MaplePrimes Questions

How to replace 7th-row(second last) of the matrix H116 (see eq. (14)) with the 1st-row of the matrix H16 (see eq. (15)) and create a new matrix of size same as H116?

matrixop.mw

I've run into a problem.  I'm trying to enter multiple quotes in a string.

for example

a:=[["{"test1","test2"}"],["{test3","test4"}"]]
                

How to plot F(R) for R=0..100 ?

Maple 2021 sheet attached.

restart; i := I``

with(LinearAlgebra)

E := 100

100

(1)

"Z(R):=((5+5 i)*(R-10 i))/((5+5 i)+(R-10 i))"

proc (R) options operator, arrow, function_assign; (5+5*i)*(R-10*i)/(5-5*i+R) end proc

(2)

"`I__R`(R):=E/(Z(R))"

proc (R) options operator, arrow, function_assign; E/Z(R) end proc

(3)

"F(R):=|`I__R`(R)|"

proc (R) options operator, arrow, function_assign; abs(I__R(R)) end proc

(4)

"plot(F(R),R=0..100)->"

 

NULL

Download How_to_plot_IR.mw

plot(F(R), R = 0 .. 100)

Hi! Can anyone show me a quick example of a procedure with local and global variables?!? It seems that i'm not getting the hang of it, because i keep receiving "unable to parse" messages. 

pointplot works with units, textplot apparently doesn't

"with(DocumentTools):   with(Units[Simple]):  with(plots):"

 

    a := 15*Unit('m')

15*Units:-Unit(m)

(1)

b := 10*Unit('m')

10*Units:-Unit(m)

(2)

displayPoints := pointplot([a, b])

 

displayText := textplot([a, b, "text"])

Error:TEXT location must be numeric; received: [`+`(`*`(15., `*`(Unit(m)))), `+`(`*`(10., `*`(Unit(m))))]

 

NULL

Download Textplot.mw

restart;
read "C:/Program Files/Maple 2020/lib/ASP v4.6.3.txt";

    DESOLVII_V5R5 (March 2011)(c), by Dr. K. T. Vu, Dr. J.

       Carminati and Miss G. Jefferson

 

The authors kindly request that this software be referenced, if

   it is used in work eventuating in a publication, by citing

   the article:


  K.T. Vu, G.F. Jefferson, J. Carminati, Finding generalised

     symmetries of differential equations


  using the MAPLE package DESOLVII,Comput. Phys. Commun. 183

     (2012) 1044-1054.

 

                         -------------

 ASP (November 2011), by Miss G. Jefferson and Dr. J. Carminati


The authors kindly request that this software be referenced, if

   it is used in work eventuating in a publication, by citing

   the article:


     G.F. Jefferson, J. Carminati, ASP: Automated Symbolic

        Computation of Approximate Symmetries


   of Differential Equations, Comput. Phys. Comm. 184 (2013)

      1045-1063.

 

 [classify, comtab, defeqn, deteq_split, extgenerator, gendef,

   genvec, icde_cons, liesolve, mod_eq, originalVar, pdesolv,

   reduceVar, reduceVargen, symmetry, varchange]


                     ASP := _m2229977204928

with(ASP);
       [ApproximateSymmetry, applygenerator, commutator]

with(desolv);
 [classify, comtab, defeqn, deteq_split, extgenerator, gendef,

   genvec, icde_cons, liesolve, mod_eq, originalVar, pdesolv,

   reduceVar, reduceVargen, symmetry, varchange]


read "C:/Program Files/Maple 2020/lib/FracSym.v1.16.txt";
FracSym (April 2013), by Miss G. Jefferson and Dr. J. Carminati


The authors kindly request that this software be referenced, if

   it is used in work eventuating in a publication, by citing:


   G.F. Jefferson, J. Carminati, FracSym: Automated symbolic

      computation of Lie symmetries


   of fractional differential equations, Comput. Phys. Comm.

      Submitted May 2013.

 

with(FracSym);
[Rfracdiff, TotalD, applyFracgen, evalTotalD, expandsum, fracDet,

  fracGen, split]


Rfracdiff(u(x, t), t, alpha);
                          alpha          
                       D[t     ](u(x, t))

Rfracdiff(u(x, t) &* v(x, t), t, alpha);
infinity                                                          
 -----                                                            
  \                                                               
   )                          (alpha - n)              n          
  /     binomial(alpha, n) D[t           ](u(x, t)) D[t ](v(x, t))
 -----                                                            
 n = 0                                                            

Rfracdiff(v(x, t) &* u(x, t), t, alpha);
infinity                                                          
 -----                                                            
  \                                                               
   )                          (alpha - n)              n          
  /     binomial(alpha, n) D[t           ](v(x, t)) D[t ](u(x, t))
 -----                                                            
 n = 0                                                            

Rfracdiff(u(x, t) &* v(x, t), t, 2);
     /  2         \                                        
     | d          |             / d         \ / d         \
     |---- u(x, t)| v(x, t) + 2 |--- u(x, t)| |--- v(x, t)|
     |   2        |             \ dt        / \ dt        /
     \ dt         /                                        

                  /  2         \
                  | d          |
        + u(x, t) |---- v(x, t)|
                  |   2        |
                  \ dt         /


TotalD(xi[x](x, y), x, 2);
                          2              
                       D[x ](xi[x](x, y))

evalTotalD([%], [y], [x]);
     [     /  2             \     /   2              \    
     [   2 | d              |     |  d               |    
     [y_x  |---- xi[x](x, y)| + 2 |------ xi[x](x, y)| y_x
     [     |   2            |     \ dy dx            /    
     [     \ dy             /                             

                                   /  2             \]
               / d             \   | d              |]
        + y_xx |--- xi[x](x, y)| + |---- xi[x](x, y)|]
               \ dy            /   |   2            |]
                                   \ dx             /]


fde1 := Rfracdiff(u(x, t), t, alpha) = -u(x, t)*diff(u(x, t), x) - diff(u(x, t), x, x) - diff(u(x, t), x, x, x) - diff(u(x, t), x, x, x, x);
                alpha                      / d         \
     fde1 := D[t     ](u(x, t)) = -u(x, t) |--- u(x, t)|
                                           \ dx        /

          /  2         \   /  3         \   /  4         \
          | d          |   | d          |   | d          |
        - |---- u(x, t)| - |---- u(x, t)| - |---- u(x, t)|
          |   2        |   |   3        |   |   4        |
          \ dx         /   \ dx         /   \ dx         /


deteqs := fracDet([fde1], [u], [x, t], 2);
  Intervals/values considered for the fractional derivative/s:

                     {0 < alpha, alpha < 1}

          [                                           
          [                                           
          [[  2                                       
          [[ d                     d                  
deteqs := [[---- eta[u](x, t, u), --- xi[t](x, t, u),
          [[   2                   du                 
          [[ du                                       

   d                   d                   d                  
  --- xi[t](x, t, u), --- xi[t](x, t, u), --- xi[x](x, t, u),
   du                  dx                  du                 

                        2                    2                  
   d                   d                    d                   
  --- xi[x](x, t, u), ---- xi[t](x, t, u), ---- xi[t](x, t, u),
   du                    2                    2                 
                       du                   du                  

    2                                              
   d                         / d                \  
  ---- xi[t](x, t, u), alpha |--- xi[x](x, t, u)|,
     2                       \ dt               /  
   du                                              

                                2                  
        / d                \   d                   
  alpha |--- xi[x](x, t, u)|, ---- xi[t](x, t, u),
        \ du               /     2                 
                               du                  

    2                    2                    3                  
   d                    d                    d                   
  ---- xi[x](x, t, u), ---- xi[x](x, t, u), ---- xi[t](x, t, u),
     2                    2                    3                 
   du                   du                   du                  

    3                    3                    4                  
   d                    d                    d                   
  ---- xi[t](x, t, u), ---- xi[x](x, t, u), ---- xi[t](x, t, u),
     3                    3                    4                 
   du                   du                   du                  

    4                  
   d                   
  ---- xi[x](x, t, u),
     4                 
   du                  

     /  2                \                           
     | d                 |     / d                \  
  -6 |---- xi[t](x, t, u)| - 3 |--- xi[t](x, t, u)|,
     |   2               |     \ dx               /  
     \ dx                /                           

        / d                \     / d                \  
  alpha |--- xi[t](x, t, u)| - 4 |--- xi[x](x, t, u)|,
        \ dt               /     \ dx               /  

  / d                \              
  |--- xi[t](x, t, u)| (alpha - 1),
  \ du               /              

                               /   2                 \  
     / d                \      |  d                  |  
  -3 |--- xi[t](x, t, u)| - 12 |------ xi[t](x, t, u)|,
     \ du               /      \ dx du               /  

        / d                \              
  alpha |--- xi[t](x, t, u)| (alpha - 1),
        \ du               /              

        / d                \              
  alpha |--- xi[x](x, t, u)| (alpha - 1),
        \ du               /              

     /  2                \      /   3                  \  
     | d                 |      |  d                   |  
  -3 |---- xi[t](x, t, u)| - 12 |------- xi[t](x, t, u)|,
     |   2               |      |      2               |  
     \ du                /      \ dx du                /  

        /   2                 \              
        |  d                  |              
  alpha |------ xi[t](x, t, u)| (alpha - 1),
        \ du dt               /              

        /   2                 \              
        |  d                  |              
  alpha |------ xi[x](x, t, u)| (alpha - 1),
        \ du dt               /              

        /  2                \              
        | d                 |              
  alpha |---- xi[t](x, t, u)| (alpha - 1),
        |   2               |              
        \ du                /              

        /  2                \              
        | d                 |              
  alpha |---- xi[x](x, t, u)| (alpha - 1),
        |   2               |              
        \ dt                /              

        /  2                \              
        | d                 |              
  alpha |---- xi[x](x, t, u)| (alpha - 1),
        |   2               |              
        \ du                /              

   /  3                \     /   4                  \  
   | d                 |     |  d                   |  
  -|---- xi[t](x, t, u)| - 4 |------- xi[t](x, t, u)|,
   |   3               |     |      3               |  
   \ du                /     \ dx du                /  
                          /   2                 \
 / d                \     |  d                  |
-|--- xi[t](x, t, u)| - 4 |------ xi[t](x, t, u)|
 \ du               /     \ dx du               /

           / d                \     / d                \
   + alpha |--- xi[t](x, t, u)|, -4 |--- xi[x](x, t, u)|
           \ du               /     \ du               /

       /  2                 \      /   2                 \  
       | d                  |      |  d                  |  
   + 4 |---- eta[u](x, t, u)| - 16 |------ xi[x](x, t, u)|,
       |   2                |      \ dx du               /  
       \ du                 /                               
                            /  2                 \
   / d                \     | d                  |
-3 |--- xi[x](x, t, u)| + 3 |---- eta[u](x, t, u)|
   \ du               /     |   2                |
                            \ du                 /

        /   2                 \     /  3                \
        |  d                  |     | d                 |
   - 12 |------ xi[x](x, t, u)|, -4 |---- xi[t](x, t, u)|
        \ dx du               /     |   3               |
                                    \ dx                /

                                /  2                \  
       / d                \     | d                 |  
   - 2 |--- xi[t](x, t, u)| - 3 |---- xi[t](x, t, u)|,
       \ dx               /     |   2               |  
                                \ dx                /  
   /   2                 \      /   3                  \
   |  d                  |      |  d                   |
-6 |------ xi[t](x, t, u)| - 12 |------- xi[t](x, t, u)|
   \ dx du               /      |   2                  |
                                \ dx  du               /

       / d                \  
   - 2 |--- xi[t](x, t, u)|,
       \ du               /  

        / d                \                          
  alpha |--- xi[t](x, t, u)| (alpha - 1) (alpha - 2),
        \ du               /                          
   /  2                \     /  3                 \
   | d                 |     | d                  |
-6 |---- xi[x](x, t, u)| + 6 |---- eta[u](x, t, u)|
   |   2               |     |   3                |
   \ du                /     \ du                 /

        /   3                  \     /   3                  \
        |  d                   |     |  d                   |
   - 24 |------- xi[x](x, t, u)|, -3 |------- xi[t](x, t, u)|
        |      2               |     |      2               |
        \ dx du                /     \ dx du                /

       /    4                  \   /  2                \         
       |   d                   |   | d                 |        /
   - 6 |-------- xi[t](x, t, u)| - |---- xi[t](x, t, u)|, alpha |
       |   2   2               |   |   2               |        \
       \ dx  du                /   \ du                /         

   d                \     / d                \
  --- xi[t](x, t, u)| - 3 |--- xi[x](x, t, u)|
   dt               /     \ dx               /

       /   2                  \     /  2                \  
       |  d                   |     | d                 |  
   + 4 |------ eta[u](x, t, u)| - 6 |---- xi[x](x, t, u)|,
       \ dx du                /     |   2               |  
                                    \ dx                /  

        /   2                 \                          
        |  d                  |                          
  alpha |------ xi[t](x, t, u)| (alpha - 1) (alpha - 2),
        \ du dt               /                          

        /  2                \                          
        | d                 |                          
  alpha |---- xi[t](x, t, u)| (alpha - 1) (alpha - 2),
        |   2               |                          
        \ du                /                          
   /   2                 \     /   3                  \
   |  d                  |     |  d                   |
-3 |------ xi[t](x, t, u)| - 6 |------- xi[t](x, t, u)|
   \ dx du               /     |   2                  |
                               \ dx  du               /

                                                              /
     / d                \         / d                \        |
   - |--- xi[t](x, t, u)| + alpha |--- xi[t](x, t, u)|, alpha |
     \ du               /         \ du               /        |
                                                              \
       /  2                \     /   2                  \
       | d                 |     |  d                   |
-alpha |---- xi[t](x, t, u)| + 2 |------ eta[u](x, t, u)|
       |   2               |     \ du dt                /
       \ dt                /                             

     /  2                \\   /  3                \
     | d                 ||   | d                 |
   + |---- xi[t](x, t, u)||, -|---- xi[x](x, t, u)|
     |   2               ||   |   3               |
     \ dt                //   \ du                /

       /   4                  \   /  4                 \  
       |  d                   |   | d                  |  
   - 4 |------- xi[x](x, t, u)| + |---- eta[u](x, t, u)|,
       |      3               |   |   4                |  
       \ dx du                /   \ du                 /  
                          /  2                \
   / d                \   | d                 |
-u |--- xi[t](x, t, u)| - |---- xi[t](x, t, u)|
   \ dx               /   |   2               |
                          \ dx                /

     /  3                \   /  4                \  
     | d                 |   | d                 |  
   - |---- xi[t](x, t, u)| - |---- xi[t](x, t, u)|,
     |   3               |   |   4               |  
     \ dx                /   \ dx                /  

        /   3                  \                          
        |  d                   |                          
  alpha |------- xi[t](x, t, u)| (alpha - 1) (alpha - 2),
        |      2               |                          
        \ du dt                /                          

        /   3                  \                          
        |  d                   |                          
  alpha |------- xi[t](x, t, u)| (alpha - 1) (alpha - 2),
        |   2                  |                          
        \ du  dt               /                          

        /  3                \                          
        | d                 |                          
  alpha |---- xi[t](x, t, u)| (alpha - 1) (alpha - 2),
        |   3               |                          
        \ du                /                          
                            /  2                 \
   / d                \     | d                  |
-3 |--- xi[x](x, t, u)| + 3 |---- eta[u](x, t, u)|
   \ du               /     |   2                |
                            \ du                 /

       /   2                 \      /   3                   \
       |  d                  |      |  d                    |
   - 9 |------ xi[x](x, t, u)| + 12 |------- eta[u](x, t, u)|
       \ dx du               /      |      2                |
                                    \ dx du                 /

        /   3                  \                              
        |  d                   |        / d                \  
   - 18 |------- xi[x](x, t, u)|, alpha |--- xi[t](x, t, u)| u
        |   2                  |        \ du               /  
        \ dx  du               /                              

       /   3                  \     /   4                  \
       |  d                   |     |  d                   |
   - 3 |------- xi[t](x, t, u)| - 4 |------- xi[t](x, t, u)|
       |   2                  |     |   3                  |
       \ dx  du               /     \ dx  du               /

       /   2                 \                                  
       |  d                  |   / d                \          /
   - 2 |------ xi[t](x, t, u)| - |--- xi[t](x, t, u)| u, alpha |
       \ dx du               /   \ du               /          \

                          /  3                \
   d                \     | d                 |
  --- xi[t](x, t, u)| - 4 |---- xi[x](x, t, u)|
   dt               /     |   3               |
                          \ dx                /

       /  2                \                         
       | d                 |     / d                \
   - 3 |---- xi[x](x, t, u)| - 2 |--- xi[x](x, t, u)|
       |   2               |     \ dx               /
       \ dx                /                         

       /   3                   \     /   2                  \  
       |  d                    |     |  d                   |  
   + 6 |------- eta[u](x, t, u)| + 3 |------ eta[u](x, t, u)|,
       |   2                   |     \ dx du                /  
       \ dx  du                /                               
 /  2                \   /  3                 \
 | d                 |   | d                  |
-|---- xi[x](x, t, u)| + |---- eta[u](x, t, u)|
 |   2               |   |   3                |
 \ du                /   \ du                 /

       /   3                  \     /   4                   \
       |  d                   |     |  d                    |
   - 3 |------- xi[x](x, t, u)| + 4 |------- eta[u](x, t, u)|
       |      2               |     |      3                |
       \ dx du                /     \ dx du                 /

       /    4                  \              /
       |   d                   |              |
   - 6 |-------- xi[x](x, t, u)|, (alpha - 1) |
       |   2   2               |              |
       \ dx  du                /              \
       /  3                \     /   3                   \
       | d                 |     |  d                    |
-alpha |---- xi[t](x, t, u)| + 3 |------- eta[u](x, t, u)|
       |   3               |     |      2                |
       \ dt                /     \ du dt                 /

       /  3                \\                               
       | d                 ||           / d                \
   + 2 |---- xi[t](x, t, u)|| alpha, -u |--- xi[x](x, t, u)|
       |   3               ||           \ du               /
       \ dt                //                               

     /  2                 \     /   2                 \
     | d                  |     |  d                  |
   + |---- eta[u](x, t, u)| - 2 |------ xi[x](x, t, u)|
     |   2                |     \ dx du               /
     \ du                 /                            

       /   3                   \     /   3                  \
       |  d                    |     |  d                   |
   + 3 |------- eta[u](x, t, u)| - 3 |------- xi[x](x, t, u)|
       |      2                |     |   2                  |
       \ dx du                 /     \ dx  du               /

       /   4                  \     /    4                   \  
       |  d                   |     |   d                    |  
   - 4 |------- xi[x](x, t, u)| + 6 |-------- eta[u](x, t, u)|,
       |   3                  |     |   2   2                |  
       \ dx  du               /     \ dx  du                 /  
   / d                \                  
-u |--- xi[x](x, t, u)| + eta[u](x, t, u)
   \ dx               /                  

                                      /   2                  \
           / d                \       |  d                   |
   + alpha |--- xi[t](x, t, u)| u + 2 |------ eta[u](x, t, u)|
           \ dt               /       \ dx du                /

     /  2                \     /   3                   \
     | d                 |     |  d                    |
   - |---- xi[x](x, t, u)| + 3 |------- eta[u](x, t, u)|
     |   2               |     |   2                   |
     \ dx                /     \ dx  du                /

     /  3                \     /   4                   \
     | d                 |     |  d                    |
   - |---- xi[x](x, t, u)| + 4 |------- eta[u](x, t, u)|
     |   3               |     |   3                   |
     \ dx                /     \ dx  du                /

                             [                          
                             [                          
     /  4                \]  [                          
     | d                 |]  [                          
   - |---- xi[x](x, t, u)|], [xi[t](x, 0, u) = 0, (Diff(
     |   4               |]  [                          
     \ dx                /]  [                          

                                   / d                 \
  eta[u](x, t, u), t $ alpha)) + u |--- eta[u](x, t, u)|
                                   \ dx                /

       /    / d                            \\
   - u |Diff|--- eta[u](x, t, u), t $ alpha||
       \    \ du                           //

     /  3                 \   /  4                 \
     | d                  |   | d                  |
   + |---- eta[u](x, t, u)| + |---- eta[u](x, t, u)|
     |   3                |   |   4                |
     \ dx                 /   \ dx                 /

                             /infinity                             
                             | -----                               
     /  2                 \  |  \                                  
     | d                  |  |   )    /    1   /                   
   + |---- eta[u](x, t, u)|, |  /     |- ----- |binomial(alpha, n)
     |   2                |  | -----  \  n + 1 \                   
     \ dx                 /  \ n = 3                               

  /   (alpha - n)              (n + 1)                       
  |D[t           ](u(x, t)) D[t       ](xi[t](x, t, u)) alpha
  \                                                          

        (alpha - n)              (n + 1)                   
   - D[t           ](u(x, t)) D[t       ](xi[t](x, t, u)) n

        (alpha - n) / d         \    n                   
   + D[t           ]|--- u(x, t)| D[t ](xi[x](x, t, u)) n
                    \ dx        /                        

                                                          \   /Sum(
                                                          |   |    
                                                          |   |    
        (alpha - n) / d         \    n                 \\\|   |    
   + D[t           ]|--- u(x, t)| D[t ](xi[x](x, t, u))|||| + |    
                    \ dx        /                      ///|   |    
                                                          /   \    

                     /    / d                        \\
  binomial(alpha, n) |Diff|--- eta[u](x, t, u), t $ n||
                     \    \ du                       //

     (alpha - n) (u(x, t)), n = 3 .. infinity)\]  
  D[t           ]                             |]  
                                              |]  
                                              |]  
                                              |],
                                              |]  
                                              /]  

                                                              ]
                                                              ]
                                                              ]
                                                              ]
  [xi[x](x, t, u), xi[t](x, t, u), eta[u](x, t, u)], [x, t, u]]
                                                              ]
                                                              ]


sol1 := pdesolv(expand(deteqs[1]), deteqs[3], deteqs[4]);
Error, (in desolv/lderivx) cannot determine if this expression is true or false: 1 < x |C:/Program Files/Maple 2020/lib/ASP v4.6.3.txt:4312|

 

I don't know how to use the group produced with DirectProduct. such as

G := DirectProduct(QuaternionGroup(), CyclicGroup(3)):
DrawSubgroupLattice(G)

Or

IsNormal(CyclicGroup(2), DirectProduct(CyclicGroup(2), CyclicGroup(2)))

They all will get error information. It looks like the format is different, do I need to convert it somehow? Or is this a bug in maple?

Hi there!

I'm working on implementing a custom Modelica Library in MapleSim 2021. I have Maple 2021 installed and my software is up to date. The library I have developed is in a single file (extension ".mo") which I developed on an IDE for Modelica i.e., I did not create the library using MapleSim. During the import into MapleSim, no errors appear in the system logs. All my components and models have been imported except for an "expandable connector". It appears that the problem is with the term "expandable".

Since this expandable connector does not appear among my library components, I attempted to create a custom component using the Modelica code editor in MapleSim. However, the file cannot be saved while I prefix the term "expandable" to "connector". The software allows me to save the file with the new code after dropping the "expandable" term.

I know that expandable connectors are used by Modelica. Here are the references I used during development:

https://mbe.modelica.university/components/architectures/expandable/

Working with Expandable Connectors - Claytex

However, there does not seem to be any information on expandable connectors in MapleSim. I'd appreciate it if any of you could throw some light on why I'm not able to import this component into MapleSim and fixes/suggestions on what I might be doing wrong. If any further information on my question is required, please do let me know.

During evaluating psi0 (see eq, (7))why we need two values of f (i.e., f,0 and f,3)? I asked one of my seniors and according to him these values are arbitrary. Can anyone explain why we need two values and why f,0 and f,3?

rwo.mw  

Hello. I will post 4 images of what I want to ask because I think it is a little difficult for me to describe it. I want to plot the energy transfer as shown in the images but I have no idea how to even start in the first place. Our system moves only on the x-axis and we give energy on the first oscillator of the first line. The only methods I know of ,are for 2 ode equations (equilibrium points, phase portraits etc). Any help would be extremely helpful.

Hi!

Somebody know how Maple computes (numerically) the values of the Z function? That is, if we run the command evalf(Z(3)), How compute Maple this number?

Many thanks in advance for your comments.

I am having trouble calculating exterior derivatives for one forms, maple does not seem to recognize them as one forms.

 

Delta := -2*M*R+R^2+a^2

Sigma2 := (R^2+a^2)^2-Delta*a^2*sin(Theta)^2

rho2 := R^2+a^2*cos(Theta)^2

z := 2*M*R/rho2

interface(typesetting = extended)

with(DifferentialGeometry); with(Tensor)

DGsetup([T, R, Theta, Phi], BlackHole, verbose)

`The following coordinates have been protected:`

 

[T, R, Theta, Phi]

 

`The following vector fields have been defined and protected:`

 

[_DG([["vector", BlackHole, []], [[[1], 1]]]), _DG([["vector", BlackHole, []], [[[2], 1]]]), _DG([["vector", BlackHole, []], [[[3], 1]]]), _DG([["vector", BlackHole, []], [[[4], 1]]])]

 

`The following differential 1-forms have been defined and protected:`

 

[_DG([["form", BlackHole, 1], [[[1], 1]]]), _DG([["form", BlackHole, 1], [[[2], 1]]]), _DG([["form", BlackHole, 1], [[[3], 1]]]), _DG([["form", BlackHole, 1], [[[4], 1]]])]

(1)
BlackHole > 

g := evalDG((-1+z)*`&t`(dT, dT)+`&t`(dT, dR)+`&t`(dR, dT)+rho2*`&t`(dTheta, dTheta)-z*a*sin(Theta)^2*(`&t`(dPhi, dT)+`&t`(dT, dPhi))-a*sin(Theta)^2*(`&t`(dR, dPhi)+`&t`(dPhi, dR))+Sigma2*sin(Theta)^2*`&t`(dPhi, dPhi)/rho2)

BlackHole > 

ON := evalDG(DGGramSchmidt([D_T, D_R, D_Theta, D_Phi], g, signature = [-1, 1, 1, 1]))

[_DG([["vector", BlackHole, []], [[[1], 1/(-(-a^2*cos(Theta)^2+2*M*R-R^2)/(R^2+a^2*cos(Theta)^2))^(1/2)]]]), _DG([["vector", BlackHole, []], [[[1], -(R^2+a^2*cos(Theta)^2)/((-(R^2+a^2*cos(Theta)^2)/(-a^2*cos(Theta)^2+2*M*R-R^2))^(1/2)*(-a^2*cos(Theta)^2+2*M*R-R^2))], [[2], 1/(-(R^2+a^2*cos(Theta)^2)/(-a^2*cos(Theta)^2+2*M*R-R^2))^(1/2)]]]), _DG([["vector", BlackHole, []], [[[3], 1/(R^2+a^2*cos(Theta)^2)^(1/2)]]]), _DG([["vector", BlackHole, []], [[[1], a*sin(Theta)^2/((R^2+a^2*cos(Theta)^2)*sin(Theta)^2)^(1/2)], [[2], a*sin(Theta)^2/((R^2+a^2*cos(Theta)^2)*sin(Theta)^2)^(1/2)], [[4], 1/((R^2+a^2*cos(Theta)^2)*sin(Theta)^2)^(1/2)]]])]

(2)
BlackHole > 

Oneform := RaiseLowerIndices(g, ON[1], [1])

_DG([["tensor", BlackHole, [["cov_bas"], []]], [[[1], (-a^2*cos(Theta)^2+2*M*R-R^2)/((R^2+a^2*cos(Theta)^2)*(-(-a^2*cos(Theta)^2+2*M*R-R^2)/(R^2+a^2*cos(Theta)^2))^(1/2))], [[2], 1/(-(-a^2*cos(Theta)^2+2*M*R-R^2)/(R^2+a^2*cos(Theta)^2))^(1/2)], [[4], -2*M*R*a*sin(Theta)^2/((R^2+a^2*cos(Theta)^2)*(-(-a^2*cos(Theta)^2+2*M*R-R^2)/(R^2+a^2*cos(Theta)^2))^(1/2))]]])

(3)
BlackHole > 

ExteriorDerivative(Oneform)

Error, (in DifferentialGeometry:-ExteriorDerivative) expected 1st argument to be a differential form. Received: _DG([["tensor", BlackHole, [["cov_bas"], []]], [`...`]])

 
BlackHole > 

``

Download teste.mw

  1. I use both Maple and Matlab
  2. I also install (a stripped down version of) Maple as the "symbolic toolbox" for Matlab using the executable MapleToolbox2022.0WindowsX64Installer.exe, which lives in C:\Program Files\Maple 2022. This gives me acces to (some) symbolic computation capability from within Matlab.
  3. This installation process has been working for as long as I remember, certainly more than 10 years
  4. With Maple 2022 and Matlab R2022a, this installation process ran with no problems and I can perform symbolic computation within Matlab
  5. However, although the Matlab help lists the Maple toolbox as supplemental software (as in all previous releases), I can no longer acces help for Maple from within Matlab - I just get a "Page not found" message
  6. The relevant Maple "help" is at the same place within the Matlab folder structure which is C:\Program Files\MATLAB\R2022a\toolbox\maple\html
  7. I have just spoken to support at Matlab and they claim tha this must be a Maple (or Maple toolbox installer issue) - so nothing to do with them!
  8. Has anyone else had a similar problem andd found a workaround?

Hello,

Im a tax student and tring to figure out Maple. I plotted the following graph with the code:

implicitplot([Vth = Vps, V1 = 25000, V1 = 50000, V1 = 75000, V1 = 100000], E = 0 .. 1000000, T = 0 .. 15, color = [black], labels = ["E in (EUR)", "T (in Jahren)"], labelfont = [times, bold, 12], view = [0 .. 1000000, 0 .. 15])

I would like to color the intermediate areas and attach a legend. A colleague has plotted this for me, but unfortunately has not provided me with the source code and has now lost the file. Can someone help me to re-plot the last shown chart?

Thanks so so much in advance!! Best regards Rebekka

Hello,

Im a tax student trying to use Maple for my studies. I plotted two surfaces in a 3D coordinate system, the surfaces intersect = indifference area.

The current formula is like this:

plot3d([Vth/E, Vps/E], E = 0 .. 1000000, T = 0 .. 15, labels = ["E", "T", ""], color = [gray, white], labels = ["E (in EUR)", "T (in Jahren)", ""], labelfont = [times, bold, 12])
It looks like this:

I would like to draw in the same graph, the indifference area (Vth/E = Vth/E), it looks like this:


A colleague has plotted this for me, but unfortunately has not provided me with the source code and has now lost the file. Can someone help me to re-plot the last shown chart?


Thanks a lot in advance!!

Rebekka

First 188 189 190 191 192 193 194 Last Page 190 of 2308