MaplePrimes Questions

Hello

I need to add a legend to a figure using dataplot (I am not even sure that is the right option).  In what follows I show what I did.

 

dataplot([28,28,28],[.6481496576, .648149657615473, .6512873548],style='point',colorscheme=["Blue","Orange","Red"],	
labels = ["k", "y(k)"], legend = ["10-digit precision", "15-digit precision", "Floating-point iteration"] ,legendstyle = [font = ["HELVETICA", 9], location = right]);

The outcome is

As can be seen some parts of the legend are missing.

 

How can I get this right? Do I have other ways to do the same thing?  

 

Many thanks

 

Ed

 

Hi all, why maple output alway change from `> =` to `<=` ? example

How to config to `>=`. Thank you very much

I am using an integal sign using Int. If there is a minus sign in front of it, then

I get the expression -(Int ... dx). Why is the parenthesis there? Can we avoind it?

Thank you!

mapleatha

 

Hi all,

How to get the real and imaginary parts of this complex expression.

Thank you in advance

real_imag_parts.mw

Hello every one
I have a question!
My code starts with assuming the time variable (t) to be specified in a an interval for each time that the for loop executes as follows:

discontinuity := [0.403e-8, 0.45e-8, 0.478e-8, 0.55e-8];
 for j from 1 to 3 do
assume(discontinuity[j]<=t,t<discontinuity[j+1]);

After that the code runs and calculate every thing. For the second time, I mean for J=2, it does not work properly.
T[1] is the result of its first running (for j=1):
T[1]:=3.000023586*10^(-6)*exp(-4977.085344*t~)-1.325122648*10^(-6)*exp(-4.015800624*10^9*t~)
When it wants to evaluate this expression at specific time such as discontinuity[2] it cannot evaluate it. I tried to use unapply command to consider it as a function of t but it did not work. Here is the results:
AA:=simplify(eval(T[1], t = discontinuity[1]));
This is its result:        AA:=3.000023586*10^(-6)*exp(-4977.085344*t~)-1.325122648*10^(-6)*exp(-4.015800624*10^9*t~)
Without unapply command:    AA:=T[1]
Please answer my question.
Thank you so much
 

Hi, 

Here is the minimal situation that reveals which that could be a (little) bug in the MAPLE 2015 version of Explore.

In the attached file y is a list of numbers and val(r) a procedure that just print the value the rth element of y.
Changing the value of r is done with Explore (of course of no interest at all).
If I define the parameter r as a list ( r=[1..numelems(y)] ), only the value of y[1] is displayed: changing the value of r generates an error.
This doesn(t happen if r is defined as a slider ( r=1..numelems(r) ).

I discovered than the initial instance of Explore defines r as an integer while all the others (due to a change of r) define r as a string.
In the last command of the attached file you will see hjow I have circumvent this problem.

Is it a bug in Explore or does it exist some way to force the values of r to the implicit type they have in r=[$1..numelems(y)] ?

TIA

Download explore.mw

 

I'd like to solve this ODE

But not sure how to write it in Maple. In Mathematica, this is what I do

ClearAll[F, x, y, t];
ode = D[F[x[t], y[t]], x[t]]*D[x[t], t] + D[F[x[t], y[t]], y[t]]*D[y[t], t] == 0;
DSolve[ode, F[x[t], y[t]], {x[t], y[t]}]

and it gives

In Maple, I tried

ode:=diff(F(x(t),y(t)),x(t))*diff(x(t),t)+diff(F(x(t),y(t)),y(t))*diff(y(t),t)=0

Error, invalid input: diff received x(t), which is not valid for its 2nd argument

ode:=D[1](F)(x(t),y(t))*diff(x(t),t)+D[2](F)(x(t),y(t))*diff(y(t),t)=0;
dsolve(ode,F(x(t),y(t)))

Error, (in dsolve) expected the indeterminate function as, say, F(x) where x is of type "name" - and also cannot be a procedure name. Received: [F(x(t), y(t))]

 

What is the correct way to write this in Maple?

 

 

Hello,

I want to sort the formulae to Psi and Beta, but I don't know how it works. I have tried it with sort, simplify, isolate, but that isn't what I'm searching.

It should looks like the simplier formula in the picture.

 

ab := (diff(Psii(t), t, t))*J-l[f]*(F[s, f, l]+F[s, f, r])+l[r]*(F[s, r, l]+F[s, r, r])-(1/2)*b[r]*(-F[s, r, l]*delta[l]+F[s, r, r]*delta[r]) = 0;
  / d  / d         \\                                   
  |--- |--- Psii(t)|| J - l[f] (F[s, f, l] + F[s, f, r])
  \ dt \ dt        //                                   

     + l[r] (F[s, r, l] + F[s, r, r])

       1                                                      
     - - b[r] (-F[s, r, l] delta[l] + F[s, r, r] delta[r]) = 0
       2                                                      
bc := (diff(betaa(t), t, t))*m*v*betaa(t)+F[s, r, l]*delta[l]+F[s, r, r]*delta[r]-(diff(Psii(t), t)) = 0;
    / d  / d          \\                                   
    |--- |--- betaa(t)|| m v betaa(t) + F[s, r, l] delta[l]
    \ dt \ dt         //                                   

                               / d         \    
       + F[s, r, r] delta[r] - |--- Psii(t)| = 0
                               \ dt        /    
cd := (diff(betaa(t), t))*m*v+F[s, r, l]+F[s, r, r]+F[s, f, l]+F[s, f, r]-(diff(Psii(t), t)) = 0;
   / d          \                                           
   |--- betaa(t)| m v + F[s, r, l] + F[s, r, r] + F[s, f, l]
   \ dt         /                                           

                     / d         \    
      + F[s, f, r] - |--- Psii(t)| = 0
                     \ dt        /    
F[s, f, l] := c[fl]*alpha[fl];
                        c[fl] alpha[fl]
F[s, f, r] := c[fr]*alpha[fr];
                        c[fr] alpha[fr]
F[s, r, l] := c[rl]*alpha[rl];
                        c[rl] alpha[rl]
F[s, r, r] := c[rr]*alpha[rr];
                        c[rr] alpha[rr]
alpha[fl] := (-v*betaa-l[f]*(diff(Psii(t), t)))/(-v+(1/2)*b[f]*(diff(Psii(t), t)));
                                 / d         \
                 -v betaa - l[f] |--- Psii(t)|
                                 \ dt        /
                 -----------------------------
                        1      / d         \  
                   -v + - b[f] |--- Psii(t)|  
                        2      \ dt        /  
alpha[fr] := (-v*betaa-l[f]*(diff(Psii(t), t)))/(v-(1/2)*b[f]*(diff(Psii(t), t)));
                                 / d         \
                 -v betaa - l[f] |--- Psii(t)|
                                 \ dt        /
                 -----------------------------
                       1      / d         \   
                   v - - b[f] |--- Psii(t)|   
                       2      \ dt        /   
alpha[rl] := delta[l]+(-v*betaa+l[r]*(diff(Psii(t), t)))/(-v+(1/2)*b[r]*(diff(Psii(t), t)));
                                       / d         \
                       -v betaa + l[r] |--- Psii(t)|
                                       \ dt        /
            delta[l] + -----------------------------
                              1      / d         \  
                         -v + - b[r] |--- Psii(t)|  
                              2      \ dt        /  
alpha[rr] := delta[r]+(-v*betaa+l[r]*(diff(Psii(t), t)))/(-v-(1/2)*b[r]*(diff(Psii(t), t)));
                                       / d         \
                       -v betaa + l[r] |--- Psii(t)|
                                       \ dt        /
            delta[r] + -----------------------------
                              1      / d         \  
                         -v - - b[r] |--- Psii(t)|  
                              2      \ dt        /  


ab;
                             /
                             |
/ d  / d         \\          |
|--- |--- Psii(t)|| J - l[f] |
\ dt \ dt        //          |
                             |
                             \

        /                / d         \\
  c[fl] |-v betaa - l[f] |--- Psii(t)||
        \                \ dt        //
  -------------------------------------
             1      / d         \      
        -v + - b[f] |--- Psii(t)|      
             2      \ dt        /      

           /                / d         \\\        /      /      
     c[fr] |-v betaa - l[f] |--- Psii(t)|||        |      |      
           \                \ dt        //|        |      |      
   + -------------------------------------| + l[r] |c[rl] |delta[
               1      / d         \       |        |      |      
           v - - b[f] |--- Psii(t)|       |        |      |      
               2      \ dt        /       /        \      \      

                       / d         \\
       -v betaa + l[r] |--- Psii(t)||
                       \ dt        /|
  l] + -----------------------------|
              1      / d         \  |
         -v + - b[r] |--- Psii(t)|  |
              2      \ dt        /  /

           /                           / d         \\\          /
           |           -v betaa + l[r] |--- Psii(t)|||          |
           |                           \ dt        /||   1      |
   + c[rr] |delta[r] + -----------------------------|| - - b[r] |
           |                  1      / d         \  ||   2      |
           |             -v - - b[r] |--- Psii(t)|  ||          |
           \                  2      \ dt        /  //          \
       /                           / d         \\         
       |           -v betaa + l[r] |--- Psii(t)||         
       |                           \ dt        /|         
-c[rl] |delta[l] + -----------------------------| delta[l]
       |                  1      / d         \  |         
       |             -v + - b[r] |--- Psii(t)|  |         
       \                  2      \ dt        /  /         

           /                           / d         \\         \   
           |           -v betaa + l[r] |--- Psii(t)||         |   
           |                           \ dt        /|         |   
   + c[rr] |delta[r] + -----------------------------| delta[r]| = 
           |                  1      / d         \  |         |   
           |             -v - - b[r] |--- Psii(t)|  |         |   
           \                  2      \ dt        /  /         /   

  0
bc;
 / d  / d          \\             
 |--- |--- betaa(t)|| m v betaa(t)
 \ dt \ dt         //             

            /                           / d         \\         
            |           -v betaa + l[r] |--- Psii(t)||         
            |                           \ dt        /|         
    + c[rl] |delta[l] + -----------------------------| delta[l]
            |                  1      / d         \  |         
            |             -v + - b[r] |--- Psii(t)|  |         
            \                  2      \ dt        /  /         

            /                           / d         \\         
            |           -v betaa + l[r] |--- Psii(t)||         
            |                           \ dt        /|         
    + c[rr] |delta[r] + -----------------------------| delta[r]
            |                  1      / d         \  |         
            |             -v - - b[r] |--- Psii(t)|  |         
            \                  2      \ dt        /  /         

      / d         \    
    - |--- Psii(t)| = 0
      \ dt        /    
cd;
 / d          \    
 |--- betaa(t)| m v
 \ dt         /    

            /                           / d         \\
            |           -v betaa + l[r] |--- Psii(t)||
            |                           \ dt        /|
    + c[rl] |delta[l] + -----------------------------|
            |                  1      / d         \  |
            |             -v + - b[r] |--- Psii(t)|  |
            \                  2      \ dt        /  /

            /                           / d         \\
            |           -v betaa + l[r] |--- Psii(t)||
            |                           \ dt        /|
    + c[rr] |delta[r] + -----------------------------|
            |                  1      / d         \  |
            |             -v - - b[r] |--- Psii(t)|  |
            \                  2      \ dt        /  /

            /                / d         \\
      c[fl] |-v betaa - l[f] |--- Psii(t)||
            \                \ dt        //
    + -------------------------------------
                 1      / d         \      
            -v + - b[f] |--- Psii(t)|      
                 2      \ dt        /      

            /                / d         \\                    
      c[fr] |-v betaa - l[f] |--- Psii(t)||                    
            \                \ dt        //   / d         \    
    + ------------------------------------- - |--- Psii(t)| = 0
                1      / d         \          \ dt        /    
            v - - b[f] |--- Psii(t)|                           
                2      \ dt        /                           
 

 

 

 

I'm trying to solve the couple of ode

and 

with boundary conditions 

using differential transformation method.Isolved the equations and found the parameter values,further i coudn't plot the graph.

Can any one help me out to solve this

Hi !
I have several infinite sommations to evaluate. Maple 2018 on Windows 10 often gives me the solution in terms of hypergeometric functions. I know that the solution can be expressed in terms of sines and cosines.
I am not familiar with sumtools or Sumtools packages.
The convert (expr, StandardFunctions) or simplify (expr, hypergeom) commands do not work.
 
Here is an example of a sommation to evaluate.
 
My old version of Maple V release V (1997 version)  gives me the desired result with the same commands.
 

Is there a command that forces Maple to give me the solution in terms of sines and cosines ?
 
I don't have Mathematica. I hate Mathematica with its difficult syntax but I have access to a computer with Mathematica.
There is a "FunctionExpand" command which converts hypergeometrics into standard functions.
For the previous summation it works very well.
 
Thanks !
Réjean

Use Maple to calculate 245 to the power of 272 (ie 245^272).

Enter the last three digits of this number in the box below.

I have written a bit of code which solves a linear system for some quantities which have been Laplace and then Fourier transformed.  

e1 := -2*D*i*k*pi + A*s = 0

e2 := 2*A*i*k*pi + 2*C*i*k*pi + B*s = a

e3 := s*C + 4/5*P*w3*(2*pi*i*k*D - 2*1/3*pi*i*k*D)/w2 = -2*(C + 2*K*(2*pi*i*k*B - 2*1/3*pi*i*k*B))/(w2*K)

e4 := s*D + 2*5/4*P*t4*pi*i*k*C/(t2*K) = -5/(2*P)*D/(t2*K)

sys := {s*C + 4/5*P*w3*(2*pi*i*k*D - 2*1/3*pi*i*k*D)/w2 = -2*(C + 2*K*(2*pi*i*k*B - 2*1/3*pi*i*k*B))/(w2*K), s*D + 2*5/4*P*t4*pi*i*k*C/(t2*K) = -5/(2*P)*D/(t2*K), -2*D*i*k*pi + A*s = 0, 2*A*i*k*pi + 2*C*i*k*pi + B*s = a}

solve(sys, [A, B, C, D])

Linear_System.mw

I get at the end some fractions where everything in the fractions is a constant with some physical meaning except for k which is the only frequency as I am working in one dimension so just need one-dimensional Fourier and Laplace transforms.  s is the corresponding variable from the Laplace transform. 

I was wondering if Maple had some functionality which would enable me to inverse Laplace and then inverse Fourier transform these quantities A, B, C and D from the linear system such that I obtain an algebraic expression at the end and not a numerical result.

Hi all,

I have the attached code, it returns a "unable to parse" error after the line with the "FOC__1D1" assignment. I can't find out why.

 

Thank you for your help in advance,

JTamas

1_2_test.mw

I'm am pretty new to maple, coming from a mathcad background, so sorry in advance if this is a dumb question.  My original need was to plot text objects with sold backgrounds on top of other plotted objects.  I saw in other posts that Maple doesn't natively support this.  So instead I'm trying to create a composite plot of objects by plotting text objects over polygons or rectangles.  However I can't seem to make a given plotted object "cover" another plotted object.  

 

Below is a simple example.  The easy analogy is just that I want to plot these objects in “layer order”, with L1 being the top layer.  So I would like the polygon to opaquely obscure the “underlying” contour plot, and then in turn, the text object to behave as a “top-most layer” with the polygon acting as a background for the text. 

 

L1 := textplot([2, 2, "Polygon"], color = white);

L2 := polygon([[0, 0], [3, 4], [3, 1]], color = red);

L3 := contourplot(x^2 + y^2, x = 1 .. 2, y = 1 .. 2);

display(L3, L2, L1); 

Can anyone help get solution to a coupled pair of PDEs

Error, (in pdsolve/numeric/plot3d) unable to compute solution for t>HFloat(0.0):
Newton iteration is not converging..

I attach file: SemiclassicalTestfile.mw

Melvin

 

 


 

First 468 469 470 471 472 473 474 Last Page 470 of 2308