MaplePrimes Questions

I have problems with tasks.

If you have some usefull commands, you select them all, right-click and select 'create task'. You now get a button in the 'task'-pane in Maple you can use whenever you need to insert these commands- - - brilliant!!

But now I want to modify these tasks and delete the ones I don't use anymore or the ones I made by mistake.

Right-click on the task does nothing.

Selecting 'tools' from the menu and then 'tasks' allows me to see the tasks I have made, but not to modify them or delete them

How do I modify or delete a task??

 

/Rasmus Post

how we can merge multiple plots in single graph in maple ???

 

Hi! do you know any effective method to count area under this function given by dataset points? (I counted this by approximation by trapezes)

Edit: PolyFit is ok the best what I have done

Edit2: triangulation is the best (just add all triangles)

How to rectify this error

k := 0;

for k[1] from 0 to k do Y[k[1]+3] := solve(sum(sum(factorial(k[1]+3)*(-1)^((k-k[1]-1)*(1/2))*Y(k[1]+3)/(factorial(k[1])*factorial(k-k[1])), k[1] = 0 .. k), k = 0 .. infinity)-(sum(1/4*((-1)^((1/2)*k)/factorial(k)-(3^k)(-1)^((1/2)*k)/factorial(k)), k = 0 .. infinity))-(sum(factorial(k[1]+2)*(-1)^((k-k[1])*(1/2))*Y(k[1]+2)/(factorial(k[1])*factorial(k-k[factorial(1)])), k[1] = 0 .. k)), Y[k[1]+3]) end do;
                               0
Error, (in sum) summation variable previously assigned, second argument evaluates to 0 = 0 .. k

Hi! Do you know how to divide this array from .txt data to take separately these numbers? (I have over one thousands of these so I don't want to rewrite)

PS this is 1x1 I want to make 1x8

["0,00244140625;8,07751097960625;-3,555908203125E-05;0,002166748046875;1;1;0,0056941700604248;-0,0101856454842773;100 µA"]

Maple apparently has managed to destroy the last working piece of code in the Units package in the 2022 release.

This code is working in Maple 2021, but not in 2022 anymore.

with(Units[Simple])

[`*`, `+`, `-`, `/`, `<`, `<=`, `<>`, `=`, Im, Re, `^`, abs, add, arccos, arccosh, arccot, arccoth, arccsc, arccsch, arcsec, arcsech, arcsin, arcsinh, arctan, arctanh, argument, ceil, collect, combine, conjugate, cos, cosh, cot, coth, csc, csch, csgn, diff, eval, evalc, evalr, exp, expand, factor, floor, frac, frem, ln, log, log10, log2, max, min, mul, normal, piecewise, polar, root, round, sec, sech, seq, shake, signum, simplify, sin, sinh, sqrt, surd, tan, tanh, trunc, type, verify]

(1)

alpha := 45*Unit('degree')

45*Units:-Unit(arcdeg)

(2)

NULL

if alpha = 0 then

Error, cannot determine if this expression is true or false: 0 < 1/4*Pi

evalf(sin(alpha))

.7071067810

(3)

NULL

Download UnitsSimple_alpha.mw

Dear all

I tried to use the command Secant to solve a nonlinear system of equations, In the following, example of two simple equations, how can I use Secant to solve the problem

secant_for_system.mw

Thank you 

Hy

How I solved it accurately,and remove "'rootoff

eq1 := alpha + beta*r[c] - d*n[c] - Upsilon*n[c]*(n[r] + r[c]) - n[r]*(alpha - d*n[c] - b*(n[r] + r[c]));
q2 := `e&Upsi;`*n[c]*(n[r] + r[c]) - mu*n[r] + d*n[c]*n[r] + b*n[c]*n[r] - alpha*n[r];
eq3 := b*n[c]*n[r] + d*n[c]*n[r] - alpha*n[r] - beta*r[c] + mu*n[r];
 eq1 := alpha + beta r[c] - d n[c] - Upsilon n[c] (n[r] + r[c])

    - n[r] (alpha - d n[c] - b (n[r] + r[c]))
   eq2 := Upsilon n[c] (n[r] + r[c]) - mu n[r] + d n[c] n[r]

      + b n[c] n[r] - alpha n[r]
   eq3 := b n[c] n[r] + d n[c] n[r] - alpha n[r] - beta r[c]

      + mu n[r]
solve({eq1, eq2, eq3}, {n[c], n[r], r[c]});
 /       alpha                    \    /             /          
{ n[c] = -----, n[r] = 0, r[c] = 0 }, { n[c] = RootOf\(Upsilon b
 \         d                      /    \                        

                  2                                              
   + Upsilon d) _Z  + (-Upsilon alpha + Upsilon beta + Upsilon mu

                                               \               //
   + b beta + beta d) _Z - alpha beta - mu beta/, n[r] = RootOf\\

   2           2                         \   2   /
  b  beta + 2 b  mu + b beta d + 2 b d mu/ _Z  + \
       /                          2                  
-RootOf\(Upsilon b + Upsilon d) _Z  + (-Upsilon alpha

   + Upsilon beta + Upsilon mu + b beta + beta d) _Z - alpha beta

            \                           /                        
   - mu beta/ Upsilon alpha b - 2 RootOf\(Upsilon b + Upsilon d) 

    2                                                       
  _Z  + (-Upsilon alpha + Upsilon beta + Upsilon mu + b beta

                                      \                          /
   + beta d) _Z - alpha beta - mu beta/ Upsilon b beta - 2 RootOf\

                            2                                 
  (Upsilon b + Upsilon d) _Z  + (-Upsilon alpha + Upsilon beta

                                                            \ 
   + Upsilon mu + b beta + beta d) _Z - alpha beta - mu beta/ 

                         /                          2    
  Upsilon b mu - 3 RootOf\(Upsilon b + Upsilon d) _Z  + (
-Upsilon alpha + Upsilon beta + Upsilon mu + b beta + beta d) _Z

                         \                          /          
   - alpha beta - mu beta/ Upsilon beta d - 3 RootOf\(Upsilon b

                  2                                              
   + Upsilon d) _Z  + (-Upsilon alpha + Upsilon beta + Upsilon mu

                                               \             
   + b beta + beta d) _Z - alpha beta - mu beta/ Upsilon d mu

                                             \            /
   - alpha b beta + 2 b beta mu + 3 beta d mu/ _Z + RootOf\

                            2                                 
  (Upsilon b + Upsilon d) _Z  + (-Upsilon alpha + Upsilon beta

                                                            \ 
   + Upsilon mu + b beta + beta d) _Z - alpha beta - mu beta/ 

                          /                          2    
  Upsilon alpha b + RootOf\(Upsilon b + Upsilon d) _Z  + (
-Upsilon alpha + Upsilon beta + Upsilon mu + b beta + beta d) _Z

                         \                        /          
   - alpha beta - mu beta/ Upsilon beta d + RootOf\(Upsilon b

                  2                                              
   + Upsilon d) _Z  + (-Upsilon alpha + Upsilon beta + Upsilon mu

                                               \             
   + b beta + beta d) _Z - alpha beta - mu beta/ Upsilon d mu

                             \          1   /      // 2     
   + alpha b beta - beta d mu/, r[c] = ---- \RootOf\\b  beta
                                       beta                 

        2                         \   2   /
   + 2 b  mu + b beta d + 2 b d mu/ _Z  + \
       /                          2                  
-RootOf\(Upsilon b + Upsilon d) _Z  + (-Upsilon alpha

   + Upsilon beta + Upsilon mu + b beta + beta d) _Z - alpha beta

            \                           /                        
   - mu beta/ Upsilon alpha b - 2 RootOf\(Upsilon b + Upsilon d) 

    2                                                       
  _Z  + (-Upsilon alpha + Upsilon beta + Upsilon mu + b beta

                                      \                          /
   + beta d) _Z - alpha beta - mu beta/ Upsilon b beta - 2 RootOf\

                            2                                 
  (Upsilon b + Upsilon d) _Z  + (-Upsilon alpha + Upsilon beta

                                                            \ 
   + Upsilon mu + b beta + beta d) _Z - alpha beta - mu beta/ 

                         /                          2    
  Upsilon b mu - 3 RootOf\(Upsilon b + Upsilon d) _Z  + (
-Upsilon alpha + Upsilon beta + Upsilon mu + b beta + beta d) _Z

                         \                          /          
   - alpha beta - mu beta/ Upsilon beta d - 3 RootOf\(Upsilon b

                  2                                              
   + Upsilon d) _Z  + (-Upsilon alpha + Upsilon beta + Upsilon mu

                                               \             
   + b beta + beta d) _Z - alpha beta - mu beta/ Upsilon d mu

                                             \            /
   - alpha b beta + 2 b beta mu + 3 beta d mu/ _Z + RootOf\

                            2                                 
  (Upsilon b + Upsilon d) _Z  + (-Upsilon alpha + Upsilon beta

                                                            \ 
   + Upsilon mu + b beta + beta d) _Z - alpha beta - mu beta/ 

                          /                          2    
  Upsilon alpha b + RootOf\(Upsilon b + Upsilon d) _Z  + (
-Upsilon alpha + Upsilon beta + Upsilon mu + b beta + beta d) _Z

                         \                        /          
   - alpha beta - mu beta/ Upsilon beta d + RootOf\(Upsilon b

                  2                                              
   + Upsilon d) _Z  + (-Upsilon alpha + Upsilon beta + Upsilon mu

                                               \             
   + b beta + beta d) _Z - alpha beta - mu beta/ Upsilon d mu

                             \ /      /                        
   + alpha b beta - beta d mu/ \RootOf\(Upsilon b + Upsilon d) 

    2                                                       
  _Z  + (-Upsilon alpha + Upsilon beta + Upsilon mu + b beta

                                      \           /          
   + beta d) _Z - alpha beta - mu beta/ b + RootOf\(Upsilon b

                  2                                              
   + Upsilon d) _Z  + (-Upsilon alpha + Upsilon beta + Upsilon mu

                                               \               \\
   + b beta + beta d) _Z - alpha beta - mu beta/ d - alpha + mu//

  \ 
   }
  / 
 

Dear all

I have  a funciton f(x,y) 
I compute the critical point, maple gives me three different points, denoted in the code tmin 

from these points how can I fix one  one of them that  give me the min( f(x)) 

code.mw

thank you for any help

H all expert

first this Expression 

ni := diff(Q(x, t), t)+a*Q*(x, t)*(diff(Q(x, t), x))+b*(diff(Q(x, t), t$3))+d*(diff(Q(x, t), t$5)) = 0

then I want to solve  diff(Q(x, t), t$5) 

diff(Q(x, t), t$5) = solve(ni, diff(Q(x, t), t$5))#eq2

p (x, t) :=H1(t)*Q(x*H2(t), H3(t)) #assumption 

k := diff(p(x, t), t)+a*p(x, t)*(diff(p(x, t), x))+diff(p(x, t), t$3)+d*(diff(p(x, t), t$5))+c*p(x, t) #eq3

r := subs(diff(Q(x, t), t$5), k) #subs eq2 in eq3

i recived error

SUBS1.mw

I need some calculations in a noncommutative ring - specifically, I need to rewrite/simplify some algebraic expressions in those variables.  My variables need to be indexed by integers - for example, I need variables A[n], B[n], and C[n], where n is an arbitrary integer.  These variables should not commute.  My approach to doing this so far has been to use quantumoperators:

with(Physics);
Setup(quantumoperators = {A, B, C});
                 [quantumoperators = {A, B, C}]

There are some commutator relations that need to be imposed.  For example, suppose we have 

Commutator(A[m], B[n]) = C[m+n].

I can impose these commutator relations using 

Setup(algebrarules = {%Commutator(A[m], B[n]) = C[m+n]});

That part is ok.   But I would also like to subsitute certain algebraic expressions in these variables.  For example, suppose I would like to substitute A[2]*B[3] = 5. It seems I should be able to do so using subs or algsubs. This works on very simple expressions: for example, I get 

algsubs(A[1]*B[2] = 5, A[1]*B[2] + C[3]);
                            5 + C3

 as I would expect.  But the following does not work: 

algsubs(A[1]*B[2] = 5, A[1]*B[2]*C[4] + C[3]);
             A1B2C4 + C3

But I should get output 5C4+ C3.  This problem also persists if I use subs in stead of  algsubs.  It does not appear if I use 'standard' commuting variables.  

I want to apply rk-2 for the following system of odes. I want to know what is process of rk-2 method maple used? Is it possible that we can see the complete process maple used?

Download Question.mw

 

Very often it happens that using solve alone, gives huge expressions that can't be used. The simplest thing to do is to wrap it inside an evalf. But then sometimes, even your system only has real solutions, you may get some complex numbers. When this evalf(solve()) being used inside an algorithm, then disastrous consequences may arise! If the system consists of a single equation of a single variable, then you may have some more tools. But if you have a system of several equations in several variables, you have less options. I am mostly interested in polynomials, I know several approaches to use and code to solve and get only the real solutions, but my codes might be not very optimized. In Maple 2022, one predefined command which is nice is RootFinding:-Isolate but it has one issue and it is that this command only likes numeric coefficients which means integers, fraction of integers and float numbers, so no square root or other real numbers of this shape in the coefficients. I thought it might be a good idea to have a list of all solving commands in Maple that only return the real solutions or have the options to restrict to only real solutions. fsolve is not very ideal, because it only returns one solution.

How to plot this equation with explore or animation

E[1]:=Sum((GAMMA(((beta+1)n-gamma(nu-1))+k))/(GAMMA(((beta+1)n-gamma(nu-1)))*GAMMA(rho*k + (nu(1-mu)+mu(2 n+1))))*((omega*t^(p))^(k))/(k!),k=0..5);  E[2] :=Sum((GAMMA((gamma(n+1)-beta *n)+k))/(GAMMA((gamma(n+1)-beta *n))*GAMMA(rho*k + (mu(2 n+1))))*((omega*t^(p))^(k))/(k!),k=0..5);    y(p):=Sum(c*gamma^(n)*t^(nu*(1-mu)+mu+2*mu*n-1)*E[1]+gamma^(n)t^(mu(2 n+1)-1)*E[2]*g, n=0..5);

with the conditions

mu, nu \in (0, 1); omega \in R; rho > 0; gamma, beta > or = 0; c & g are constant

How to create a matrix in 2D input without using palette? Any short cut that returns a matrix does not display as a matrix in 2D input.

First 200 201 202 203 204 205 206 Last Page 202 of 2308