MaplePrimes Questions

Hi,

I'm trying to use "Matlab()" command to convert Maple expression into Matlab's expression.

but for some reason it doesn't work.

it works for simple expressions but not this one. It is just a long expression with only some symbols, and the most basic math operations. I don't see why it fails.

It says: "Error, (in Translate) options... not recognized"

I'm attaching the maple code so you can see the error.  

The reason I'm using it is because Matlab could not solve the equation in the file (even numerically). So I wrote the same equation symbolically in Maple so I can copy the symbolic solutions to matlab and use them instead of matlab's 'solve' command.

Hope anyone can help with it.

Here's the code attached:

calc_theta.mw

Rootfinding,Isolate seems to work on more that univariate expressions.

See https://www.mapleprimes.com/posts/215233-Another-Example-Of-A-Real-Manipulator-Model for example with a list of multivariate expressions.

Is there documentation/examples on that?

Thank you!

Hello, I don't succeed finding what is wrong. The file is a worksheet in 2D math

I always get 'error, invalid loop'. The text in bold is my simple program, the other text was added while copy-paste

 

restart
som := 0
                         

for i from 1 by 1 to 10 do
Error, invalid loop
 Typesetting:-mambiguous(Typesetting:-mambiguous(

   for i from 1 to 10 do, Typesetting:-merror("invalid loop")))


som := som + i;
                         

od;
Error, unable to parse
      Typesetting:-mambiguous(Typesetting:-mambiguous(od,

        Typesetting:-merror("unable to parse")))


NULL;

 


NULL;

 

how to delete account from this site?

 

 

solve({-mu*a[1]+2*c[2]*a[1]*a[2]^2-a[1]*k^2*c[1]+2*c[2]*a[1]*a[0]^2+5*c[4]*a[0]^4*a[1]+5*c[4]*a[1]*a[2]^4+3*c[3]*a[1]*a[2]^2+3*c[3]*a[0]^2*a[1]+a[1]*c[1]+30*c[4]*a[0]^2*a[1]*a[2]^2-20*c[4]*a[1]*a[2]*a[0]^3-4*c[2]*a[1]*a[0]*a[2]-8*c[2]*a[1]^3*A*B+24*c[1]*a[1]*A*B-6*c[3]*a[0]*a[1]*a[2]-20*c[4]*a[0]*a[1]*a[2]^3+48*c[2]*a[1]*a[0]^2*A*B+176*c[2]*a[1]*a[2]^2*A*B-224*c[2]*a[1]*A*B*a[0]*a[2] = 0, -16*c[2]*a[1]^3-6*mu*a[1]+156*c[2]*a[1]*a[2]^2-6*a[1]*k^2*c[1]-20*c[2]*a[1]*a[0]^2+30*c[4]*a[0]^4*a[1]-20*c[4]*a[1]^3*a[2]^2+30*c[4]*a[1]*a[2]^4-6*c[3]*a[1]*a[2]^2+18*c[3]*a[0]^2*a[1]+20*c[4]*a[0]^2*a[1]^3+c[4]*a[1]^5+2*a[1]^3*c[3]-10*a[1]*c[1]-60*c[4]*a[0]^2*a[1]*a[2]^2-24*c[2]*a[1]^3*A*B+8*c[1]*a[1]*A*B+16*c[2]*a[1]*a[0]^2*A*B+336*c[2]*a[1]*a[2]^2*A*B+352*c[2]*a[1]*A*B*a[0]*a[2] = 0, -32*c[2]*a[2]*a[0]^2*A*B-8*c[2]*a[1]^2*a[0]*A*B+64*c[2]*a[2]^2*a[0]*A*B+8*c[2]*a[1]^2*a[2]*A*B-5*c[4]*a[0]^4*a[2]+10*c[4]*a[0]^3*a[2]^2-10*c[4]*a[0]^2*a[2]^3+5*c[4]*a[0]*a[2]^4-a[0]*k^2*c[1]+a[2]*k^2*c[1]-3*c[3]*a[0]^2*a[2]+3*c[3]*a[0]*a[2]^2-32*c[2]*a[2]^3*A*B-16*c[1]*a[2]*A*B+c[4]*a[0]^5-c[4]*a[2]^5+c[3]*a[0]^3-c[3]*a[2]^3-a[0]*mu+a[2]*mu = 0, 4*c[2]*a[1]^3-4*mu*a[1]-64*c[2]*a[1]*a[2]^2-4*a[1]*k^2*c[1]-8*c[2]*a[1]*a[0]^2+20*c[4]*a[0]^4*a[1]+10*c[4]*a[1]^3*a[2]^2-20*c[4]*a[1]*a[2]^4+12*c[3]*a[0]^2*a[1]+10*c[4]*a[0]^2*a[1]^3+a[1]^3*c[3]-4*a[1]*c[1]+40*c[4]*a[1]*a[2]*a[0]^3-72*c[2]*a[1]*a[0]*a[2]-8*c[1]*a[1]*A*B+12*c[3]*a[0]*a[1]*a[2]+20*c[4]*a[0]*a[1]^3*a[2]-40*c[4]*a[0]*a[1]*a[2]^3-16*c[2]*a[1]*a[0]^2*A*B-16*c[2]*a[1]*a[2]^2*A*B-32*c[2]*a[1]*A*B*a[0]*a[2] = 0, 4*c[2]*a[1]^3-4*mu*a[1]-64*c[2]*a[1]*a[2]^2-4*a[1]*k^2*c[1]-8*c[2]*a[1]*a[0]^2+20*c[4]*a[0]^4*a[1]+10*c[4]*a[1]^3*a[2]^2-20*c[4]*a[1]*a[2]^4+12*c[3]*a[0]^2*a[1]+10*c[4]*a[0]^2*a[1]^3+a[1]^3*c[3]-4*a[1]*c[1]-40*c[4]*a[1]*a[2]*a[0]^3+72*c[2]*a[1]*a[0]*a[2]+64*c[2]*a[1]^3*A*B+40*c[1]*a[1]*A*B-12*c[3]*a[0]*a[1]*a[2]-20*c[4]*a[0]*a[1]^3*a[2]+40*c[4]*a[0]*a[1]*a[2]^3+80*c[2]*a[1]*a[0]^2*A*B-624*c[2]*a[1]*a[2]^2*A*B+160*c[2]*a[1]*A*B*a[0]*a[2] = 0, 3*c[3]*a[0]*a[2]^2+6*c[2]*a[1]^2*a[0]-32*c[2]*a[2]^2*a[0]-5*a[0]*k^2*c[1]+10*c[4]*a[0]^3*a[2]^2-6*c[2]*a[1]^2*a[2]-15*c[4]*a[0]^4*a[2]-15*c[4]*a[0]*a[2]^4+10*c[4]*a[0]^2*a[2]^3+3*a[2]*k^2*c[1]-9*c[3]*a[0]^2*a[2]+16*c[2]*a[2]*a[0]^2-5*a[0]*mu+3*a[2]*mu-30*c[4]*a[0]^2*a[1]^2*a[2]+30*c[4]*a[0]*a[1]^2*a[2]^2+288*c[2]*a[2]^3*A*B+16*c[1]*a[2]*A*B+32*c[2]*a[2]*a[0]^2*A*B+104*c[2]*a[1]^2*a[0]*A*B-320*c[2]*a[2]^2*a[0]*A*B-216*c[2]*a[1]^2*a[2]*A*B+5*c[4]*a[0]^5+5*c[4]*a[2]^5+5*c[3]*a[0]^3+c[3]*a[2]^3-3*c[3]*a[1]^2*a[2]-10*c[4]*a[1]^2*a[2]^3+3*c[3]*a[0]*a[1]^2+10*c[4]*a[0]^3*a[1]^2+16*c[2]*a[2]^3+8*c[1]*a[2] = 0, -6*c[3]*a[0]*a[2]^2-22*c[2]*a[1]^2*a[0]+64*c[2]*a[2]^2*a[0]-10*a[0]*k^2*c[1]-20*c[4]*a[0]^3*a[2]^2-66*c[2]*a[1]^2*a[2]+10*c[4]*a[0]^4*a[2]+10*c[4]*a[0]*a[2]^4-20*c[4]*a[0]^2*a[2]^3-2*a[2]*k^2*c[1]+6*c[3]*a[0]^2*a[2]-16*c[2]*a[2]*a[0]^2-10*a[0]*mu-2*a[2]*mu+30*c[4]*a[0]^2*a[1]^2*a[2]-30*c[4]*a[0]*a[1]^2*a[2]^2+96*c[2]*a[2]^3*A*B+48*c[1]*a[2]*A*B+5*c[4]*a[1]^4*a[2]+5*c[4]*a[0]*a[1]^4+96*c[2]*a[2]*a[0]^2*A*B-40*c[2]*a[1]^2*a[0]*A*B+192*c[2]*a[2]^2*a[0]*A*B-40*c[2]*a[1]^2*a[2]*A*B+10*c[4]*a[0]^5+10*c[4]*a[2]^5+10*c[3]*a[0]^3-2*c[3]*a[2]^3+3*c[3]*a[1]^2*a[2]-30*c[4]*a[1]^2*a[2]^3+9*c[3]*a[0]*a[1]^2+30*c[4]*a[0]^3*a[1]^2+80*c[2]*a[2]^3-8*c[1]*a[2] = 0, -6*c[3]*a[0]*a[2]^2-22*c[2]*a[1]^2*a[0]+64*c[2]*a[2]^2*a[0]-10*a[0]*k^2*c[1]-20*c[4]*a[0]^3*a[2]^2+66*c[2]*a[1]^2*a[2]-10*c[4]*a[0]^4*a[2]+10*c[4]*a[0]*a[2]^4+20*c[4]*a[0]^2*a[2]^3+2*a[2]*k^2*c[1]-6*c[3]*a[0]^2*a[2]+16*c[2]*a[2]*a[0]^2-10*a[0]*mu+2*a[2]*mu-30*c[4]*a[0]^2*a[1]^2*a[2]-30*c[4]*a[0]*a[1]^2*a[2]^2-352*c[2]*a[2]^3*A*B+80*c[1]*a[2]*A*B-5*c[4]*a[1]^4*a[2]+5*c[4]*a[0]*a[1]^4+160*c[2]*a[2]*a[0]^2*A*B+72*c[2]*a[1]^2*a[0]*A*B-192*c[2]*a[2]^2*a[0]*A*B+312*c[2]*a[1]^2*a[2]*A*B+10*c[4]*a[0]^5-10*c[4]*a[2]^5+10*c[3]*a[0]^3+2*c[3]*a[2]^3-3*c[3]*a[1]^2*a[2]+30*c[4]*a[1]^2*a[2]^3+9*c[3]*a[0]*a[1]^2+30*c[4]*a[0]^3*a[1]^2-80*c[2]*a[2]^3+8*c[1]*a[2] = 0, a[0]^5*c[4]+5*a[0]^4*a[2]*c[4]+10*a[0]^3*a[2]^2*c[4]+10*a[0]^2*a[2]^3*c[4]+5*a[0]*a[2]^4*c[4]+a[2]^5*c[4]-k^2*a[0]*c[1]-k^2*a[2]*c[1]+a[0]^3*c[3]+3*a[0]^2*a[2]*c[3]+3*a[0]*a[2]^2*c[3]+a[2]^3*c[3]-mu*a[0]-mu*a[2] = 0, 5*a[0]^4*a[1]*c[4]+20*a[0]^3*a[1]*a[2]*c[4]+30*a[0]^2*a[1]*a[2]^2*c[4]+20*a[0]*a[1]*a[2]^3*c[4]+5*a[1]*a[2]^4*c[4]-k^2*a[1]*c[1]+2*a[0]^2*a[1]*c[2]+3*a[0]^2*a[1]*c[3]+4*a[0]*a[1]*a[2]*c[2]+6*a[0]*a[1]*a[2]*c[3]+2*a[1]*a[2]^2*c[2]+3*a[1]*a[2]^2*c[3]-mu*a[1]+a[1]*c[1] = 0, 5*a[0]^5*c[4]+15*a[0]^4*a[2]*c[4]+10*a[0]^3*a[1]^2*c[4]+10*a[0]^3*a[2]^2*c[4]+30*a[0]^2*a[1]^2*a[2]*c[4]-10*a[0]^2*a[2]^3*c[4]+30*a[0]*a[1]^2*a[2]^2*c[4]-15*a[0]*a[2]^4*c[4]+10*a[1]^2*a[2]^3*c[4]-5*a[2]^5*c[4]-5*k^2*a[0]*c[1]-3*k^2*a[2]*c[1]+5*a[0]^3*c[3]-16*a[0]^2*a[2]*c[2]+9*a[0]^2*a[2]*c[3]+6*a[0]*a[1]^2*c[2]+3*a[0]*a[1]^2*c[3]-32*a[0]*a[2]^2*c[2]+3*a[0]*a[2]^2*c[3]+6*a[1]^2*a[2]*c[2]+3*a[1]^2*a[2]*c[3]-16*a[2]^3*c[2]-a[2]^3*c[3]-5*mu*a[0]-3*mu*a[2]-8*a[2]*c[1] = 0}, {B, mu, a[0], a[1], a[2]})

A user asks what they're doing wrong in r/maplesoft with the attached screenshot:

 

How are constructed binary operators in Maple?
Is it possible to create a binary operator A that we can use this way z := x A y ?

TIA
 

hello I would like to ask how to implement phase singularities using wavelets in maple.

https://pdfs.semanticscholar.org/03cf/d388491c4fc7bc41c5f99a284feb7b2c34f1.pdf

http://mmlab.ie.cuhk.edu.hk/archive/2009/pami09_theory.pdf

Good day all.

If I generate a list containing (say) 100 elements or more, and each element is an ordered pair - is it possible to assign a letter to each element? The first 26 elements will have equal A to Z, the next 26 will take A1 to Z1, and so on.

For example if the list is [ [5,3], [2,5], ..., [3,1]], how do I construct it to become [A=[5,3], B=[2,5], ..., V3=[3,1]]?

Please see attached.

Thank's a lot for your time.

MaplePrimes_Label_Lists.mw

Hi all,

I'm new to the Maple software, and have been having difficulty figuring out how to plot a 3-D figure for given xyz values. Could anyone provide any guidance on this? I've attached the relevant document to provide the specific values in case that would be helpful.

Best,

Shane

Download Shane_Kreller_M6_Maple_Assignment.mw

Hi,

What am I doing wrong? Seems like some unit compatibility problem when tryaing to solve simple task with momentum conservation rule...

with(Units);
Automatically loading the Units[Simple] subpackage


m__2 := 0.400*Unit('kg');
m__1 := 0.300*Unit('kg');
x__w := 0.700*Unit('m');

v__2p := 0.000;

v__1p := 2*Unit(('m')/('s'));



Download zadanie_z_jednostakim_-_problem.mw

m__1*v__1p + m__2*v__2p = m__1*v__1k + m__2*v__2k;
                                               /s\
             0.6 = (0.3 v__1k + 0.4 v__2k) Unit|-|
                                               \m/


subs(v__2p = 0, 0.600 = (0.300*v__1k + 0.400*v__2k)*Units[Unit](s/m));
                                               /s\
             0.6 = (0.3 v__1k + 0.4 v__2k) Unit|-|
                                               \m/

v__1k := solve(0.600 = (0.300*v__1k + 0.400*v__2k)*Units[Unit](s/m), v__1k);
                                                  /m\
           v__1k := (-1.333333333 v__2k + 2.) Unit|-|
                                                  \s/

 

1/2*m__1*v__1p^2 + 1/2*m__2*v__2p^2 = 1/2*m__1*v__1k^2 + 1/2*m__1*v__2k^2;


Error, (in Units:-Simple:-+) the following expressions imply incompatible dimensions: {.1500000000*(-1.333333333*v__2k+2.)^2*Units:-Unit(J)+.1500000000*Units:-Unit(kg)*v__2k^2}

Sitting and trying find solution in help and on forum but no chance.

I hope if someone copy code into maple it will look lik on my screen. Anyway I have uploaded file and below You have screen picture.

If I remove units from variables on the top all is working like a charm.

Please help me find an error guys.

Reagrds

Marcin

Hi,

I'm a student in calculus II.

What is name of the integration technique that Maple is using in the first step? This is a problem without a walkthrough in my textbook and while I got the same answer using integration by parts my solution looks different until the end because I didn't change the variables.

Thanks,

Corey

 

 

Good day. 

I am wrestling a simple network (maze-type) problem and I hope someone can assist.

Given a standard x-y framework with several nodes whose locations are known, I would like to visit each node by starting from the origin, (0,0), and returning to that same point, A. (see attached)

However, I am permitted only to move horizontally and vertically within the maze.

Given that restriction, is there a routine that allows me to visit all locations, B, C, D, and E, such that the rectilinear distance is a minimum?

If there is a solution to this problem, can the distance also be given and order of visits specified?

Thanks for reading!

MaplePrimes_Path.mw

I have created a simple piecewise function to represent the radius r(x) of a circular cylinder of length 2a and radius b with ellipsoidal end caps of length e << a and e << b to get a smooth transition of r(x) at the two ends for use in slender body theory. The piecewise function does not behave as I had expected, and this is the first time that I have used a piecewise function. What am I doing wrong? The attached (I hope) Maple worksheet shows both my expected behavior and the actual behaviort. Any help will be greatly appreciated. Thanks.

Neill Smith

Piecewise_Cylinder_Geom.mw

 

how to draw these 3 lines and then project them on the plans Oxy,Oxz,Oyz;
3 given lines a := [3*t-7, -2*t+4, 3*t+4]; b := [m+1, 2*m-9, -m-12];c:={x = -200/29-2*t, y = 114/29+3*t, z = 119/29+4*t}, how to show these lines and the projections on the 3 planes ? Thank you.

First 266 267 268 269 270 271 272 Last Page 268 of 2308