MaplePrimes Questions

hi, i am trying to solve a PDE f(x,z,t) with mixed boundary conditions, while Maple just gives u(x,z,t)=0 which is incorrect, so i believe somewhere must be wrong, someone has an idea?  

Governing equation: diff(u(x, z, t), t) = a*(diff(u(x, z, t), x, x))+b*(diff(u(x, z, t), z, z)),    0<x<M, 0<z<L, t>0

IC: heat source is a point at (0, z0):  u(x,z,0)=c*dirac(x-0)*dirac(z-z0) , where c is a temperature at t=0.

boundarys of domain are cauchy boundaries: du(0,z,t)/dx=0;  du(M,z,t)/dx=0; du(x,0,t)/dz=0;  du(x,L,t)/dz=0

the code is: 

PDE := diff(u(x, z, t), t) = a*(diff(u(x, z, t), x, x))+b*(diff(u(x, z, t), z, z));
IBC := u(x, z, 0) = c*Dirac(x-0)*Dirac(z-z0), (D[1](u))(0, z, t) = 0, (D[1](u))(M, z, t) = 0, (D[2](u))(x, 0, t) = 0, (D[2](u))(x, L, t) = 0;

pdsolve([PDE, IBC], u(x, z, t)) assuming 0<x<M, 0<z<L

 

 

thanks in advance!! 

Hi, 

I was able to determine a cubic spline fit, F(v), to x1 and y1. Now I have vector x2 which I would like to use F(v) to calculate y2 as another Vector[row]. I am having trouble accomplishing this task. Any help is greatly appreciated. Thanks.
 

restart

 x1 := Vector[row]([0.8e-1, .28, .48, .68, .88, 1, 1.2, 1.4, 1.6, 1.8, 2, 2.2, 2.4, 2.6, 2.8, 3, 3.2, 3.4, 3.6, 3.8, 4, 4.2]);

 y1 := Vector[row]([-10.081, -10.054, -10.018, -9.982, -9.939, -9.911, -9.861, -9.8, -9.734, -9.659, -9.601, -9.509, -9.4, -9.293, -9.183, -9.057, -8.931, -8.806, -8.676, -8.542, -8.405, -8.265]);

 

m := ArrayTools[Dimensions](x1);

maxx := rhs(m[1]);

 

F := proc (v) options operator, arrow; CurveFitting:-Spline(x1, y1, v, degree = 3) end proc;

 

x2 := Vector[row]([seq(log10(2*10^x1[k]), k = 1 .. maxx)])

 

y2:=?

 

Pts1 := plot(x1, y1, style = point, symbol = diamond, gridlines = true, color = red);

plt_sp := plot(F(v), v = x1[1] .. x1[maxx], color = blue);

plots:-display(Pts1, plt_sp)``

"# How to calculate Vector y2 using spline fit F with x2"? "    x1:=Vector[row]([0.08,0.28,0.48,0.68,0.88,1,1.2,1.4,1.6,1.8,2,2.2,2.4,2.6,2.8,3,3.2,3.4,3.6,3.8,4,4.2]):    y1:=Vector[row]([-10.081,-10.054,-10.018,-9.982,-9.939,-9.911,-9.861,-9.8,-9.734,-9.659,-9.601,-9.509,-9.4,-9.293,-9.183,-9.057,-8.931,-8.806,-8.676,-8.542,-8.405,-8.265]):    m:=ArrayTools[Dimensions](x1):  maxx:=rhs(m[1]):      F:=v->CurveFitting:-Spline(x1,y1, v,degree=3):    x2:=Vector[row]([seq(log10(2*10^(x1[k])),k=1..maxx)]):                   #` PLOT RESULTS`   Pts1:=plot(x1,y1,style=point,symbol = diamond, gridlines=true, color = red):       plt_sp:=plot(F(v),v=x1[1]..x1[maxx],color = blue):     plots:-display(Pts1,plt_sp);     "

 

``

``


 

Download splfit.mw

I have a similar matrix.

Build through matrixplot, not exactly what I need to get. I need a way to plot without zero values on the graph.
 

how to compute example 1 of linear schrodinger equation?

[Edit: uploaded .pdf file of M.M. Mousa and S.F. Ragab, Z. Naturforsch. 63a, 140 – 144 (2008) removed for copyright reasons]

I am trying to get the function of the curve in this picture. But, I don't know how to start. How can I get function of the graph in this picture?
I guess f(x) = (x + 1) (x - 1) (x - 3), if -1 <= x <=3.5 and f(x) = -(x + 1) (x + 2.5), if -2.5 <=x <=-1.

In Maple 2018, I was playing around with some sums of infinite series, and I came across a result that made me wonder if Maple was perhaps using some other definition or understanding of the sum of a series in its calculation. Take a look at the screenshot linked below:

https://ibb.co/hMdkQHn

That first series is most certainly divergent since the limit as n approaches infinity of n^2/(n+1) is not equal to 0. And just to confirm my own sanity, I even checked some of the partial sums of the series, which sure enough are diverging. And yet for the infinite sum, Maple is giving this finite result.

I even checked a more familiar alternating series, the alternating harmonic series, which Maple does correctly calculate to be ln(2).

What am I missing here? Is Maple using a different definition for the sum of the series than the limit of the partial sums as n approaches infinity? Or is there a mistake with how I've written something that I'm not noticing?

Dear Users,

I am solving a large system of linear equation with the Hybrid solver. Up to 2400 equations, I get a solution, but if I change the number of equations to 3000, I don't get any solution in fact solution entry reads Float(undefined). All the entries in matrix and vector are floating point decimal with 32 digits of accuracy. Any idea how to overcome this?

 

thanks.

 

i attach my file

maple_pita_he.mw

Suppose I have

solution:=fsolve(f(x,y)=0,x,y)

this returns 

x=<result>, y=<result>

I want to continue the computation in my worksheet by assigning values to x and y without copying the numerical values by hand.

x:=<result>

y:=<result>

Then I want to make more computations with x and y.

It is too time consuming to copy the numbers by hand each time I run the worksheet

Larry

 

 

And y

the principle is so easy as the method for demonstration of area of a disk by dissecting it to tiny sectors ...

and i just reversed the topic and i formed a shape by rearranging the tiny triangles that made the area of point and straight line as you can see in graph or interactively download the maple 18 worksheet that i attached ...

 

BUT my problem is that i can't yet underastand what is the formula or equation of this curve ?

the only obvious prperties of the curve is its ARC LENGTH that must be the half of straight line !
SO I NEED THE HELP OF PROFESSIONALs ?

also the programming and impelmenting of this subject in maple language was so hard for me !!!

I hope mapleprimes employee or developers offer more efficent and intelgent algorithm for using Maple in such cases ...

unknown_curve_by_shekofte.mw
 

ALGORITHM

hlf := proc (x, y, z, i) options operator, arrow; geometry[point](ds1, [x[1], x[2]]), geometry[point](ds2, [y[1], y[2]]), geometry[point](ds3, [z[1], z[2]]), geometry[dsegment](tt1, [ds2, ds3]), geometry[translation](dss, ds3, tt1), geometry[PerpenBisector](pb, ds3, ds1), geometry[reflection](ds4, dss, pb), assign(('crv[i, 1]', 'crv[i, 2]') = (geometry[HorizontalCoord](ds4), geometry[VerticalCoord](ds4))) end proc

proc (x, y, z, i) options operator, arrow; geometry[point](ds1, [x[1], x[2]]), geometry[point](ds2, [y[1], y[2]]), geometry[point](ds3, [z[1], z[2]]), geometry[dsegment](tt1, [ds2, ds3]), geometry[translation](dss, ds3, tt1), geometry[PerpenBisector](pb, ds3, ds1), geometry[reflection](ds4, dss, pb), assign(('crv[i, 1]', 'crv[i, 2]') = (geometry[HorizontalCoord](ds4), geometry[VerticalCoord](ds4))) end proc

(1)

MATRIX WITH DESIRE SIZE AND THREE INITIAL VALUES

crv := Matrix(400, 2, {(2, 1) = HFloat(1.0), (2, 2) = HFloat(0.0), (3, 1) = HFloat(1.0), (3, 2) = HFloat(0.1)}, datatype = float[8], storage = rectangular, order = Fortran_order, shape = [])

crv := Matrix(400, 2, {(1, 1) = .0, (1, 2) = .0, (2, 1) = 1.0, (2, 2) = .0, (3, 1) = 1.0, (3, 2) = .1, (4, 1) = -0.1980198019801982e-1, (4, 2) = 0.9801980198019805e-1, (5, 1) = 1.0194211728865195, (5, 2) = .19809596344249814, (6, 1) = -0.57585751517988726e-1, (6, 2) = .19060698589266134, (7, 1) = 1.0559137411806545, (7, 2) = .2911996285652951, (8, 1) = -.1101731426397452, (8, 2) = .2756632396016475, (9, 1) = 1.1062163692195215, (9, 2) = .37762674012401487, (10, 1) = -.17416214658765472, (10, 2) = .3525098880240373, (11, 1) = 1.1671423424235312, (11, 2) = .4569238131415244, (12, 1) = -.2466255700808896, (12, 2) = .4214232557812443, (13, 1) = 1.2360557101807381, (13, 2) = .5293872366347594, (14, 1) = -.3253094338429394, (14, 2) = .48313913366915184, (15, 1) = 1.3109487458308529, (15, 2) = .595652108256989, (16, 1) = -.408567746414083, (16, 2) = .5385291452940439, (17, 1) = 1.3903473987423378, (17, 2) = .656445643405403, (18, 1) = -.495222799209344, (18, 2) = .5884380806167939, (19, 1) = 1.4731818019427334, (19, 2) = .7124676180799383, (20, 1) = -.5844340423821378, (20, 2) = .6336194273382524, (21, 1) = 1.558673790835259, (21, 2) = .7643436225058795, (22, 1) = -.6755973629522178, (22, 2) = .6747199015768401, (23, 1) = 1.6462521625681776, (23, 2) = .8126139944187906, (24, 1) = -.768273483034192, (24, 2) = .7122850019567344, (25, 1) = 1.7354923582507662, (25, 2) = .8577381284773329, (26, 1) = -.8621385794010603, (26, 2) = .7467718644414333, (27, 1) = 1.8260744290544424, (27, 2) = .9001042523136931, (28, 1) = -.9569505091805229, (28, 2) = .7785633408383272, (29, 1) = 1.9177538611154679, (29, 2) = .9400402227785242, (30, 1) = -1.0525256440627835, (30, 2) = .8079809136858231, (31, 1) = 2.0103412288236853, (31, 2) = .97782354371334, (32, 1) = -1.1487228445027227, (32, 2) = .8352957196986452, (33, 1) = 2.103687872783331, (33, 2) = 1.0136900191670435, (34, 1) = -1.2454322462280305, (34, 2) = .860737646078795, (35, 1) = 2.197675702033759, (35, 2) = 1.0478409774668087, (36, 1) = -1.3425673140215706, (36, 2) = .8845027171862903, (37, 1) = 2.2922098421158257, (37, 2) = 1.0804492027933132, (38, 1) = -1.4400591369052527, (38, 2) = .906759052707141, (39, 1) = 2.387213267433803, (39, 2) = 1.1116637695506997, (40, 1) = -1.5378522792667093, (40, 2) = .9276516664036538, (41, 1) = 2.4826228333296245, (41, 2) = 1.1416139738166264, (42, 1) = -1.635901725574782, (42, 2) = .9473063370618, (43, 1) = 2.578386307440582, (43, 2) = 1.1704125332632354, (44, 1) = -1.734170603348866, (44, 2) = .9658327414895891, (45, 1) = 2.6744601230711718, (45, 2) = 1.198158198693699, (46, 1) = -1.8326284667701598, (46, 2) = .9833270014200253, (47, 1) = 2.770807660389581, (47, 2) = 1.2249378934768282, (48, 1) = -1.9312499889549857, (48, 2) = .9998737643042781, (49, 1) = 2.867397917870683, (49, 2) = 1.2508284739982083, (50, 1) = -2.030013955484974, (50, 2) = 1.0155479122958924, (51, 1) = 2.9642044754014845, (51, 2) = 1.2758981851859215, (52, 1) = -2.1289024824111373, (52, 2) = 1.0304159734463314, (53, 1) = 3.061204677621959, (53, 2) = 1.3002078698648063, (54, 1) = -2.227900403227824, (54, 2) = 1.0445372932845332, (55, 1) = 3.158378985196276, (55, 2) = 1.3238119785633315, (56, 1) = -2.3269947842657284, (56, 2) = 1.0579650126260454, (57, 1) = 3.2557104553194773, (57, 2) = 1.3467594168442423, (58, 1) = -2.4261745385759257, (58, 2) = 1.0707468878784756, (59, 1) = 3.3531843225532487, (59, 2) = 1.3690942597246591, (60, 1) = -2.525430116002866, (60, 2) = 1.0829259826578275, (61, 1) = 3.450787658195739, (61, 2) = 1.390856356853824, (62, 1) = -2.624753252674097, (62, 2) = 1.0945412537174226, (63, 1) = 3.548509091606773, (63, 2) = 1.4120818474745995, (64, 1) = -2.7241367671830483, (64, 2) = 1.1056280496409003, (65, 1) = 3.64633858077174, (65, 2) = 1.43280360053078, (66, 1) = -2.823574393732581, (66, 2) = 1.1162185371743174, (67, 1) = 3.7442672222719096, (67, 2) = 1.4530515923801233, (68, 1) = -2.923060644736592, (68, 2) = 1.1263420672486881, (69, 1) = 3.8422870930015427, (69, 2) = 1.4728532322653893, (70, 1) = -3.0225906970527, (70, 2) = 1.136025490504571, (71, 1) = 3.9403911176217967, (71, 2) = 1.4922336438530825, (72, 1) = -3.1221602972884583, (72, 2) = 1.145293430345279, (73, 1) = 4.038572957003524, (73, 2) = 1.5112159096720095, (74, 1) = -3.2217656825924834, (74, 2) = 1.1541685201158893, (75, 1) = 4.1368269138837945, (75, 2) = 1.5298212840936567, (76, 1) = -3.3214035140867813, (76, 2) = 1.1626716098551355, (77, 1) = 4.235147852715831, (77, 2) = 1.548069379533639, (78, 1) = -3.421070820673153, (78, 2) = 1.1708219471376027, (79, 1) = 4.333531131281794, (79, 2) = 1.5659783297712109, (80, 1) = -3.520764951395804, (80, 2) = 1.1786373357686766, (81, 1) = 4.431972542101462, (81, 2) = 1.5835649336455564, (82, 1) = -3.620483534894472, (82, 2) = 1.186134275478924, (83, 1) = 4.530468262036541, (83, 2) = 1.600844781864521, (84, 1) = -3.720224444760148, (84, 2) = 1.1933280852600467, (85, 1) = 4.629014808782039, (85, 2) = 1.617832369231097, (86, 1) = -3.8199857698257804, (86, 2) = 1.2002330125695062, (87, 1) = 4.7276090031694675, (87, 2) = 1.6345411942374746, (88, 1) = -3.919765788600015, (88, 2) = 1.206862330288027, (89, 1) = 4.826247936394211, (89, 2) = 1.6509838476816228, (90, 1) = -4.0195629471928465, (90, 2) = 1.213228423029804, (91, 1) = 4.924928941431071, (91, 2) = 1.6671720917159443, (92, 1) = -4.119375840195512, (92, 2) = 1.2193428641684605, (93, 1) = 5.0236495680250846, (93, 2) = 1.6831169305324716, (94, 1) = -4.219203194068761, (94, 2) = 1.2252164847439373, (95, 1) = 5.122407560745161, (95, 2) = 1.698828673717137, (96, 1) = -4.3190438526683055, (96, 2) = 1.230859435249552, (97, 1) = 5.221200839670427, (97, 2) = 1.714316993160968, (98, 1) = -4.418896764597212, (98, 2) = 1.2362812411587893, (99, 1) = 5.320027483346861, (99, 2) = 1.7295909742939517, (100, 1) = -4.518760972125019, (100, 2) = 1.2414908529334576, (101, 1) = 5.418885713707807, (101, 2) = 1.7446591623038485, (102, 1) = -4.6186356014544945, (102, 2) = 1.2464966911549156, (103, 1) = 5.517773882698374, (103, 2) = 1.7595296039143944, (104, 1) = -4.7185198541510305, (104, 2) = 1.251306687335172, (105, 1) = 5.616690460382383, (105, 2) = 1.7742098852224268, (106, 1) = -4.818412999577848, (106, 2) = 1.2559283208922685, (107, 1) = 5.715634024342858, (107, 2) = 1.7887071660294933, (108, 1) = -4.918314368203739, (108, 2) = 1.2603686527124744, (109, 1) = 5.814603250214132, (109, 2) = 1.8030282110486413, (110, 1) = -5.018223345669672, (110, 2) = 1.2646343556687651, (111, 1) = 5.913596903206451, (111, 2) = 1.8171794183199657, (112, 1) = -5.118139367517097, (112, 2) = 1.2687317424194353, (113, 1) = 6.012613830503219, (113, 2) = 1.831166845127858, (114, 1) = -5.21806191449458, (114, 2) = 1.2726667907713844, (115, 1) = 6.111652954427307, (115, 2) = 1.8449962316778337, (116, 1) = -5.317990508371122, (116, 2) = 1.2764451668586307, (117, 1) = 6.2107132662867155, (117, 2) = 1.8586730227604047, (118, 1) = -5.41792470819436, (118, 2) = 1.2800722463571568, (119, 1) = 6.309793820821663, (119, 2) = 1.8722023876030995, (120, 1) = -5.517864106940267, (120, 2) = 1.2835531339316275, (121, 1) = 6.408893731185266, (121, 2) = 1.885589238088756, (122, 1) = -5.617808328508073, (122, 2) = 1.2868926810872656, (123, 1) = 6.508012164398588, (123, 2) = 1.898838245498212, (124, 1) = -5.717757025020236, (124, 2) = 1.290095502580743, (125, 1) = 6.607148337228266, (125, 2) = 1.9119538559180023, (126, 1) = -5.817709874392481, (126, 2) = 1.293165991526965, (127, 1) = 6.706301512441308, (127, 2) = 1.9249403044383377, (128, 1) = -5.917666578143407, (128, 2) = 1.2961083333237493, (129, 1) = 6.8054709953971475, (129, 2) = 1.9378016282532036, (130, 1) = -6.0176268594169855, (130, 2) = 1.2989265185033287, (131, 1) = 6.904656130941838, (131, 2) = 1.9505416787625545, (132, 1) = -6.117590461194588, (132, 2) = 1.3016243546081112, (133, 1) = 7.003856300573377, (133, 2) = 1.9631641327661697, (134, 1) = -6.21755714467603, (134, 2) = 1.3042054771780078, (135, 1) = 7.103070919850769, (135, 2) = 1.9756725028295183, (136, 1) = -6.317526687811594, (136, 2) = 1.306673359927663, (137, 1) = 7.202299436022552, (137, 2) = 1.9880701468938442, (138, 1) = -6.417498883969152, (138, 2) = 1.3090313241840286, (139, 1) = 7.301541325853255, (139, 2) = 2.0003602771954387, (140, 1) = -6.5174735407223325, (140, 2) = 1.3112825476476813, (141, 1) = 7.400796093628638, (141, 2) = 2.012545968552697, (142, 1) = -6.617450478747347, (142, 2) = 1.313430072535057, (143, 1) = 7.50006326932267, (143, 2) = 2.024630166073826, (144, 1) = -6.717429530817475, (144, 2) = 1.3154768131532322, (145, 1) = 7.5993424069110365, (145, 2) = 2.0366156923330117, (146, 1) = -6.817410540885456, (146, 2) = 1.3174255629539324, (147, 1) = 7.698633082817586, (147, 2) = 2.0485052540583215, (148, 1) = -6.917393363245122, (148, 2) = 1.3192790011090527, (149, 1) = 7.797934894481557, (149, 2) = 2.0603014483705757, (150, 1) = -7.0173778617645555, (150, 2) = 1.321039698646012, (151, 1) = 7.8972474590346895, (151, 2) = 2.0720067686087926, (152, 1) = -7.117363909183894, (152, 2) = 1.3227101241777621, (153, 1) = 7.996570412078425, (153, 2) = 2.0836236097745826, (154, 1) = -7.217351386471633, (154, 2) = 1.3242926492590916, (155, 1) = 8.095903406552413, (155, 2) = 2.095154273624947, (156, 1) = -7.31734018223395, (156, 2) = 1.3257895533980282, (157, 1) = 8.19524611168639, (157, 2) = 2.106600973440315, (158, 1) = -7.417330192172108, (158, 2) = 1.3272030287486039, (159, 1) = 8.294598212028305, (159, 2) = 2.1179658384923075, (160, 1) = -7.517321318583555, (160, 2) = 1.3285351845089273, (161, 1) = 8.393959406542223, (161, 2) = 2.1292509182335895, (162, 1) = -7.61731346990274, (162, 2) = 1.3297880510464566, (163, 1) = 8.493329407770212, (163, 2) = 2.140458186230258, (164, 1) = -7.7173065602780975, (164, 2) = 1.330963583770492, (165, 1) = 8.592707941052902, (165, 2) = 2.151589543855484, (166, 1) = -7.817300509181985, (166, 2) = 1.3320636667702082, (167, 1) = 8.692094743803963, (167, 2) = 2.1626468237615546, (168, 1) = -7.917295241050697, (168, 2) = 1.3330901162350286, (169, 1) = 8.79148956483414, (169, 2) = 2.17363179314606, (170, 1) = -8.017290684951938, (170, 2) = 1.3340446836727593, (171, 1) = 8.890892163720926, (171, 2) = 2.1845461568266593, (172, 1) = -8.117286774277405, (172, 2) = 1.3349290589396254, (173, 1) = 8.990302310220263, (173, 2) = 2.1953915601377187, (174, 1) = -8.217283446458348, (174, 2) = 1.3357448730952464, (175, 1) = 9.089719783717038, (175, 2) = 2.2061695916610335, (176, 1) = -8.317280642702178, (176, 2) = 1.3364937010945086, (177, 1) = 9.189144372711352, (177, 2) = 2.2168817858018923, (178, 1) = -8.417278307748376, (178, 2) = 1.3371770643273901, (179, 1) = 9.288575874337885, (179, 2) = 2.2275296252208676, (180, 1) = -8.51727638964211, (180, 2) = 1.3377964330169019, (181, 1) = 9.38801409391586, (181, 2) = 2.238114543130887, (182, 1) = -8.617274839524129, (182, 2) = 1.3383532284845332, (183, 1) = 9.487458844527328, (183, 2) = 2.248637925468447, (184, 1) = -8.717273611435608, (184, 2) = 1.338848825291885, (185, 1) = 9.586909946621702, (185, 2) = 2.259101112947129, (186, 1) = -8.81727266213676, (186, 2) = 1.3392845532665083, (187, 1) = 9.686367227644634, (187, 2) = 2.2695054030009856, (188, 1) = -8.917271950938124, (188, 2) = 1.3396616994193669, (189, 1) = 9.785830521689496, (189, 2) = 2.279852051624801, (190, 1) = -9.01727143954354, (190, 2) = 1.3399815097608, (191, 1) = 9.885299669169834, (191, 2) = 2.290142275117709, (192, 1) = -9.117271091903897, (192, 2) = 1.3402451910213613, (193, 1) = 9.984774516511353, (193, 2) = 2.3003772517361876, (194, 1) = -9.21727087408083, (194, 2) = 1.3404539122834236, (195, 1) = 10.084254915862049, (195, 2) = 2.3105581232620165, (196, 1) = -9.317270754119619, (196, 2) = 1.340608806529065, (197, 1) = 10.183740724819254, (197, 2) = 2.3206859964903903, (198, 1) = -9.417270701930574, (198, 2) = 1.3407109721093091, (199, 1) = 10.283231806172436, (199, 2) = 2.330761944643004, (200, 1) = -9.517270689178297, (200, 2) = 1.3407614741394762, (201, 1) = 10.382728027660692, (201, 2) = 2.340787008710608, (202, 1) = -9.617270689178213, (202, 2) = 1.3407613458250416, (203, 1) = 10.482229261743957, (203, 2) = 2.3507621987291967, (204, 1) = -9.717270676799862, (204, 2) = 1.3407115897221153, (205, 1) = 10.581735385387018, (205, 2) = 2.360688494993737, (206, 1) = -9.817270628376434, (206, 2) = 1.340613178936369, (207, 1) = 10.6812462798555, (207, 2) = 2.3705668492130583, (208, 1) = -9.917270521620122, (208, 2) = 1.3404670582639766, (209, 1) = 10.78076183052304, (209, 2) = 2.3803981856092897, (210, 1) = -10.017270335542845, (210, 2) = 1.340274145277895, (211, 1) = 10.880281926688948, (211, 2) = 2.3901834019650092, (212, 1) = -10.117270050382006, (212, 2) = 1.3400353313626012, (213, 1) = 10.979806461405664, (213, 2) = 2.39992337062105, (214, 1) = -10.217269647530875, (214, 2) = 1.3397514827001804, (215, 1) = 11.079335331315425, (215, 2) = 2.4096189394277356, (216, 1) = -10.31726910947333, (216, 2) = 1.339423441210489, (217, 1) = 11.17886843649554, (217, 2) = 2.4192709326521147, (218, 1) = -10.417268419722603, (218, 2) = 1.3390520254479306, (219, 1) = 11.278405680311755, (219, 2) = 2.4288801518436194, (220, 1) = -10.517267562763804, (220, 2) = 1.3386380314572164, (221, 1) = 11.377946969279217, (221, 2) = 2.4384473766604065, (222, 1) = -10.617266523999925, (222, 2) = 1.3381822335903517, (223, 1) = 11.477492212930567, (223, 2) = 2.4479733656585063, (224, 1) = -10.717265289701118, (224, 2) = 1.3376853852869233, (225, 1) = 11.577041323690738, (225, 2) = 2.4574588570457663, (226, 1) = -10.817263846957006, (226, 2) = 1.3371482198196523, (227, 1) = 11.676594216758058, (227, 2) = 2.466904569402453, (228, 1) = -10.91726218363185, (228, 2) = 1.3365714510070488, (229, 1) = 11.776150809991291, (229, 2) = 2.4763112023702676, (230, 1) = -11.01726028832235, (230, 2) = 1.3359557738948915, (231, 1) = 11.87571102380226, (231, 2) = 2.485679437311423, (232, 1) = -11.11725815031794, (232, 2) = 1.3353018654081579, (233, 1) = 11.975274781053738, (233, 2) = 2.495009937939321, (234, 1) = -11.217255759563406, (234, 2) = 1.334610384974921, (235, 1) = 12.074842006962298, (235, 2) = 2.5043033509222887, (236, 1) = -11.31725310662365, (236, 2) = 1.3338819751236488, (237, 1) = 12.174412629005845, (237, 2) = 2.513560306461744, (238, 1) = -11.417250182650509, (238, 2) = 1.3331172620552616, (239, 1) = 12.273986576835556, (239, 2) = 2.5227814188460744, (240, 1) = -11.51724697935146, (240, 2) = 1.3323168561911984, (241, 1) = 12.373563782191994, (241, 2) = 2.531967286981442, (242, 1) = -11.61724348896011, (242, 2) = 1.3314813526987077, (243, 1) = 12.473144178825155, (243, 2) = 2.5411184949006618, (244, 1) = -11.717239704208351, (244, 2) = 1.3306113319944717, (245, 1) = 12.57272770241824, (245, 2) = 2.550235612251222, (246, 1) = -11.817235618300094, (246, 2) = 1.329707360227638, (247, 1) = 12.672314290514938, (247, 2) = 2.559319194763473, (248, 1) = -11.91723122488645, (248, 2) = 1.328769989743256, (249, 1) = 12.77190388245004, (249, 2) = 2.5683697846999345, (250, 1) = -12.017226518042307, (250, 2) = 1.3277997595270632, (251, 1) = 12.8714964192832, (251, 2) = 2.577387911286639, (252, 1) = -12.117221492244191, (252, 2) = 1.326797195632515, (253, 1) = 12.971091843735675, (253, 2) = 2.5863740911273467, (254, 1) = -12.217216142349347, (254, 2) = 1.3257628115909013, (255, 1) = 13.07069010012989, (255, 2) = 2.5953288286014606, (256, 1) = -12.31721046357596, (256, 2) = 1.3246971088053434, (257, 1) = 13.170291134331679, (257, 2) = 2.6042526162463906, (258, 1) = -12.417204451484448, (258, 2) = 1.3236005769294308, (259, 1) = 13.269894893695065, (259, 2) = 2.6131459351250985, (260, 1) = -12.517198101959776, (260, 2) = 1.322473694231205, (261, 1) = 13.36950132700944, (261, 2) = 2.622009255179501, (262, 1) = -12.617191411194707, (262, 2) = 1.321316927943172, (263, 1) = 13.469110384449028, (263, 2) = 2.6308430355703867, (264, 1) = -12.717184375673952, (264, 2) = 1.32013073459897, (265, 1) = 13.568722017524523, (265, 2) = 2.639647725004448, (266, 1) = -12.817176992159169, (266, 2) = 1.3189155603573148, (267, 1) = 13.668336179036778, (267, 2) = 2.648423762049022, (268, 1) = -12.917169257674749, (268, 2) = 1.3176718413137758, (269, 1) = 13.767952823032449, (269, 2) = 2.6571715754350738, (270, 1) = -13.017161169494347, (270, 2) = 1.3164000038009407, (271, 1) = 13.867571904761498, (271, 2) = 2.6658915843489646, (272, 1) = -13.11715272512813, (272, 2) = 1.3151004646774762, (273, 1) = 13.967193380636468, (273, 2) = 2.674584198713481, (274, 1) = -13.217143922310681, (274, 2) = 1.313773631606583, (275, 1) = 14.06681720819343, (275, 2) = 2.683249819458609, (276, 1) = -13.317134758989527, (276, 2) = 1.3124199033242943, (277, 1) = 14.166443346054534, (277, 2) = 2.6918888387824906, (278, 1) = -13.41712523331427, (278, 2) = 1.3110396698980673, (279, 1) = 14.266071753892078, (279, 2) = 2.7005016404029916, (280, 1) = -13.517115343626271, (280, 2) = 1.309633312976095, (281, 1) = 14.365702392394034, (281, 2) = 2.709088599800275, (282, 1) = -13.61710508844886, (282, 2) = 1.3082012060277095, (283, 1) = 14.465335223230948, (283, 2) = 2.7176500844507765, (284, 1) = -13.717094466478049, (284, 2) = 1.3067437145752803, (285, 1) = 14.56497020902416, (285, 2) = 2.726186454052925, (286, 1) = -13.817083476573716, (286, 2) = 1.305261196417956, (287, 1) = 14.664607313315273, (287, 2) = 2.734698060744982, (288, 1) = -13.917072117751228, (288, 2) = 1.3037540018475924, (289, 1) = 14.764246500536817, (289, 2) = 2.743185249315299, (290, 1) = -14.017060389173494, (290, 2) = 1.3022224738571855, (291, 1) = 14.863887735984068, (291, 2) = 2.751648357405329, (292, 1) = -14.117048290143412, (292, 2) = 1.300666948342132, (293, 1) = 14.963530985787939, (293, 2) = 2.760087715705675, (294, 1) = -14.217035820096694, (294, 2) = 1.299087754294598, (295, 1) = 15.063176216888916, (295, 2) = 2.7685036481454657, (296, 1) = -14.317022978595046, (296, 2) = 1.2974852139912891, (297, 1) = 15.16282339701199, (297, 2) = 2.776896472075339, (298, 1) = -14.417009765319689, (298, 2) = 1.2958596431748846, (299, 1) = 15.262472494642534, (299, 2) = 2.785266498444272, (300, 1) = -14.516996180065195, (300, 2) = 1.2942113512293756, (301, 1) = 15.362123479003083, (301, 2) = 2.7936140319705083, (302, 1) = -14.616982222733638, (302, 2) = 1.2925406413495817, (303, 1) = 15.461776320030989, (303, 2) = 2.8019393713068355, (304, 1) = -14.716967893329013, (304, 2) = 1.290847810705046, (305, 1) = 15.561430988356891, (305, 2) = 2.810242809200408, (306, 1) = -14.816953191951946, (306, 2) = 1.2891331505985515, (307, 1) = 15.661087455283988, (307, 2) = 2.818524632647351, (308, 1) = -14.91693811879465, (308, 2) = 1.2873969466194581, (309, 1) = 15.760745692768063, (309, 2) = 2.8267851230423413, (310, 1) = -15.016922674136131, (310, 2) = 1.2856394787920657, (311, 1) = 15.860405673398233, (311, 2) = 2.8350245563233485, (312, 1) = -15.116906858337623, (312, 2) = 1.2838610217191921, (313, 1) = 15.960067370378395, (313, 2) = 2.8432432031117494, (314, 1) = -15.216890671838248, (314, 2) = 1.2820618447211607, (315, 1) = 16.05973075750933, (315, 2) = 2.851441328847962, (316, 1) = -15.316874115150878, (316, 2) = 1.2802422119703567, (317, 1) = 16.159395809171464, (317, 2) = 2.859619193922795, (318, 1) = -15.416857188858206, (318, 2) = 1.2784023826215303, (319, 1) = 16.2590625003082, (319, 2) = 2.867777053804653, (320, 1) = -15.516839893608992, (320, 2) = 1.2765426109380082, (321, 1) = 16.35873080640988, (321, 2) = 2.8759151591627723, (322, 1) = -15.616822230114503, (322, 2) = 1.2746631464139617, (323, 1) = 16.45840070349827, (323, 2) = 2.884033755986621, (324, 1) = -15.716804199145102, (324, 2) = 1.2727642338928775, (325, 1) = 16.5580721681116, (325, 2) = 2.8921330857016065, (326, 1) = -15.816785801527022, (326, 2) = 1.2708461136823792, (327, 1) = 16.65774517729012, (327, 2) = 2.9002133852812437, (328, 1) = -15.91676703813928, (328, 2) = 1.268909021665523, (329, 1) = 16.75741970856215, (329, 2) = 2.9082748873558875, (330, 1) = -16.01674790991074, (330, 2) = 1.2669531894087096, (331, 1) = 16.85709573993059, (331, 2) = 2.9163178203181714, (332, 1) = -16.116728417817317, (332, 2) = 1.2649788442663215, (333, 1) = 16.956773249859907, (333, 2) = 2.924342408425271, (334, 1) = -16.2167085628793, (334, 2) = 1.2629862094822095, (335, 1) = 17.05645221726355, (335, 2) = 2.932348871898094, (336, 1) = -16.316688346158827, (336, 2) = 1.2609755042881479, (337, 1) = 17.156132621491775, (337, 2) = 2.9403374270175253, (338, 1) = -16.416667768757446, (338, 2) = 1.2589469439993572, (339, 1) = 17.255814442319885, (339, 2) = 2.948308286217816, (340, 1) = -16.516646831813816, (340, 2) = 1.2569007401072017, (341, 1) = 17.35549765993686, (341, 2) = 2.9562616581772185, (342, 1) = -16.61662553650151, (342, 2) = 1.2548371003691625, (343, 1) = 17.455182254934353, (343, 2) = 2.964197747905985, (344, 1) = -16.716603884026913, (344, 2) = 1.2527562288961858, (345, 1) = 17.55486820829605, (345, 2) = 2.9721167568317868, (346, 1) = -16.816581875627225, (346, 2) = 1.2506583262374833, (347, 1) = 17.654555501387364, (347, 2) = 2.9800188828826726, (348, 1) = -16.916559512568554, (348, 2) = 1.2485435894628902, (349, 1) = 17.75424411594547, (349, 2) = 2.987904320567638, (350, 1) = -17.01653679614409, (350, 2) = 1.2464122122428551, (351, 1) = 17.85393403406965, (351, 2) = 2.99577326105489, (352, 1) = -17.116513727672398, (352, 2) = 1.244264384926145, (353, 1) = 17.953625238211966, (353, 2) = 3.003625892247887, (354, 1) = -17.216490308495736, (354, 2) = 1.2421002946153439, (355, 1) = 18.053317711168198, (355, 2) = 3.011462398859227, (356, 1) = -17.316466539978496, (356, 2) = 1.2399201252402174, (357, 1) = 18.153011436069086, (357, 2) = 3.019282962482459, (358, 1) = -17.416442423505703, (358, 2) = 1.2377240576290238, (359, 1) = 18.25270639637184, (359, 2) = 3.027087761661891, (360, 1) = -17.516417960481583, (360, 2) = 1.235512269577829, (361, 1) = 18.352402575851915, (361, 2) = 3.0348769719604447, (362, 1) = -17.61639315232819, (362, 2) = 1.233284935917888, (363, 1) = 18.452099958595046, (363, 2) = 3.0426507660256434, (364, 1) = -17.716368000484113, (364, 2) = 1.2310422285811824, (365, 1) = 18.55179852898951, (365, 2) = 3.0504093136537844, (366, 1) = -17.816342506403238, (366, 2) = 1.2287843166641488, (367, 1) = 18.651498271718648, (367, 2) = 3.0581527818523537, (368, 1) = -17.916316671553552, (368, 2) = 1.2265113664896643, (369, 1) = 18.751199171753584, (369, 2) = 3.0658813349007423, (370, 1) = -18.016290497416026, (370, 2) = 1.2242235416673544, (371, 1) = 18.850901214346198, (371, 2) = 3.073595134409324, (372, 1) = -18.11626398548354, (372, 2) = 1.2219210031522638, (373, 1) = 18.950604385022288, (373, 2) = 3.0812943393769356, (374, 1) = -18.216237137259842, (374, 2) = 1.219603909301958, (375, 1) = 19.05030866957493, (375, 2) = 3.088979106246827, (376, 1) = -18.316209954258593, (376, 2) = 1.217272415932095, (377, 1) = 19.15001405405806, (377, 2) = 3.096649588961116, (378, 1) = -18.416182438002412, (378, 2) = 1.2149266763705149, (379, 1) = 19.249720524780226, (379, 2) = 3.1043059390138033, (380, 1) = -18.516154590022012, (380, 2) = 1.2125668415099065, (381, 1) = 19.349428068298526, (381, 2) = 3.1119483055023873, (382, 1) = -18.616126411855333, (382, 2) = 1.2101930598590847, (383, 1) = 19.449136671412727, (383, 2) = 3.119576835178133, (384, 1) = -18.716097905046748, (384, 2) = 1.2078054775929261, (385, 1) = 19.54884632115956, (385, 2) = 3.1271916724950226, (386, 1) = -18.81606907114629, (386, 2) = 1.2054042386009987, (387, 1) = 19.648557004807166, (387, 2) = 3.134792959657441, (388, 1) = -18.916039911708925, (388, 2) = 1.202989484534943, (389, 1) = 19.748268709849718, (389, 2) = 3.142380836666629, (390, 1) = -19.01601042829384, (390, 2) = 1.2005613548546221, (391, 1) = 19.847981424002167, (391, 2) = 3.1499554413659463, (392, 1) = -19.11598062246379, (392, 2) = 1.1981199868730976, (393, 1) = 19.947695135195183, (393, 2) = 3.1575169094849778, (394, 1) = -19.21595049578447, (394, 2) = 1.195665515800449, (395, 1) = 20.047409831570192, (395, 2) = 3.1650653746825133, (396, 1) = -19.315920049823895, (396, 2) = 1.1931980747864839, (397, 1) = 20.147125501474594, (397, 2) = 3.1726009685884518, (398, 1) = -19.41588928615184, (398, 2) = 1.1907177949623766, (399, 1) = 20.24684213345708, (399, 2) = 3.1801238208446416, (400, 1) = -19.515858206339296, (400, 2) = 1.18822480548125}, datatype = float[8])

(2)

ATTENTION TO INITIAL VALUES

crv[1 .. 3]

Matrix([[0., 0.], [1., 0.], [1., .100000000000000]])

(3)

CYCLE EXCEPTIONS

hlf(crv[1], crv[2], crv[3], 4);

hlf(crv[3], crv[1], crv[4], 5)

ds1, ds2, ds3, tt1, dss, pb, ds4

 

ds1, ds2, ds3, tt1, dss, pb, ds4

(4)

GENERATED DATA SAMPLES

seq(hlf(crv[i-2], crv[i-3], crv[i-1], i), i = 6 .. 400):

MERGING SECTIONS

plots[display](seq(plots[polygonplot](crv[i .. i+2], scaling = constrained, color = [blue, green][irem(i, 2)+1], axes = none), i = 3 .. 10))

 

PLOT OF CURVES

plots[pointplot](crv[1 .. 300], axes = none, symbol = point, symbolsize = 20, color = red, scaling = constrained, connect = false)

 

plots[pointplot](crv[1 .. 10], axes = none, symbol = asterisk, symbolsize = 20, color = red, scaling = constrained, connect = false)

 

plots[display](seq(plots[polygonplot]([[0, 0], [1, (1/10)*i], [1, (i+1)*(1/10)]], scaling = constrained, color = [blue, green][irem(i, 2)+1], axes = none), i = 0 .. 10))

 

``

``


 

Download unknown_curve_by_shekofte.mw

 


 

"I am trying to solve these two algebraic equations for A and B "

 

eq1 := -(64*A*B^2*k[1]+28*B^2*k[2]+112*A*k[1]+105*k[2])*A/(105*B)-(32*A^2*B^2*k[1]+28*A*B^2*k[2]+56*A^2*k[1]+105*A*k[2]+210*a)/(105*B) = 0

-(1/105)*(64*A*B^2*k[1]+28*B^2*k[2]+112*A*k[1]+105*k[2])*A/B-(1/105)*(32*A^2*B^2*k[1]+28*A*B^2*k[2]+56*A^2*k[1]+105*A*k[2]+210*a)/B = 0

(1)

eq2 := -(64*A^2*B*k[1]+56*A*B*k[2])*A/(105*B)+(32*A^2*B^2*k[1]+28*A*B^2*k[2]+56*A^2*k[1]+105*A*k[2]+210*a)*A/(105*B^2) = 0

-(1/105)*(64*A^2*B*k[1]+56*A*B*k[2])*A/B+(1/105)*(32*A^2*B^2*k[1]+28*A*B^2*k[2]+56*A^2*k[1]+105*A*k[2]+210*a)*A/B^2 = 0

(2)

solve({eq1, eq2}, {A, B})

{A = RootOf(192*k[1]^2*_Z^3+440*k[1]*k[2]*_Z^2+(480*a*k[1]+210*k[2]^2)*_Z+315*a*k[2]), B = (1/2)*RootOf(1536*k[1]^2*RootOf(192*k[1]^2*_Z^3+440*k[1]*k[2]*_Z^2+(480*a*k[1]+210*k[2]^2)*_Z+315*a*k[2])^2+2512*k[1]*k[2]*RootOf(192*k[1]^2*_Z^3+440*k[1]*k[2]*_Z^2+(480*a*k[1]+210*k[2]^2)*_Z+315*a*k[2])+21*_Z^2+3840*a*k[1]+105*k[2]^2)/k[2]}

(3)

``

How can I find A and B explicitly

 

 

``


 

Download solve_equattion.mw

hi

in every math software there is a page which we could find our results in tabels  as numerical output ..is there like this in maple?

Hello guys, I want to compute Einstein tensor components of Kerr metric, but it seems there are some problems with computing.

 

Thank you for your help.Kerr.mw

Greetings,

How se the f^(IV) ode problem using the Runge metho

 

restart; with(plots);
fcns := {f(eta), gta), t(a)};
N1k1 ;b :; nt 3; pr := 5; sc := 1;
eq1 := diff(f(eta), `$`(eta, 3))+(1/2)*f(eta)*(diff(f(eta), `$`(eta, 2)))+k1*((diff(f(eta), `$`(eta, 1)))*(diff(f(eta), `$`(eta, 3)))-(1/2)*f(eta)*(diff(f(eta), `$`(eta, 4)))+(1/2)*(diff(f(eta), `$`(eta, 2)))^2) = 0; eq2 := diff(t(eta), `$`(eta, 2))+pr*nb*if`ta, 1)))*(diff(g(et`$`(eta, 1)))+pr*nt*(diff(t(eta), `$`(eta, 1^2+(1/2)*f(eta)*(diff(t(eta), `$`(eta, 1))) = 0; eq3 := diff(g(eta), `$`(eta, 2))+nt*(diff(t(eta), `$`(eta, 2)))/nb+(1/2)*f(eta)*(diff(g(eta), `$`(eta, 1)))*sc/pr = 0;
bc := f(0) = 0, (D(f))(0) = 0, (D(f))(N) = 1, ((D@@2)(f))(N) = 0, t(0) = 1, t(N) = 0, g(0) = 1, g(N) = 0;
R := dsolve(eval({bc, eq1, eq2, eq3}), fcns, type = numeric);
Error, (in dsolve/numeric/bvp) system is singular at left endpoint, use midpoint method instead
p1u := odeplot(R, [eta, (D(f))(eta)], 0 .. N, numpoints = 100, labels = ["&eta;", "f'"], linestyle = solid, color = [blue], thickness = 1, labeldirections = [horizontal, vertical], labelfont = ['TIMES', 'BOLDOBLIQUE', 16]);
Error, (in plots/odeplot) input is not a valid dsolve/numeric solution
p1u;


bvp.mw

 

Have a good day.

simplify_question.mws
Am trying to teach myself about lines and circles and inversion.  In the code below I'd like to put textt on the circles eg c1 to identify circle c1 etc.I'm more familiar with the textplot command & plottools, but want to use the draw command.  I've tried some options with the circle statement without success.
circle(c1,x^2+(y-2*R*cos(Pi/6))^2=R^2):  # 'ctext'=c1):

Is it possible to position text in a draw statement, similar to the textplot statement (that uses plot)?  

  I was amused by an idiosincracy of Maple 7.  The last line of my code uses the simplify command, yet I have had to resort to the simplification myself - (on the previous lines).   I was surprised and curious about this.  The Help section on simplify mentions several high power simplification procedures, yet fails to simplify a simple expression.  Any comments on this?

   I'm interested in learning more about circle inversion and wondered if anyone knew of some elementary books on this.  Geometry Inversion was never taught to me at school, nor university, despite it being a topic over 1000 years old.

   Thanks for your time.  Any comments, answers, gladly appreciated.      

  

restart:
# # # # # # # # # # # # # # # # # # # # # # # # # # # #
# Test of geometry, radical axis.
# # # # # # # # # # # # # # # # # # # # # # # # # # # #
with(geometry):
with(plots):
_EnvHorizontalName := x: _EnvVerticalName := y:

R:=5:
circle(c1,x^2+(y-2*R*cos(Pi/6))^2=R^2):  # 'ctext'=c1):
circle(c2,(x-R)^2+y^2=R^2):
circle(c3,(x+R)^2+y^2=R^2):
RadicalAxis(ra12,c1,c2):
RadicalAxis(ra13,c1,c3):

printf("Colors:  c1=red c2=blue  c3=gold\n");
printf("       ra12=magenta    ra23=grey\n");
t1:=textplot([0, 1.8*R, `Circle c1`]):
draw([c1,c2, c3, ra12,ra13], axes=normal, color=[red, blue,gold, magenta,grey]);

#draw([c1,c2, c3, ra12,ra13,t1], axes=normal, color=[red, blue,gold, magenta,grey, black], printtext=true);
if AreTangent(c1,c2) then
   printf("Circles c1 and c2 are tangential, (as they all are!)\n");
end if:
testp:=Equation(ra12):
#print(whattype(testp));
printf("Equation of radical axis for c1 & c2 is %A or\n", testp);
simplify(Equation(ra12)/10);
simplify(Equation(ra12));

Warning, the name changecoords has been redefined

Colors:  c1=red c2=blue  c3=gold

       ra12=magenta    ra23=grey

Circles c1 and c2 are tangential, (as they all are!)

Equation of radical axis for c1 & c2 is 50+10*x-10*3^(1/2)*y = 0 or

5+x-sqrt(3)*y = 0

50+10*x-10*sqrt(3)*y = 0

 

 


 

Download simplify_question.mws

 

First 585 586 587 588 589 590 591 Last Page 587 of 2308