*B*b*d*e*((a*d-b*c)*e*_z/d+b*e/d)-4*A*B*d^2*((a*d-b*c)*e*_z/d+b*e/d)^2+2*B^2*b^2*e^2-4*B^2*b*d*e*((a*d-b*c)*e*_z/d+b*e/d)+2*B^2*d^2*((a*d-b*c)*e*_z/d+b*e/d)^2)/((-((a*d-b*c)*e*_z/d+b*e/d)*d+e*b)^3*(A+B*ln((a*d-b*c)*e*_z/d+b*e/d))^3*d^3)+(1/3)*intat(B*(B^2*_a^2+2*A*B*_a-3*B^2*_a+A^2-3*A*B+3*B^2)/((B*_a+A)^4*d^3*(e*b-exp(_a)*d)), _a = ln((a*d-b*c)*e*_z/d+b*e/d)))

-((1/6)*(2*B^2*b^2*e^2*ln(e*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)/d)^2-6*B^2*b*e^2*ln(e*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)/d)^2*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)+6*B^2*ln(e*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)/d)^2*e^2*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)^2+4*A*B*b^2*e^2*ln(e*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)/d)-12*A*B*b*e^2*ln(e*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)/d)*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)+12*A*B*ln(e*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)/d)*e^2*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)^2-3*B^2*b^2*e^2*ln(e*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)/d)+7*B^2*b*e^2*ln(e*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)/d)*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)-4*B^2*ln(e*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)/d)*e^2*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)^2+2*A^2*b^2*e^2-6*A^2*b*e^2*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)+6*A^2*e^2*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)^2-3*A*B*b^2*e^2+7*A*B*b*e^2*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)-4*A*B*e^2*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)^2+2*B^2*b^2*e^2-4*B^2*b*e^2*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)+2*B^2*e^2*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)^2)*e*(a*d-b*c)^3/((e*b-e*(a*d/(_z*d+c)-b*c/(_z*d+c)+b))^3*(A+B*ln(e*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)/d))^3)+(1/3)*intat(B*(B^2*_a^2+2*A*B*_a-3*B^2*_a+A^2-3*A*B+3*B^2)/((B*_a+A)^4*d^3*(e*b-exp(_a)*d)), _a = ln(e*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)/d))*d^3*e*(a*d-b*c)^3)/d^3

int((b*g*x+a*g)^2/(A+B*ln(e*(b*x+a)/(d*x+c))), x)

int((b*g*x+a*g)^2/(A+B*ln(e*(d*x+c)/(b*x+a))),x)

Warning, if e is meant to be the exponential e, use command/symbol completion or palettes to enter this special symbol, or use the exp function

-(a*d-b*c)*e^3*b*g^2*(a^2*d^2-2*a*b*c*d+b^2*c^2)*(-(1/6)*(2*B^2*d^2*e^2*ln(-(a*d-b*c)*e*_z/b+d*e/b)^2+4*A*B*d^2*e^2*ln(-(a*d-b*c)*e*_z/b+d*e/b)+2*B^2*b^2*ln(-(a*d-b*c)*e*_z/b+d*e/b)*(-(a*d-b*c)*e*_z/b+d*e/b)^2-5*B^2*b*d*e*ln(-(a*d-b*c)*e*_z/b+d*e/b)*(-(a*d-b*c)*e*_z/b+d*e/b)+3*B^2*d^2*e^2*ln(-(a*d-b*c)*e*_z/b+d*e/b)+2*A^2*d^2*e^2+2*A*B*b^2*(-(a*d-b*c)*e*_z/b+d*e/b)^2-5*A*B*b*d*e*(-(a*d-b*c)*e*_z/b+d*e/b)+3*A*B*d^2*e^2+2*B^2*b^2*(-(a*d-b*c)*e*_z/b+d*e/b)^2-4*B^2*b*d*e*(-(a*d-b*c)*e*_z/b+d*e/b)+2*B^2*d^2*e^2)/(d^2*e^2*(A+B*ln(-(a*d-b*c)*e*_z/b+d*e/b))^3*b*((-(a*d-b*c)*e*_z/b+d*e/b)*b-d*e)^3)-(1/3)*intat(B*(B^2*_a^2+2*A*B*_a+3*B^2*_a+A^2+3*A*B+3*B^2)/(d^2*e^2*(B*_a+A)^4*b*(exp(_a)*b-d*e)), _a = ln(-(a*d-b*c)*e*_z/b+d*e/b)))

Warning, if e is meant to be the exponential e, use command/symbol completion or palettes to enter this special symbol, or use the exp function

(-a*d+b*c)^3*e^3*b*(-(1/6)*(2*B^2*d^2*e^2*ln((-a*d+b*c)*e*_z/b+d*e/b)^2+4*A*B*d^2*e^2*ln((-a*d+b*c)*e*_z/b+d*e/b)+2*B^2*b^2*ln((-a*d+b*c)*e*_z/b+d*e/b)*((-a*d+b*c)*e*_z/b+d*e/b)^2-5*B^2*b*d*e*ln((-a*d+b*c)*e*_z/b+d*e/b)*((-a*d+b*c)*e*_z/b+d*e/b)+3*B^2*d^2*e^2*ln((-a*d+b*c)*e*_z/b+d*e/b)+2*A^2*d^2*e^2+2*A*B*b^2*((-a*d+b*c)*e*_z/b+d*e/b)^2-5*A*B*b*d*e*((-a*d+b*c)*e*_z/b+d*e/b)+3*A*B*d^2*e^2+2*B^2*b^2*((-a*d+b*c)*e*_z/b+d*e/b)^2-4*B^2*b*d*e*((-a*d+b*c)*e*_z/b+d*e/b)+2*B^2*d^2*e^2)/(d^2*e^2*(A+B*ln((-a*d+b*c)*e*_z/b+d*e/b))^3*b*(((-a*d+b*c)*e*_z/b+d*e/b)*b-d*e)^3)-(1/3)*intat(B*(B^2*_a^2+2*A*B*_a+3*B^2*_a+A^2+3*A*B+3*B^2)/(d^2*e^2*(B*_a+A)^4*b*(exp(_a)*b-d*e)), _a = ln((-a*d+b*c)*e*_z/b+d*e/b)))

Warning, if e is meant to be the exponential e, use command/symbol completion or palettes to enter this special symbol, or use the exp function

-g^2*((1/6)*(2*B^2*d^2*e^2*ln(e*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)/b)^2+4*A*B*d^2*e^2*ln(e*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)/b)+2*B^2*ln(e*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)/b)*e^2*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)^2-5*B^2*d*e^2*ln(e*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)/b)*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)+3*B^2*d^2*e^2*ln(e*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)/b)+2*A^2*d^2*e^2+2*A*B*e^2*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)^2-5*A*B*d*e^2*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)+3*A*B*d^2*e^2+2*B^2*e^2*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)^2-4*B^2*d*e^2*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)+2*B^2*d^2*e^2)*e*(a*d-b*c)^3/(d^2*(A+B*ln(e*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)/b))^3*(e*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)-d*e)^3)+(1/3)*intat(B*(B^2*_a^2+2*A*B*_a+3*B^2*_a+A^2+3*A*B+3*B^2)/(d^2*e^2*(B*_a+A)^4*b*(exp(_a)*b-d*e)), _a = ln(e*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)/b))*b*(a*d-b*c)^3*e^3)/b

Warning, if e is meant to be the exponential e, use command/symbol completion or palettes to enter this special symbol, or use the exp function

-(a*d-b*c)*e^3*b*(a^2*d^2-2*a*b*c*d+b^2*c^2)*(-(1/6)*(2*B^2*d^2*e^2*ln(-(a*d-b*c)*e*_z/b+d*e/b)^2+4*A*B*d^2*e^2*ln(-(a*d-b*c)*e*_z/b+d*e/b)+2*B^2*b^2*ln(-(a*d-b*c)*e*_z/b+d*e/b)*(-(a*d-b*c)*e*_z/b+d*e/b)^2-5*B^2*b*d*e*ln(-(a*d-b*c)*e*_z/b+d*e/b)*(-(a*d-b*c)*e*_z/b+d*e/b)+3*B^2*d^2*e^2*ln(-(a*d-b*c)*e*_z/b+d*e/b)+2*A^2*d^2*e^2+2*A*B*b^2*(-(a*d-b*c)*e*_z/b+d*e/b)^2-5*A*B*b*d*e*(-(a*d-b*c)*e*_z/b+d*e/b)+3*A*B*d^2*e^2+2*B^2*b^2*(-(a*d-b*c)*e*_z/b+d*e/b)^2-4*B^2*b*d*e*(-(a*d-b*c)*e*_z/b+d*e/b)+2*B^2*d^2*e^2)/(d^2*e^2*(A+B*ln(-(a*d-b*c)*e*_z/b+d*e/b))^3*b*((-(a*d-b*c)*e*_z/b+d*e/b)*b-d*e)^3)-(1/3)*intat(B*(B^2*_a^2+2*A*B*_a+3*B^2*_a+A^2+3*A*B+3*B^2)/(d^2*e^2*(B*_a+A)^4*b*(exp(_a)*b-d*e)), _a = ln(-(a*d-b*c)*e*_z/b+d*e/b)))

Warning, if e is meant to be the exponential e, use command/symbol completion or palettes to enter this special symbol, or use the exp function

-((1/6)*(2*B^2*d^2*e^2*ln(e*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)/b)^2+4*A*B*d^2*e^2*ln(e*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)/b)+2*B^2*ln(e*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)/b)*e^2*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)^2-5*B^2*d*e^2*ln(e*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)/b)*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)+3*B^2*d^2*e^2*ln(e*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)/b)+2*A^2*d^2*e^2+2*A*B*e^2*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)^2-5*A*B*d*e^2*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)+3*A*B*d^2*e^2+2*B^2*e^2*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)^2-4*B^2*d*e^2*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)+2*B^2*d^2*e^2)*e*(a*d-b*c)^3/(d^2*(A+B*ln(e*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)/b))^3*(e*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)-d*e)^3)+(1/3)*intat(B*(B^2*_a^2+2*A*B*_a+3*B^2*_a+A^2+3*A*B+3*B^2)/(d^2*e^2*(B*_a+A)^4*b*(exp(_a)*b-d*e)), _a = ln(e*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)/b))*b*(a*d-b*c)^3*e^3)/b

int((b*g*x+a*g)^2/(A+B*ln(e*(d*x+c)/(b*x+a))), x)

int((b*g*x+a*g)^2/(A+B*ln(e*(d*x+c)/(b*x+a))),x)

int((b*g*x+a*g)^2/(A+B*ln(e*(d*x+c)/(b*x+a))), x)

int((b*g*x+a*g)^2/(A+B*ln(e*(d*x+c)/(b*x+a))),x)

int((b*g*x+a*g)^2/(A+B*ln(e*(d*x+c)/(b*x+a))), x)

int((b*g*x+a*g)^2/(A+B*ln(e*(d*x+c)/(b*x+a))),x)

int((b*g*x+a*g)^2/(A+B*ln(e*(d*x+c)/(b*x+a))), x)

restart;

int((b*g*x+a*g)^2/(A+B*ln(e*(d*x+c)/(b*x+a))),x)

Warning, if e is meant to be the exponential e, use command/symbol completion or palettes to enter this special symbol, or use the exp function

-e^3*(a*d-b*c)*b*g^2*(a^2*d^2-2*a*b*c*d+b^2*c^2)*(-(1/6)*(2*B^2*d^2*e^2*ln(-e*(a*d-b*c)*_z/b+d*e/b)^2+4*A*B*d^2*e^2*ln(-e*(a*d-b*c)*_z/b+d*e/b)+2*B^2*b^2*ln(-e*(a*d-b*c)*_z/b+d*e/b)*(-e*(a*d-b*c)*_z/b+d*e/b)^2-5*B^2*b*d*e*ln(-e*(a*d-b*c)*_z/b+d*e/b)*(-e*(a*d-b*c)*_z/b+d*e/b)+3*B^2*d^2*e^2*ln(-e*(a*d-b*c)*_z/b+d*e/b)+2*A^2*d^2*e^2+2*A*B*b^2*(-e*(a*d-b*c)*_z/b+d*e/b)^2-5*A*B*b*d*e*(-e*(a*d-b*c)*_z/b+d*e/b)+3*A*B*d^2*e^2+2*B^2*b^2*(-e*(a*d-b*c)*_z/b+d*e/b)^2-4*B^2*b*d*e*(-e*(a*d-b*c)*_z/b+d*e/b)+2*B^2*d^2*e^2)/(d^2*e^2*(A+B*ln(-e*(a*d-b*c)*_z/b+d*e/b))^3*b*((-e*(a*d-b*c)*_z/b+d*e/b)*b-d*e)^3)-(1/3)*intat(B*(B^2*_a^2+2*A*B*_a+3*B^2*_a+A^2+3*A*B+3*B^2)/(d^2*e^2*(B*_a+A)^4*b*(exp(_a)*b-d*e)), _a = ln(-e*(a*d-b*c)*_z/b+d*e/b)))

Warning, if e is meant to be the exponential e, use command/symbol completion or palettes to enter this special symbol, or use the exp function

e^3*(-a*d+b*c)^3*b*(-(1/6)*(2*B^2*d^2*e^2*ln(e*(-a*d+b*c)*_z/b+d*e/b)^2+4*A*B*d^2*e^2*ln(e*(-a*d+b*c)*_z/b+d*e/b)+2*B^2*b^2*ln(e*(-a*d+b*c)*_z/b+d*e/b)*(e*(-a*d+b*c)*_z/b+d*e/b)^2-5*B^2*b*d*e*ln(e*(-a*d+b*c)*_z/b+d*e/b)*(e*(-a*d+b*c)*_z/b+d*e/b)+3*B^2*d^2*e^2*ln(e*(-a*d+b*c)*_z/b+d*e/b)+2*A^2*d^2*e^2+2*A*B*b^2*(e*(-a*d+b*c)*_z/b+d*e/b)^2-5*A*B*b*d*e*(e*(-a*d+b*c)*_z/b+d*e/b)+3*A*B*d^2*e^2+2*B^2*b^2*(e*(-a*d+b*c)*_z/b+d*e/b)^2-4*B^2*b*d*e*(e*(-a*d+b*c)*_z/b+d*e/b)+2*B^2*d^2*e^2)/(d^2*e^2*(A+B*ln(e*(-a*d+b*c)*_z/b+d*e/b))^3*b*((e*(-a*d+b*c)*_z/b+d*e/b)*b-d*e)^3)-(1/3)*intat(B*(B^2*_a^2+2*A*B*_a+3*B^2*_a+A^2+3*A*B+3*B^2)/(d^2*e^2*(B*_a+A)^4*b*(exp(_a)*b-d*e)), _a = ln(e*(-a*d+b*c)*_z/b+d*e/b)))

Warning, if e is meant to be the exponential e, use command/symbol completion or palettes to enter this special symbol, or use the exp function

-g^2*((1/6)*(2*B^2*d^2*e^2*ln(e*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)/b)^2+4*A*B*d^2*e^2*ln(e*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)/b)+2*B^2*ln(e*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)/b)*e^2*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)^2-5*B^2*d*e^2*ln(e*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)/b)*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)+3*B^2*d^2*e^2*ln(e*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)/b)+2*A^2*d^2*e^2+2*A*B*e^2*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)^2-5*A*B*d*e^2*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)+3*A*B*d^2*e^2+2*B^2*e^2*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)^2-4*B^2*d*e^2*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)+2*B^2*d^2*e^2)*e*(a*d-b*c)^3/(d^2*(A+B*ln(e*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)/b))^3*(e*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)-d*e)^3)+(1/3)*intat(B*(B^2*_a^2+2*A*B*_a+3*B^2*_a+A^2+3*A*B+3*B^2)/(d^2*e^2*(B*_a+A)^4*b*(exp(_a)*b-d*e)), _a = ln(e*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)/b))*b*(a*d-b*c)^3*e^3)/b

Warning, if e is meant to be the exponential e, use command/symbol completion or palettes to enter this special symbol, or use the exp function

-e^3*(a*d-b*c)*b*(a^2*d^2-2*a*b*c*d+b^2*c^2)*(-(1/6)*(2*B^2*d^2*e^2*ln(-e*(a*d-b*c)*_z/b+d*e/b)^2+4*A*B*d^2*e^2*ln(-e*(a*d-b*c)*_z/b+d*e/b)+2*B^2*b^2*ln(-e*(a*d-b*c)*_z/b+d*e/b)*(-e*(a*d-b*c)*_z/b+d*e/b)^2-5*B^2*b*d*e*ln(-e*(a*d-b*c)*_z/b+d*e/b)*(-e*(a*d-b*c)*_z/b+d*e/b)+3*B^2*d^2*e^2*ln(-e*(a*d-b*c)*_z/b+d*e/b)+2*A^2*d^2*e^2+2*A*B*b^2*(-e*(a*d-b*c)*_z/b+d*e/b)^2-5*A*B*b*d*e*(-e*(a*d-b*c)*_z/b+d*e/b)+3*A*B*d^2*e^2+2*B^2*b^2*(-e*(a*d-b*c)*_z/b+d*e/b)^2-4*B^2*b*d*e*(-e*(a*d-b*c)*_z/b+d*e/b)+2*B^2*d^2*e^2)/(d^2*e^2*(A+B*ln(-e*(a*d-b*c)*_z/b+d*e/b))^3*b*((-e*(a*d-b*c)*_z/b+d*e/b)*b-d*e)^3)-(1/3)*intat(B*(B^2*_a^2+2*A*B*_a+3*B^2*_a+A^2+3*A*B+3*B^2)/(d^2*e^2*(B*_a+A)^4*b*(exp(_a)*b-d*e)), _a = ln(-e*(a*d-b*c)*_z/b+d*e/b)))

Warning, if e is meant to be the exponential e, use command/symbol completion or palettes to enter this special symbol, or use the exp function

-((1/6)*(2*B^2*d^2*e^2*ln(e*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)/b)^2+4*A*B*d^2*e^2*ln(e*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)/b)+2*B^2*ln(e*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)/b)*e^2*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)^2-5*B^2*d*e^2*ln(e*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)/b)*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)+3*B^2*d^2*e^2*ln(e*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)/b)+2*A^2*d^2*e^2+2*A*B*e^2*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)^2-5*A*B*d*e^2*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)+3*A*B*d^2*e^2+2*B^2*e^2*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)^2-4*B^2*d*e^2*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)+2*B^2*d^2*e^2)*e*(a*d-b*c)^3/(d^2*(A+B*ln(e*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)/b))^3*(e*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)-d*e)^3)+(1/3)*intat(B*(B^2*_a^2+2*A*B*_a+3*B^2*_a+A^2+3*A*B+3*B^2)/(d^2*e^2*(B*_a+A)^4*b*(exp(_a)*b-d*e)), _a = ln(e*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)/b))*b*(a*d-b*c)^3*e^3)/b

int((b*g*x+a*g)^2/(A+B*ln(e*(d*x+c)/(b*x+a))), x)

int((b*g*x+a*g)^2/(A+B*ln(e*(d*x+c)/(b*x+a))),x)

int((b*g*x+a*g)^2/(A+B*ln(e*(d*x+c)/(b*x+a))), x)

 

 


 

Download int_stops_working_march_11_2023.mw

 

Update

Do you want to see something more bizzar? Try this command on same integral

restart;
res:=int((b*g*x+a*g)^2/(A+B*ln(e*(b*x+a)/(d*x+c))),x,method=_RETURNVERBOSE)

It prints to the screen results with ~ all over. But this seems to be internal leaked output and not part of the actual output returned.

By issuing the command as follows instead

restart;
res:=int((b*g*x+a*g)^2/(A+B*ln(e*(b*x+a)/(d*x+c))),x,method=_RETURNVERBOSE):

notice the at the end!  I still see the same output as above printed displayed.

This tells me this is a leaked printout from an internal integration function.

Could others confirm this?

How would I produce output from ShowSolution in Latex form?

For example, if I run the following command.

$ maple2022/bin/maple -q problem.mpl

where problem.mpl is the following:

with(Student[Calculus1]):
ShowSolution(Diff(ln(x),x));

I get the following output.

Differentiation Steps
    Diff(ln(x),x)
▫    1. Apply the natural logarithm rule
        ◦ Recall the definition of the natural logarithm rule
        Diff(ln(x),x) = x^(-1)
    This gives:
    x^(-1)

I want the solver to show the steps in Latex form. How can I achieve this?

First issue I see in Maple 2023 integrate

Example 1

restart;
int( (e*x+d)^(3/2)*(c*x^2+a)^(3/2),x)

Example 2

restart;
int((1+x)^(3/2)*(x^2-x+1)^(3/2),x);

Example 3

restart;
int((c*x^4+b*x^2)^(3/2)/x^(3/2),x)

 

Worksheet below for 2023 and also for 2022.2 showing this did not have this problem in 2022.2. Internally for me, this cause other problem when post-processing this, that is why I found it. Any one knows what caused it?  Maple 2022.2 result is much longer, but it does have this "undefined" issue in the result.


 

interface(version);

`Standard Worksheet Interface, Maple 2023.0, Windows 10, March 6 2023 Build ID 1689885`

restart;

int( (e*x+d)^(3/2)*(c*x^2+a)^(3/2),x)

(e*x+d)^(1/2)*(c*x^2+a)^(1/2)*undefined*x*(3*c*e*x^3+4*c*d*x^2+6*a*e*x+12*a*d)/(c*e*x^3+c*d*x^2+a*e*x+a*d)^(1/2)

restart;

int((1+x)^(3/2)*(x^2-x+1)^(3/2),x);

(1+x)^(1/2)*(x^2-x+1)^(1/2)*undefined*x*(x^3+4)/(x^3+1)^(1/2)

restart;

int((c*x^4+b*x^2)^(3/2)/x^(3/2),x)

undefined*(c*x^2+2*b)*(c*x^4+b*x^2)^(3/2)/(x^(1/2)*(c*x^2+b)*(x*(c*x^2+b))^(1/2))

 


 

Download bug_3_maple_2023_int_march_10_2023.mw

 

interface(version);

`Standard Worksheet Interface, Maple 2022.2, Windows 10, October 23 2022 Build ID 1657361`

restart;

int( (e*x+d)^(3/2)*(c*x^2+a)^(3/2),x)

(2/1155)*(e*x+d)^(1/2)*(c*x^2+a)^(1/2)*(372*(-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2)*((-x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e+d*c))^(1/2)*((x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e-d*c))^(1/2)*EllipticF((-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2), (-((-c*a)^(1/2)*e-d*c)/((-c*a)^(1/2)*e+d*c))^(1/2))*c*a^3*d*e^6+245*x^6*c^4*d*e^6+300*x^5*a*c^3*e^7+145*x^5*c^4*d^2*e^5-x^4*c^4*d^3*e^4+255*x^3*a^2*c^2*e^7+2*x^3*c^4*d^4*e^3+8*x^2*c^4*d^5*e^2+60*x*a^3*c*e^7+360*(-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2)*((-x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e+d*c))^(1/2)*((x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e-d*c))^(1/2)*EllipticF((-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2), (-((-c*a)^(1/2)*e-d*c)/((-c*a)^(1/2)*e+d*c))^(1/2))*c^2*a^2*d^3*e^4-12*(-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2)*((-x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e+d*c))^(1/2)*((x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e-d*c))^(1/2)*EllipticF((-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2), (-((-c*a)^(1/2)*e-d*c)/((-c*a)^(1/2)*e+d*c))^(1/2))*c^3*a*d^5*e^2-16*(-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2)*((-x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e+d*c))^(1/2)*((x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e-d*c))^(1/2)*EllipticF((-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2), (-((-c*a)^(1/2)*e-d*c)/((-c*a)^(1/2)*e+d*c))^(1/2))*(-c*a)^(1/2)*c^3*d^6*e-432*(-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2)*((-x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e+d*c))^(1/2)*((x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e-d*c))^(1/2)*EllipticE((-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2), (-((-c*a)^(1/2)*e-d*c)/((-c*a)^(1/2)*e+d*c))^(1/2))*c*a^3*d*e^6-336*(-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2)*((-x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e+d*c))^(1/2)*((x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e-d*c))^(1/2)*EllipticE((-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2), (-((-c*a)^(1/2)*e-d*c)/((-c*a)^(1/2)*e+d*c))^(1/2))*c^2*a^2*d^3*e^4+112*(-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2)*((-x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e+d*c))^(1/2)*((x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e-d*c))^(1/2)*EllipticE((-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2), (-((-c*a)^(1/2)*e-d*c)/((-c*a)^(1/2)*e+d*c))^(1/2))*c^3*a*d^5*e^2+766*x^4*a*c^3*d*e^6+16*(-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2)*((-x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e+d*c))^(1/2)*((x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e-d*c))^(1/2)*EllipticE((-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2), (-((-c*a)^(1/2)*e-d*c)/((-c*a)^(1/2)*e+d*c))^(1/2))*c^4*d^7+60*(-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2)*((-x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e+d*c))^(1/2)*((x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e-d*c))^(1/2)*EllipticF((-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2), (-((-c*a)^(1/2)*e-d*c)/((-c*a)^(1/2)*e+d*c))^(1/2))*(-c*a)^(1/2)*a^3*e^7+518*x^3*a*c^3*d^2*e^5+581*x^2*a^2*c^2*d*e^6+46*x^2*a*c^3*d^3*e^4+373*x*a^2*c^2*d^2*e^5+2*x*a*c^3*d^4*e^3+60*a^3*c*d*e^6+47*a^2*c^2*d^3*e^4+8*a*c^3*d^5*e^2+105*x^7*c^4*e^7-24*(-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2)*((-x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e+d*c))^(1/2)*((x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e-d*c))^(1/2)*EllipticF((-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2), (-((-c*a)^(1/2)*e-d*c)/((-c*a)^(1/2)*e+d*c))^(1/2))*(-c*a)^(1/2)*a^2*c*d^2*e^5-100*(-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2)*((-x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e+d*c))^(1/2)*((x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e-d*c))^(1/2)*EllipticF((-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2), (-((-c*a)^(1/2)*e-d*c)/((-c*a)^(1/2)*e+d*c))^(1/2))*(-c*a)^(1/2)*a*c^2*d^4*e^3)/(c^2*e^5*(c*e*x^3+c*d*x^2+a*e*x+a*d))

restart;

int((1+x)^(3/2)*(x^2-x+1)^(3/2),x);

-(1/55)*(1+x)^(1/2)*(x^2-x+1)^(1/2)*(-10*x^7+(27*I)*3^(1/2)*(-2*(1+x)/(-3+I*3^(1/2)))^(1/2)*((I*3^(1/2)-2*x+1)/(I*3^(1/2)+3))^(1/2)*((I*3^(1/2)+2*x-1)/(-3+I*3^(1/2)))^(1/2)*EllipticF((-2*(1+x)/(-3+I*3^(1/2)))^(1/2), (-(-3+I*3^(1/2))/(I*3^(1/2)+3))^(1/2))-81*(-2*(1+x)/(-3+I*3^(1/2)))^(1/2)*((I*3^(1/2)-2*x+1)/(I*3^(1/2)+3))^(1/2)*((I*3^(1/2)+2*x-1)/(-3+I*3^(1/2)))^(1/2)*EllipticF((-2*(1+x)/(-3+I*3^(1/2)))^(1/2), (-(-3+I*3^(1/2))/(I*3^(1/2)+3))^(1/2))-38*x^4-28*x)/(x^3+1)

 


 

Download maple_2022_int_march_10_2023.mw

When will the PDF Maple User Manual be released for Maple 2023. Also I hope the Programming guide is updated too as it is still at 2020.

I know that this is not really a question regarding core Maple package, but I am running into problems during the installation process.

After having upgraded Maple networktools as mentioned, I am unable to run the activation program due to an error.

"Java Virtual Machine Launcher: Error: Could not create the Java Virtual Machine."

I've never had that problem before in previous versions. There was no Java installed on the (virtual) server, so I installed the latest OpenJDK to check if that solved the problem.

Unfortunately it didn't.

Any hints would be appreciated.

Windows Server 2012R2

The command for doing syntactical exact-match substitutions is subs, however, subs applies transformation rules throughout an expression only once. The documentation of eval claims that the (recursive) evaluation is repeated until either the result does not change, the documentation of applyrule claims that applyrule … applies the rules until no rule can be applied any more, and the documentation of MmaTranslator[Mma][ReplaceRepeated] claims that the single ReplaceRepeated command performs replacements until expression no longer changes.
So, if I comprehend correctly, 

restart;
x := [[[[]]]]: # Remove empty lists from x repeatedly.
(*⒈*) eval['recurse'](x, [[] = 'NULL']);
(*⒉*) applyrule([[] = 'NULL'], x);
(*⒊*) MmaTranslator:-Mma:-ReplaceRepeated(x, [[] = NULL])

should all return NULL, but in fact, 

eval['recurse'](x, [[] = 'NULL']);
 = 
                            [[[[]]]]

applyrule([[] = 'NULL'], x);
Error, (in PatternMatching:-AlgStruct:-TableLookup) invalid input: unknown uses a 1st argument, x, which is missing
MmaTranslator:-Mma:-ReplaceRepeated(x, [[] = NULL]);
 = 
                            () = ()

In other words, none of these replacements is feasible. 

Have I missed something? (It seems to me that an explicit procedural do...until loop can be actually avoidable here!) 

My main question is: How to change the font used in worksheet by Maple for 1D input from Courier to another font say times new roman? Is there a setting for this so it applies all the time?

ps. I found Can-I-Change-the-Default-Fonts-or-Style-for-Maple-Worksheets-and-Documents?language=en_US  (very hard to follow and confusing, but it seems that is only way to fix this problem now is to change the default font).

-----------------------------------------------------------------------------------------------------------------

I noticed strange font problem using Maple 2023 on windows 10. This problem does not show on Maple 2022.2 (at least I do not think I've seen it or noticed it before). 

Variables with _ between the names, will have the underscore not display sometimes as I move the cursor around (movie at end).

When scrolling back up, the underscores no longer become visible. 

But as I move the cursor over the variable name which containes the underscore, they will now show up.

I am sure this is a font issue. The zoom is set at 100%. I made no changes at all other than making the input 1D math as I normally do and set the default to worksheet. Some of my setting are below.

This could be a DPI issue settings of some sort. My monitor is standard monitor (not a 4K one) and again, I have not changed any settings on my PC after I installed Maple 2023 and did not change any hardware.

 

 

 

 

Here is some system information also

 

 

Here is the movie showing the problem

 

 

As I play more with it, I notice a common theme. This happens when I hit the UP ARROW to go to the line above. Then suddenly the underscroes no longer visible. Once I hit the LEFT arrow (now I am at the above line), they show up again.

Here is another movie which more clearly shows this.

This makes it very hard to work with the code in the worksheet. But I am sure this can be fixed as it looks like just a font configuration issue with Maple on windows. But I do not know what it is and how to fix it.

 

I found something new. When setting the ZOOM at 125% instead of 100% as above, I notice the underscores do not completely disappear but become THINNER but one can still see them. This affects only the underscores. When the ZOOM at 150%, they do not change at all.  Here is a movie. first part at 125%. Notice how they become little thinner when doing the same thing as above. But at 150% they remain visible because they do not change thinkness. When going back to 100% zoom, they  no longer show.

So the problem is that they are there all the time, but depending on the ZOOM level, they beome thinner and thinner until they become invisible to the eye.

 

I found some related issue on windows 10 with some application where this problem shows up.

some-characters-missing-or-cut-off-when-displayed-on-screen

 "When you view your document in Microsoft Word, some characters may be missing, or the top (or bottom) of some characters may be cut off.

This problem may affect the following types of characters:

Underscore"

The above is about WORD, but it could as well apply to Maple?

I also found  underscore not rendering with courier

"Underscore characters are not rendered in new Google Docs in the Courier
New 11pt or 12pt fonts."

My question is: How to change the font used in worksheet by Maple? Now it is using Courier. May be if I change the font, this problem will go away?

 

Update: Found a workaround!  It is the font used!  I changed from Courier to Times New Roman and now the underscore do not change thinkness!  I just need a way to make this permenant for all 1D Maple input.   Here is a new movie showing it is fixed. You can see the underscores remain visible, all at 100% ZOOM level. Once I change to Courier, the problem show up again. 

I am not sure if this is a Maple issue or windows.

 

 

 

restart

with(plottools)

with(plots)

with(CurveFitting)

Digits := 10

NULL

"f(t):=7.0*(e)^((-(t-13180)^(2))/(2000000))+4.7*(e)^((-(t-16000)^(2))/(3200000)):"

p1 := plot(f(t), t = 0 .. 20000, color = green); plots[display]({p1})

 

NULL

D1 := 15

epsilon := 200000

L := 6500

n := 200

t := 1000

1000

(1)

lambda := simplify(evalf(n*Pi*sqrt((1/2)*D1+sqrt((1/4)*D1^2+epsilon*(n*Pi/L)^2))/L))

.6928578233

(2)

b := 2*(int(f(t)*sin(m*Pi*x/L), x = 0 .. L))/L

-0.6366197724e-1*(0.1409730543e-28*cos(3.141592654*m)-0.1409730543e-28)/m

(3)

C(x, t) = sum(b*exp^(-lambda^2*t)*sin(m*Pi*x/L), m = 1 .. 2)

C(x, 1000) = 0.1794924675e-29*sin(0.4833219466e-3*x)/exp^(4800519633/10000000)

(4)

uu1000 := [seq(evalf(C(L-i, t)), i = 0 .. 6500, 100)]

[C(6500, 1000), C(6400, 1000), C(6300, 1000), C(6200, 1000), C(6100, 1000), C(6000, 1000), C(5900, 1000), C(5800, 1000), C(5700, 1000), C(5600, 1000), C(5500, 1000), C(5400, 1000), C(5300, 1000), C(5200, 1000), C(5100, 1000), C(5000, 1000), C(4900, 1000), C(4800, 1000), C(4700, 1000), C(4600, 1000), C(4500, 1000), C(4400, 1000), C(4300, 1000), C(4200, 1000), C(4100, 1000), C(4000, 1000), C(3900, 1000), C(3800, 1000), C(3700, 1000), C(3600, 1000), C(3500, 1000), C(3400, 1000), C(3300, 1000), C(3200, 1000), C(3100, 1000), C(3000, 1000), C(2900, 1000), C(2800, 1000), C(2700, 1000), C(2600, 1000), C(2500, 1000), C(2400, 1000), C(2300, 1000), C(2200, 1000), C(2100, 1000), C(2000, 1000), C(1900, 1000), C(1800, 1000), C(1700, 1000), C(1600, 1000), C(1500, 1000), C(1400, 1000), C(1300, 1000), C(1200, 1000), C(1100, 1000), C(1000, 1000), C(900, 1000), C(800, 1000), C(700, 1000), C(600, 1000), C(500, 1000), C(400, 1000), C(300, 1000), C(200, 1000), C(100, 1000), C(0, 1000)]

(5)

``

xx := [seq(k, k = 0 .. 6500, 100)]

NULL

p2 := plot(xx, uu1000, color = cyan)

Error, (in plot) two lists or Vectors of numerical values expected

 

plots[display]({p2})

Error, (in plots:-display) expecting plot structures but received: {p2}

 

NULL

Download easy_way.mw

The new command ArrayTools[GeneralOuterProduct] (introduced in Maple 2021) computes the generalized outer product of two rtables, and again, there exists a similar function Outer in Mma (cf. the end of this question). But in practice, it appears that this Maple command is not so fast as Mma's one. To begin with, we need to generate four lists: w, x, y, and z. Our goal is forming all possible combinations of the lowest‐level elements in a nested structure (rather than a flat structure). Now let us start the test.

In Mathematica (the real time is about ): 

And in Maple (the real time is about ): 
 

restart;

w := [`$`](0 .. 1e4):
x := [`$`](0 .. 2e3):
y := [`$`](0 .. 3e2):
z := [`$`](0 .. 4e1):

"time[real]((p1:=MmaTranslator:-Mma:-ReplaceRepeated(convert(ArrayTools:-GeneralOuterProduct(convert([w,x],Array,fill=NULL),()->`if`(nargs=2,`[]`(args),NULL),convert([y,z],Array,fill=NULL)),listlist),[]=NULL)))"

199.880

(1)

"time[real]((p2:=(s4->(s3->(s2->(s1->`[]`(s3,s1))~(s2))~([y,z]))~(s4))~([w,x])))"

7.699

(2)

p3 := parse(StringTools:-CharacterMap("{}", "[]", FileTools:-Text:-ReadFile("E:/data.txt")))

evalb(p1 = p2 and p2 = p3) = trueNULL


 

Download Outer.mw

As you can see, Maple and Mathematica returns identical results (∵p1p3); nevertheless, Maple consumes too much time: the ratio is 199.880/0.784176 ≈ 254.892. (What a wide gap between them!) 
So, is there any possibility of speeding up Maple's ArrayTools:-GeneralOuterProduct? Or any ideas of obtaining the same results in Maple efficiently?

Explanatory notes. Here is an illustrative animation: 

Let L be a list like

L:=[[3, 2], [2, 1], [1, 2], [1, 2], [2, 3], [2, 1], [1, 2], [1, 1], [2, 1], [1, 2], [1, 1], [2, 1], [1, 1], [1, 3], [1, 2], [2, 1], [1, 3], [1, 3], [1, 3], [1, 2], [2, 2], [2, 3]]

Now we consider [3,1] and [1,3] as same 

First we form a list gives us 

Lk:=[[[1,3],4],[[1.2],11],[[2,3],3],[[2,2],1],[[1,1],3]]

That is [1,3] appears 4 times in L

[1,2] appears 11 times in L

[2,3] appears 3 times in L

[1,1] appears.3 times in L

[2,2] appears 1 times in L

now we do addtion in [1,3] which is 1+3=4 therefore [[1,3],4] become [4,4]

[2,2] becomes 2+2=4 therefore [[2,2],1] is [4,1]

[[1,2],11] become [3,11]

[[2,3],3] becomes [5,3]

[[1,1],3] becomes [2,3]

So new list is [[4,4],[3,11],[5,3],[2,3],[4,1]]

so answer is from [4,4] we get 4 *4 , from [3,11] we get 3*11 , from [5,3] we get 5*3 and from [2,3] we get 2*3 from [4,1] we get 4*1

final required answer is (4*4)*(3*11)*(5*3)*(2*3)*(4*1)  =190080

Any list L like above if given kind help with a function which can do the above operation and give the final answer that is in above case 190080

Hi,

 Is it possible to write the Maple code to reach the partial differential equation from the following answer and reach the equation?

 

 Examples of it 

Here are all non-isomorphic 3-regular vertex-transitive graphs with 62 vertices. I wanted to draw them all at once, but I found that tables cannot use the map function.

with(GraphTheory):
CubicVT[1] := Graph({{23,60}, {37,6}, {36,27}, {61,19}, {60,29}, {2,52},
{40,43}, {23,25}, {45,50}, {1,30}, {11,17}, {13,41}, {34,4}, {11,54}, {26,49}, 
{56,2}, {49,51}, {3,21}, {47,28}, {24,52}, {13,7}, {48,27}, {51,42}, {4,60}, 
{55,45}, {46,21}, {46,38}, {57,14}, {4,31}, {24,8}, {47,20}, {44,5}, {55,43}, 
{30,31}, {18,41}, {17,42}, {46,37}, {36,16}, {8,43}, {58,30}, {17,53}, {25,5}, 
{5,31}, {24,9}, {9,53}, {22,26}, {35,50}, {48,20}, {12,36}, {33,13}, {12,58}, 
{33,29}, {35,14}, {3,19}, {41,42}, {14,10}, {25,21}, {37,32}, {2,48}, {52,10}, 
{61,10}, {57,58}, {38,7}, {3,62}, {29,51}, {35,8}, {39,32}, {49,6}, {1,27}, 
{39,40}, {12,50}, {56,53}, {59,62}, {34,15}, {18,9}, {1,28}, {22,55}, {33,15}, 
{39,7}, {44,57}, {59,38}, {11,26}, {45,54}, {15,59}, {44,19}, {47,62}, {16,54}, {61,20}, {23,6}, {56,16}, {22,32}, {18,40}, {34,28}});

CubicVT[2] := Graph({{39,7}, {18,41}, {11,17}, {22,32}, {46,29}, {24,8},
{18,40}, {44,19}, {55,43}, {23,25}, {45,9}, {46,38}, {59,38}, {13,6}, {39,51}, 
{48,27}, {56,16}, {57,58}, {25,21}, {52,10}, {17,43}, {22,41}, {61,20}, {15,59},
{14,27}, {39,32}, {24,54}, {42,32}, {17,53}, {56,35}, {41,42}, {34,15}, {2,52}, 
{40,43}, {33,13}, {36,10}, {44,28}, {49,6}, {56,2}, {45,54}, {25,15}, {2,50}, 
{58,20}, {61,30}, {57,48}, {48,20}, {47,62}, {35,8}, {37,6}, {13,7}, {4,31}, 
{47,28}, {35,50}, {1,19}, {49,7}, {60,29}, {61,19}, {51,42}, {11,26}, {55,45}, 
{3,4}, {36,27}, {16,54}, {9,53}, {11,40}, {47,5}, {14,10}, {23,59}, {16,8}, 
{5,31}, {24,9}, {12,36}, {3,21}, {62,31}, {22,26}, {33,37}, {57,14}, {46,37}, 
{34,21}, {1,28}, {12,52}, {34,4}, {44,5}, {12,50}, {38,60}, {55,53}, {23,60}, 
{1,30}, {58,30}, {33,29}, {3,62}, {26,18}, {49,51}});

CubicVT[3] := Graph({{23,60}, {37,6}, {38,51}, {36,27}, {61,19}, 
{60,29}, {2,52}, {40,43}, {23,25}, {1,30}, {17,39}, {11,17}, {34,4}, {33,21}, 
{23,7}, {56,2}, {1,10}, {11,8}, {49,51}, {3,21}, {47,28}, {13,7}, {48,27}, 
{25,28}, {51,42}, {55,45}, {13,26}, {46,38}, {57,14}, {4,31}, {24,8}, {44,5}, 
{55,43}, {44,27}, {2,58}, {15,6}, {18,41}, {46,37}, {58,30}, {17,53}, {5,31}, 
{24,9}, {9,53}, {22,26}, {35,50}, {48,20}, {12,36}, {33,13}, {18,54}, {50,53}, 
{24,36}, {33,29}, {3,30}, {41,42}, {14,10}, {25,21}, {20,31}, {12,61}, {52,10}, 
{57,58}, {3,62}, {35,8}, {39,32}, {49,6}, {29,32}, {12,50}, {56,43}, {55,42}, 
{22,9}, {34,15}, {1,28}, {39,7}, {45,52}, {59,5}, {59,38}, {57,47}, {60,62}, 
{11,26}, {37,41}, {35,48}, {45,54}, {15,59}, {44,19}, {47,62}, {16,54}, {46,4}, 
{61,20}, {14,16}, {56,16}, {34,19}, {22,32}, {18,40}, {49,40}});

CubicVT[4] := Graph({{13,9}, {39,7}, {18,41}, {33,28}, {11,17}, {39,8}, 
{22,32}, {24,8}, {18,40}, {44,35}, {44,19}, {55,43}, {23,25}, {46,38}, {59,38}, 
{34,27}, {2,47}, {12,31}, {48,27}, {7,62}, {56,16}, {57,58}, {25,21}, {52,10}, 
{3,10}, {61,20}, {15,59}, {45,58}, {5,6}, {39,32}, {17,53}, {41,42}, {34,15}, 
{2,52}, {59,20}, {48,53}, {40,43}, {38,40}, {33,13}, {49,6}, {56,2}, {45,54}, 
{1,16}, {48,20}, {55,37}, {47,62}, {35,8}, {14,43}, {37,6}, {13,7}, {4,31}, 
{47,28}, {35,50}, {60,29}, {61,19}, {51,42}, {24,61}, {22,50}, {11,26}, {55,45},
{11,36}, {4,51}, {49,54}, {36,27}, {16,54}, {9,53}, {14,10}, {5,31}, {24,9}, 
{12,36}, {21,32}, {3,21}, {18,52}, {22,26}, {15,41}, {56,42}, {17,29}, {57,14}, 
{46,37}, {1,28}, {34,4}, {44,5}, {23,26}, {12,50}, {60,30}, {23,60}, {1,30}, 
{58,30}, {33,29}, {3,62}, {57,25}, {46,19}, {49,51}});

CubicVT[5] := Graph({{39,7}, {18,41}, {11,17}, {22,32}, {24,8}, {18,40},
{44,19}, {56,49}, {55,43}, {23,25}, {52,42}, {2,3}, {14,18}, {59,38}, {46,38}, 
{62,32}, {48,27}, {56,16}, {26,21}, {15,40}, {57,58}, {25,21}, {58,43}, {33,30},
{52,10}, {22,36}, {61,20}, {15,59}, {13,8}, {39,32}, {28,7}, {17,53}, {41,42}, 
{23,17}, {34,15}, {2,52}, {40,43}, {33,13}, {49,6}, {56,2}, {45,54}, {47,16}, 
{25,10}, {12,34}, {61,53}, {5,51}, {48,20}, {39,50}, {47,62}, {35,31}, {35,8}, 
{37,6}, {13,7}, {4,31}, {47,28}, {35,50}, {60,29}, {61,19}, {51,42}, {11,26}, 
{57,60}, {55,45}, {6,19}, {44,24}, {36,27}, {16,54}, {9,53}, {14,10}, {5,31}, 
{24,9}, {12,36}, {11,48}, {3,21}, {22,26}, {29,9}, {57,14}, {46,37}, {1,28}, 
{55,38}, {46,20}, {34,4}, {59,27}, {4,41}, {44,5}, {1,45}, {12,50}, {23,60}, 
{1,30}, {58,30}, {33,29}, {3,62}, {49,51}, {37,54}});

CubicVT[6] := Graph({{39,7}, {57,54}, {18,41}, {11,17}, {22,32}, {24,8},
{18,40}, {44,19}, {55,43}, {11,33}, {23,25}, {4,48}, {46,38}, {59,38}, {12,17}, 
{47,29}, {48,27}, {56,16}, {57,58}, {25,21}, {52,10}, {16,41}, {61,20}, {15,59},
{35,26}, {56,30}, {39,32}, {6,43}, {17,53}, {41,42}, {34,15}, {2,52}, {27,9}, 
{40,43}, {33,13}, {14,62}, {49,6}, {56,2}, {34,49}, {45,54}, {13,3}, {28,52}, 
{48,20}, {47,62}, {35,8}, {7,53}, {37,6}, {13,7}, {4,31}, {47,28}, {35,50}, 
{60,29}, {2,40}, {61,19}, {51,42}, {58,21}, {11,26}, {55,45}, {22,60}, {1,23}, 
{25,39}, {36,27}, {16,54}, {46,18}, {9,53}, {14,10}, {36,5}, {5,31}, {37,31}, 
{24,9}, {12,36}, {24,32}, {55,10}, {8,20}, {15,61}, {3,21}, {44,38}, {22,26}, 
{57,14}, {45,51}, {46,37}, {1,28}, {34,4}, {44,5}, {12,50}, {50,19}, {23,60}, 
{1,30}, {59,42}, {58,30}, {33,29}, {3,62}, {49,51}});

CubicVT[7] := Graph({{27,20}, {57,30}, {24,53}, {19,20}, {37,49}, 
{13,29}, {11,17}, {56,52}, {24,8}, {18,40}, {44,19}, {57,10}, {55,43}, {28,62}, 
{6,51}, {46,38}, {33,7}, {18,42}, {48,27}, {56,16}, {4,5}, {57,58}, {25,21}, 
{11,22}, {12,27}, {25,60}, {61,20}, {44,31}, {62,21}, {15,59}, {17,9}, {39,32}, 
{41,42}, {2,10}, {2,52}, {37,38}, {11,53}, {36,50}, {45,54}, {46,6}, {2,16}, 
{44,61}, {14,58}, {26,32}, {5,19}, {48,61}, {37,6}, {13,7}, {47,28}, {49,42}, 
{35,50}, {3,47}, {12,35}, {4,15}, {23,29}, {55,54}, {34,59}, {55,40}, {1,58}, 
{46,59}, {45,16}, {9,53}, {8,9}, {40,41}, {22,39}, {14,10}, {45,43}, {5,31}, 
{12,36}, {56,54}, {23,21}, {24,35}, {50,8}, {28,30}, {18,43}, {34,31}, {22,26}, 
{7,32}, {3,25}, {14,52}, {15,38}, {26,17}, {34,4}, {1,47}, {33,60}, {23,60}, 
{1,30}, {33,29}, {3,62}, {51,41}, {36,48}, {49,51}, {13,39}});

 

DrawGraph~(CubicVT)

Error, invalid input: GraphTheory:-DrawGraph expects its 1st argument, H, to be of type {GRAPHLN, list(GRAPHLN), set(GRAPHLN)}, but received Graph({{1, 30}, {1, 47}, {1, 58}, {2, 10}, {2, 16}, {2, 52}, {3, 25}, {3, 47}, {3, 62}, {4, 5}, {4, 15}, {4, 34}, {5, 19}, {5, 31}, {6, 37}, {6, 46}, {6, 51}, {7, 13}, {7, 32}, {7, 33}, {8, 9}, {8, 24}, {8, 50}, {9, 17}, {9, 53}, {10, 14}, {10, 57}, {11, 17}, {11, 22}, {11, 53}, {12, 27}, {12, 35}, {12, 36}, {13, 29}, {13, 39}, {14, 52}, {14, 58}, {15, 38}, {15, 59}, {16, 45}, {16, 56}, {17, 26}, {18, 40}, {18, 42}, {18, 43}, {19, 20}, {19, 44}, {20, 27}, {20, 61}, {21, 23}, {21, 25}, {21, 62}, {22, 26}...
Why can lists use the map function, but tables cannot?

DrawGraph~([seq(CubicVT[i],i=1..7)])

tablemap.mw

restart;

with(Physics):with(plots):with(DETools):

sys := {diff(r(t),t)=p(t)/m,
diff(p(t),t)=l^2/(m*r(t)^3)-n*k*r(t)^(n-1),
diff(phi(t),t)=l/(m*r(t)^2)};

{diff(p(t), t) = l^2/(m*r(t)^3)-n*k*r(t)^(n-1), diff(phi(t), t) = l/(m*r(t)^2), diff(r(t), t) = p(t)/m}

(1)

sys1:=subs({n=1,k=1},sys);

{diff(p(t), t) = l^2/(m*r(t)^3)-1, diff(phi(t), t) = l/(m*r(t)^2), diff(r(t), t) = p(t)/m}

(2)

conv:=plottools:-transform((a,b)->[a*cos(b),a*sin(b)]):

p1:=DEplot(sys1,[r(t),phi(t)],t=0..30,r=0..10,phi=0..2*Pi,stepsize=0.01);

Error, (in DEtools/DEplot) system must have same number of dependent variables as DE's.

 

plots:-display([conv(p1)],axiscoordinates=polar);

Error, (in conv) invalid argument

 

 


Could you help how to fix the code?

Download DEplot_v1.mw

Hello everyone

I create a curved space ( with Physics) and create a metric tensor of 

a sphere . I see some Christoffel correcly . Is it possible to visualize all non zero Christoffel in one shot ?

Thank's a lot

Best Regards

restart; with(Physics)

Physics:-Setup(mathematicalnotation = true)

[mathematicalnotation = true]

(1)

Physics:-Setup(spacetimeindices, dimension = 2, signature = "++")

[dimension = 2, signature = `+ +`, spacetimeindices = greek]

(2)

Physics:-Coordinates(X)

{X}

(3)

ds2 := Physics:-`^`(dx1, 2)+Physics:-`*`(Physics:-`^`(sin(x1), 2), Physics:-`^`(dx2, 2))

dx1^2+sin(x1)^2*dx2^2

(4)

NULL

Physics:-Setup(metric = ds2)

[metric = {(1, 1) = 1, (2, 2) = sin(x1)^2}]

(5)

NULL

NULL

g_[]

g[mu, nu] = (Matrix(2, 2, {(1, 1) = 1, (1, 2) = 0, (2, 2) = sin(x1)^2}, storage = triangular[upper], shape = [symmetric]))

(6)

Physics:-Christoffel[`~k`, i, j]

Physics:-Christoffel[`~k`, i, j]

(7)

Physics:-Christoffel[`~1`, 2, 2]

-sin(x1)*cos(x1)

(8)

Physics:-Christoffel[`~2`, 1, 2]

cos(x1)/sin(x1)

(9)

Physics:-Christoffel[`~1`, 1, 1]

0

(10)

Download Approfondimento_1_-_Calcolo_Sfera_2D.mw

I have JPG images and plots from a CAD code and from Matlab. I want to insert them into a Maple worksheet and do the following:

      1. Resize the images or plots while preserving aspect ratio

      2. Add a figure number and caption to the image or plot.

          I would prefer automatic numbering if that is available in Maple.

          I would also prefer to have the caption "linked" to the image or plot so that they can be moved together

I assumed that these kinds of tools were available in Maple, but I sure cannot find them. Any help will be greatly appreciated.

Thanks, Neill Smith

First 103 104 105 106 107 108 109 Last Page 105 of 2308