MaplePrimes Questions

 

Any help why this code fail

restart;
PDE := diff(u(x,y), y$2 ) + diff(u(x,y), x$2) = 0;
BC:= u(x,0)=0, u(x,100)=100, u(0,y)=0, u(10,y)=0;
sol:=pdsolve([PDE,BC],numeric);

gives

Error, (in pdsolve/numeric/process_PDEs) PDEs can only contain dependent variables with direct dependence on the independent variables of the problem, got {u(0, y), u(10, y), u(x, 0), u(x, 100)}
 

But sol:=pdsolve([PDE,BC])  works OK and gives analytical solution.

What error Am I doing in the above code in this case?

Maple 2020 with Physics 642

Is there any possibility to define which units are used in components, like MathContainers?

I would like to have kN/m, I get mm2*kg/m3*m/s2...

I'd like to find chromatic number of some graphs. But I find a strange thing of function ChromaticNumber. 

with(GraphTheory):
g1:=Graph(4):
DrawGraph(g1);
ChromaticNumber(g1)

It is Ok!

But when I use following codes, an error will be issued.

with(GraphTheory):
graphsof4 := [NonIsomorphicGraphs(4, output = graphs, outputform = graph)]:
DrawGraph(graphsof4[1]);
ChromaticNumber(graphsof4[1]);

 

 

 

 

 

I try to take a partial derivative of compound expressions. Usage of diff, Diff, substitution variables instead of time-variant variables (subs) couldn't help me.

restart; PDEtools[declare](`θ__l`(t), `β__l`(t), `θ__si`(t), `β__si`(t), psi(t), x(t), z(t)); PDEtools[declare](prime = t); V__1lx := diff(x(t), t)-(1/2)*l__b*sin(psi(t))*(diff(psi(t), t))-l__1c*sin(`θ__l`(t)-psi(t))*(diff(`θ__l`(t), t)-(diff(psi(t), t))); V__1lz := diff(z(t), t)-(1/2)*l__b*cos(psi(t))*(diff(psi(t), t))-l__1c*cos(`θ__l`(t)-psi(t))*(diff(`θ__l`(t), t)-(diff(psi(t), t))); V__1l := simplify(V__1lx^2+V__1lz^2, size); diff(V__1l, psi); Diff(V__1l, psi)

Diff((diff(x(t), t)-(1/2)*l__b*sin(psi(t))*(diff(psi(t), t))+l__1c*sin(-theta__l(t)+psi(t))*(diff(theta__l(t), t)-(diff(psi(t), t))))^2+(diff(z(t), t)-(1/2)*l__b*cos(psi(t))*(diff(psi(t), t))-l__1c*cos(-theta__l(t)+psi(t))*(diff(theta__l(t), t)-(diff(psi(t), t))))^2, psi)

(1)

``


Download DiffExpr.mw

Should I use implicitdiff? If yes, how does it work?

Also, I don't understand, why the derivative of theta_l is displayed so strange, as if the derivative is taken from the index l?

P.S. This question is a continuation of my last topic: https://www.mapleprimes.com/questions/229551-Operations-On-Several-Defined-Functions

Hello everyone! I was trying to draw a circle point by point using animate, but there's a catch: I'd like it to be created in front of the user, that is seeing every point being drawn in sequence.

Like this, but with the point leaving a trail behind him.

Can anyone help?

Hello,

I'm trying to evaluate if the matrizes are the same but i cant figure out why it say they are different.

 

restart;
with(DEtools);
DEplot(diff(y(t), t$2)-3*(diff(y(t), t))+2*y(t) = exp(t), [[y(0) = 0, (D(y))(0) = 2]], stepsize = .1, linecolor = black, thickness = 2);

 

Is there a way to enter a formula into the coloums to generate the output?
I did the Table of Values by Hand which will take a long time for real data.

Thanks in Advance

``

Example: Verifying Inverse Functions Numerically

 

"ex17f6(x):=(x-5)/(2):"

"ex17g6(x):=2 x+5:"

y3:

ex17f6(ex17g6(x))

x

(1.1)

y4:

ex17g6(ex17f6(x))

x

(1.2)

NULLNULL

 

Table 1: Table of Values

x

y3

y4

-2

-2

-2

-1

-1

-1

0

0

0

1

1

1

2

2

2

3

3

3

4

4

4

 

NULL


 

Download InverseNum.mw

Why are these functions not graphed correctly?
 

Example: Verifying Inverse Functions Graphically

 

``

"ex17f5(x):=2 x^(3)-1:"

"ex17g5(x):=((x+1)/(2))^(1/(3)):"

 

``


 

Download inverseExample.mw

Hi everyone, I have problem solving a given optimization problem using the Karush Khun Tucke conditions. The working is as follows:

restart;
with(linalg);
f := 49*x[1]+94*x[2]+90*x[3]+24*x[4]+6*x[5]+63*x[6]+17*x[7]+65*x[8]+72*x[9]+40*x[10]+67*x[11]+99*x[12]+97*x[13]+53*x[14]+22*x[15]+47*x[16]+60*x[17]+36*x[18]+54*x[19]+67*x[20]+46*x[21]+55*x[22]+42*x[23]+70*x[24];
49 x[1] + 94 x[2] + 90 x[3] + 24 x[4] + 6 x[5] + 63 x[6]

   + 17 x[7] + 65 x[8] + 72 x[9] + 40 x[10] + 67 x[11] + 99 x[12]

   + 97 x[13] + 53 x[14] + 22 x[15] + 47 x[16] + 60 x[17]

   + 36 x[18] + 54 x[19] + 67 x[20] + 46 x[21] + 55 x[22]

   + 42 x[23] + 70 x[24]
g[1] := x[1]+x[2]+x[3]+x[4]+x[5]+x[6]+x[7]+x[8]+x[9]+x[10]+x[11]+x[12]-475;
  x[1] + x[2] + x[3] + x[4] + x[5] + x[6] + x[7] + x[8] + x[9]

     + x[10] + x[11] + x[12] - 475
g[2] := x[13]+x[14]+x[15]+x[16]+x[17]+x[18]+x[19]+x[20]+x[21]+x[22]+x[23]+x[24]-30;
 x[13] + x[14] + x[15] + x[16] + x[17] + x[18] + x[19] + x[20]

    + x[21] + x[22] + x[23] + x[24] - 30
for i from 3 to 26 do g[i] := -x[i] end do;
h[1] := 54-x[1];
                           54 - x[1]
h[2] := 30-x[2];
                           13 - x[2]
h[3] := 13-x[3];
                           13 - x[3]
h[4] := 41-x[4];
                           41 - x[4]
h[5] := 97-x[5];
                           97 - x[5]
h[6] := 11-x[6];
                           11 - x[6]
h[7] := 62-x[7];
                           62 - x[7]
h[8] := 59-x[8];
                           59 - x[8]
h[9] := 35-x[9];
                           35 - x[9]
h[10] := 42-x[10];
                           42 - x[10]
h[11] := 19-x[11];
                           19 - x[11]
h[12] := 12-x[12];
                           12 - x[12]
vars := [x[1], x[2], x[3], x[4], x[5], x[6], x[7], x[8], x[9], x[10], x[11], x[12], x[13], x[14], x[15], x[16], x[17], x[18], x[19], x[20], x[21], x[22], x[23], x[24]];
[x[1], x[2], x[3], x[4], x[5], x[6], x[7], x[8], x[9], x[10], 

  x[11], x[12], x[13], x[14], x[15], x[16], x[17], x[18], x[19], 

  x[20], x[21], x[22], x[23], x[24]]
H := Hessian(f, vars);
Hessian(49 x[1] + 94 x[2] + 90 x[3] + 24 x[4] + 6 x[5] + 63 x[6]

   + 17 x[7] + 65 x[8] + 72 x[9] + 40 x[10] + 67 x[11] + 99 x[12]

   + 97 x[13] + 53 x[14] + 22 x[15] + 47 x[16] + 60 x[17]

   + 36 x[18] + 54 x[19] + 67 x[20] + 46 x[21] + 55 x[22]

   + 42 x[23] + 70 x[24], [x[1], x[2], x[3], x[4], x[5], x[6], 

  x[7], x[8], x[9], x[10], x[11], x[12], x[13], x[14], x[15], 

  x[16], x[17], x[18], x[19], x[20], x[21], x[22], x[23], x[24]])
grad_f := Del(f, vars);
Del(49 x[1] + 94 x[2] + 90 x[3] + 24 x[4] + 6 x[5] + 63 x[6]

   + 17 x[7] + 65 x[8] + 72 x[9] + 40 x[10] + 67 x[11] + 99 x[12]

   + 97 x[13] + 53 x[14] + 22 x[15] + 47 x[16] + 60 x[17]

   + 36 x[18] + 54 x[19] + 67 x[20] + 46 x[21] + 55 x[22]

   + 42 x[23] + 70 x[24], [x[1], x[2], x[3], x[4], x[5], x[6], 

  x[7], x[8], x[9], x[10], x[11], x[12], x[13], x[14], x[15], 

  x[16], x[17], x[18], x[19], x[20], x[21], x[22], x[23], x[24]])
for i to 26 do grad_g[i] := Del(g[i], vars) end do;
for i to 12 do grad_h[i] := Del(h[i], vars) end do;
eq[1] := grad_f+sum(mu[i]*g[i], i = 13 .. 26)+sum(lambda[i]*h[j], j = 1 .. 12) = 0;
Error, (in sum) summation variable previously assigned, second argument evaluates to 13 = 13 .. 37
eq[2] := g[i] <= 0;
                          -x[13] <= 0
eq[3] := h[j] <= 0;
                           h[j] <= 0
eq[4] := mu[i] >= 0;
                          0 <= mu[13]
eq[5] := lambda[j] <= 0;
                         lambda[j] <= 0
eq[6] := mu[i]*g[i] = 0;
                       -mu[13] x[13] = 0
eval(solve({eq[1], eq[2], eq[3], eq[4], eq[5], eq[6]}, [vars, lambda[j], mu[i]]));
Error, invalid input: too many and/or wrong type of arguments passed to solve; first unused argument is [[x[1], x[2], x[3], x[4], x[5], x[6], x[7], x[8], x[9], x[10], x[11], x[12], x[13], x[14], x[15], x[16], x[17], x[18], x[19], x[20], x[21], x[22], x[23], x[24]], lambda[j], mu[13]]
 

Hi,

I'm trying to change with a Maple Worksheet the parameters of a MapleSim Model in Real-matrices format.

is there any way to do that?

actually i get the failure note:

<<Error, (in SetParameters) non-vectorized values in vector parameters: [list= ""]>>



 

Thank You

Regards
Johann
 

I have the Ubuntu of Linux app installed in Windows 10. Could anyone help me with exactly how to install Maple2020.0LinuxX64Installer.run in the Ubuntu terminal? Many thanks.

Dear maple users,

Greetings

How to eval a function as a sequence of x(x=0..1)

f := unapply(3*x^2-2*x^3-1.080674649*x^2*(x-1)^2-.8118769171*x^2*(x-1)^3+.4147046974*x^2*(x-1)^4+.4585681954*x^2*(x-1)^5, x);
ma := seq(eval(f(x), x = 0 .. 1))

May be a question is simple, but I'm beginner in Maple and I didn't find answer in Internet. I defined two functions: f(x,y)=sin(x)*cos(y) and g(x,y)=sin(y)*cos(x). How can I calculate third function v(x,y)=f(x,y)-g(x,y)? Answer of this operation should be: v(x,y)=sin(x-y).

I am tried to solve the following problem. here is the code and boundary conditions as well as parameters used in the problem. Please help me to get the numerical solution and getting plots between Cu and eta as well as D(f)(eta) vs eta.

restart;
Digits := trunc(evalhf(Digits));
                               15
ODEs := [diff(f(eta), `$`(eta, 3))+A^2+f(eta)*(diff(f(eta), `$`(eta, 2)))-(diff(f(eta), eta))^2+beta*((diff(g(eta), eta))^2-g(eta)*(diff(g(eta), `$`(eta, 2)))-1), lambda*(diff(g(eta), `$`(eta, 3)))+(diff(g(eta), `$`(eta, 2)))*f(eta)-g(eta)*(diff(f(eta), `$`(eta, 2)))];
`<,>`(ODEs[]);
           Vector[column](%id = 18446744073898822582)
LB, UB := 0, 1;
BCs := [`~`[`=`](([D(f), f, g, (D@@2)(g)])(LB), [1+B1*((D@@2)(f))(0), 0, 0, 0])[], `~`[`=`](([D(f), D(g)])(UB), [A, 0])[]];
     [D(f)(0) = 1 + B1 @@(D, 2)(f)(0), f(0) = 0, g(0) = 0, 

       @@(D, 2)(g)(0) = 0, D(f)(1) = A, D(g)(1) = 0]
Params := Record(A = .9, B1 = .5, beta = .5, lambda = .5);
NBVs := [-((D@@2)(f))(1) = `C*__f`];
Cf := `C*__f`;
Solve := module () local nbvs_rhs, Sol, ModuleApply, AccumData, ModuleLoad; export SavedData, Pos, Init;  nbvs_rhs := `~`[rhs](:-NBVs); ModuleApply := subs(_Sys = {:-BCs[], :-NBVs[], :-ODEs[]}, proc ({ A::realcons := Params:-A, B1::realcons := Params:-B1, beta::realcons := Params:-beta, lambda::realcons := Params:-lambda }) Sol := dsolve(_Sys, _rest, numeric); AccumData(Sol, {_options}); Sol end proc); AccumData := proc (Sol::{Matrix, procedure, list({name, function} = procedure)}, params::(set(name = realcons))) local n, nbvs; if Sol::Matrix then nbvs := seq(n = Sol[2, 1][1, Pos(n)], n = nbvs_rhs) else nbvs := `~`[`=`](nbvs_rhs, eval(nbvs_rhs, Sol(:-LB)))[] end if; SavedData[params] := Record[packed](params[], nbvs) end proc; ModuleLoad := eval(Init); Init := proc () Pos := proc (n::name) local p; option remember; member(n, Sol[1, 1], 'p'); p end proc; SavedData := table(); return  end proc; ModuleLoad() end module;
colseq := [red, green, blue, brown];
Pc := B1 = .5, A = .1, beta = .5;
Ps := [B1 = .5, A = .1, beta = .5];
Pv := [lambda = [.5, 1, 1.5, 2]];
for i to nops(Ps) do plots:-display([seq(plots:-odeplot(Solve(lhs(Pv[i]) = rhs(Pv[i])[j], Ps[i][], Pc), [eta, theta(eta)], 'color' = colseq[j], 'legend' = [lhs(Pv[i]) = rhs(Pv[i])[j]]), j = 1 .. nops(rhs(Pv[i])))], 'axes' = 'boxed', 'gridlines' = false, 'labelfont' = ['TIMES', 'BOLDOBLIQUE', 16], 'caption' = nprintf(cat(`$`("\n%a = %4.2f, ", nops(Ps[i])-1), "%a = %4.2f\n\n"), `~`[lhs, rhs](Ps[i])[]), 'captionfont' = ['TIMES', 16]) end do;
Error, (in dsolve/numeric/process_input) invalid argument: (B1 = .5)[]

 

 

Please help me to get the graph of CU v/s eta also D(f)(eta) vs eta
 

First 435 436 437 438 439 440 441 Last Page 437 of 2308