MaplePrimes Questions

Thought it would be a neat way to create identation for loops and if branches in a text editor and copy the code into Maple. But Maple inserts a new prompt at the beginning of every line.

Is there a solution in 2018?

Hi, Is there any way to set the tolerances in

LinearAlgebra[Rank]

I'm evaluating a matrix which is singular, except the singular values come back as 1 and 10^(-9).  I'd like Maple to compute this as rank 1 rather than rank 2.

Thanks

If I input 3^665 the whole number is displayed. How to display only last few digits?

When I make the input 2*pi*440 the output is pi880.

How to come to the result 2764,6 radians?

Coding_Basic_Reproduction_Number_2.mw

Anybody know how to simplify the equation?

Hi,

Some ideas to plot ( animate) tangents at corner point or cusp point?

For examples : f(x)=sqrt(abs(x-1)) , g(x)=sqrt(abs(x^2-4))

Thanks

factor_problem.mw

I want to factor the following polynomial:

Teller := 2*i1^4*i2*i3+2*i1^4*i2*i4+2*i1^4*i2*i5+2*i1^4*i3*i4+2*i1^4*i3*i5+2*i1^4*i4*i5+4*i1^3*i2^2*i3+4*i1^3*i2^2*i4+4*i1^3*i2^2*i5+4*i1^3*i2*i3^2+6*i1^3*i2*i3*i4+6*i1^3*i2*i3*i5+4*i1^3*i2*i4^2+6*i1^3*i2*i4*i5+4*i1^3*i2*i5^2+4*i1^3*i3^2*i4+4*i1^3*i3^2*i5+4*i1^3*i3*i4^2+6*i1^3*i3*i4*i5+4*i1^3*i3*i5^2+4*i1^3*i4^2*i5+4*i1^3*i4*i5^2+2*i1^2*i2^3*i3+2*i1^2*i2^3*i4+2*i1^2*i2^3*i5+4*i1^2*i2^2*i3^2+6*i1^2*i2^2*i3*i4+6*i1^2*i2^2*i3*i5+4*i1^2*i2^2*i4^2+6*i1^2*i2^2*i4*i5+4*i1^2*i2^2*i5^2+2*i1^2*i2*i3^3+6*i1^2*i2*i3^2*i4+6*i1^2*i2*i3^2*i5+6*i1^2*i2*i3*i4^2+24*i1^2*i2*i3*i4*i5+6*i1^2*i2*i3*i5^2+2*i1^2*i2*i4^3+6*i1^2*i2*i4^2*i5+6*i1^2*i2*i4*i5^2+2*i1^2*i2*i5^3+2*i1^2*i3^3*i4+2*i1^2*i3^3*i5+4*i1^2*i3^2*i4^2+6*i1^2*i3^2*i4*i5+4*i1^2*i3^2*i5^2+2*i1^2*i3*i4^3+6*i1^2*i3*i4^2*i5+6*i1^2*i3*i4*i5^2+2*i1^2*i3*i5^3+2*i1^2*i4^3*i5+4*i1^2*i4^2*i5^2+2*i1^2*i4*i5^3+2*i1*i2^3*i3*i4+2*i1*i2^3*i3*i5+2*i1*i2^3*i4*i5+4*i1*i2^2*i3^2*i4+4*i1*i2^2*i3^2*i5+4*i1*i2^2*i3*i4^2+6*i1*i2^2*i3*i4*i5+4*i1*i2^2*i3*i5^2+4*i1*i2^2*i4^2*i5+4*i1*i2^2*i4*i5^2+2*i1*i2*i3^3*i4+2*i1*i2*i3^3*i5+4*i1*i2*i3^2*i4^2+6*i1*i2*i3^2*i4*i5+4*i1*i2*i3^2*i5^2+2*i1*i2*i3*i4^3+6*i1*i2*i3*i4^2*i5+6*i1*i2*i3*i4*i5^2+2*i1*i2*i3*i5^3+2*i1*i2*i4^3*i5+4*i1*i2*i4^2*i5^2+2*i1*i2*i4*i5^3+2*i1*i3^3*i4*i5+4*i1*i3^2*i4^2*i5+4*i1*i3^2*i4*i5^2+2*i1*i3*i4^3*i5+4*i1*i3*i4^2*i5^2+2*i1*i3*i4*i5^3+4*i1^3*i2*i3+4*i1^3*i2*i4+4*i1^3*i2*i5+4*i1^3*i3*i4+4*i1^3*i3*i5+4*i1^3*i4*i5+8*i1^2*i2^2*i3+8*i1^2*i2^2*i4+8*i1^2*i2^2*i5+8*i1^2*i2*i3^2+12*i1^2*i2*i3*i4+12*i1^2*i2*i3*i5+8*i1^2*i2*i4^2+12*i1^2*i2*i4*i5+8*i1^2*i2*i5^2+8*i1^2*i3^2*i4+8*i1^2*i3^2*i5+8*i1^2*i3*i4^2+12*i1^2*i3*i4*i5+8*i1^2*i3*i5^2+8*i1^2*i4^2*i5+8*i1^2*i4*i5^2+4*i1*i2^3*i3+4*i1*i2^3*i4+4*i1*i2^3*i5+8*i1*i2^2*i3^2+12*i1*i2^2*i3*i4+12*i1*i2^2*i3*i5+8*i1*i2^2*i4^2+12*i1*i2^2*i4*i5+8*i1*i2^2*i5^2+4*i1*i2*i3^3+12*i1*i2*i3^2*i4+12*i1*i2*i3^2*i5+12*i1*i2*i3*i4^2+48*i1*i2*i3*i4*i5+12*i1*i2*i3*i5^2+4*i1*i2*i4^3+12*i1*i2*i4^2*i5+12*i1*i2*i4*i5^2+4*i1*i2*i5^3+4*i1*i3^3*i4+4*i1*i3^3*i5+8*i1*i3^2*i4^2+12*i1*i3^2*i4*i5+8*i1*i3^2*i5^2+4*i1*i3*i4^3+12*i1*i3*i4^2*i5+12*i1*i3*i4*i5^2+4*i1*i3*i5^3+4*i1*i4^3*i5+8*i1*i4^2*i5^2+4*i1*i4*i5^3+4*i2^3*i3*i4+4*i2^3*i3*i5+4*i2^3*i4*i5+8*i2^2*i3^2*i4+8*i2^2*i3^2*i5+8*i2^2*i3*i4^2+12*i2^2*i3*i4*i5+8*i2^2*i3*i5^2+8*i2^2*i4^2*i5+8*i2^2*i4*i5^2+4*i2*i3^3*i4+4*i2*i3^3*i5+8*i2*i3^2*i4^2+12*i2*i3^2*i4*i5+8*i2*i3^2*i5^2+4*i2*i3*i4^3+12*i2*i3*i4^2*i5+12*i2*i3*i4*i5^2+4*i2*i3*i5^3+4*i2*i4^3*i5+8*i2*i4^2*i5^2+4*i2*i4*i5^3+4*i3^3*i4*i5+8*i3^2*i4^2*i5+8*i3^2*i4*i5^2+4*i3*i4^3*i5+8*i3*i4^2*i5^2+4*i3*i4*i5^3+i1^4+3*i1^3*i2+3*i1^3*i3+3*i1^3*i4+3*i1^3*i5+3*i1^2*i2^2+6*i1^2*i2*i3+6*i1^2*i2*i4+6*i1^2*i2*i5+3*i1^2*i3^2+6*i1^2*i3*i4+6*i1^2*i3*i5+3*i1^2*i4^2+6*i1^2*i4*i5+3*i1^2*i5^2+i1*i2^3+3*i1*i2^2*i3+3*i1*i2^2*i4+3*i1*i2^2*i5+3*i1*i2*i3^2+10*i1*i2*i3*i4+10*i1*i2*i3*i5+3*i1*i2*i4^2+10*i1*i2*i4*i5+3*i1*i2*i5^2+i1*i3^3+3*i1*i3^2*i4+3*i1*i3^2*i5+3*i1*i3*i4^2+10*i1*i3*i4*i5+3*i1*i3*i5^2+i1*i4^3+3*i1*i4^2*i5+3*i1*i4*i5^2+i1*i5^3+4*i2^2*i3*i4+4*i2^2*i3*i5+4*i2^2*i4*i5+4*i2*i3^2*i4+4*i2*i3^2*i5+4*i2*i3*i4^2+4*i2*i3*i5^2+4*i2*i4^2*i5+4*i2*i4*i5^2+4*i3^2*i4*i5+4*i3*i4^2*i5+4*i3*i4*i5^2

What is the best strategy using Maple(latest version)? In a previous, less complicated example, the polynomial could be not be factored in a single expression, but I was succesfull to factor it in multiple factors.

kind regards,

Harry Garst


 

restart

with(PDEtools)

with(plots)

P__r := .71; lambda := 1.0; K__r := 1.0; S__r := .5; m := .5; M := sqrt(10.0); `ϰ` := .5; Omega := sqrt(5.0); Gr := 6.0; Gm := 5.0; S__c := .22

PDE := {diff(phi(x, t), t) = (diff(phi(x, t), x, x))/S__c-K__r*phi(x, t)+S__r*(diff(theta(x, t), x, x)), diff(theta(x, t), t) = lambda*(diff(theta(x, t), x, x))/P__r, diff(u(x, t), t) = diff(u(x, t), x, x)-M^2*(u(x, t)-m*w(x, t))/(m^2+1)-u(x, t)/`ϰ`-2*Omega^2*w(x, t)+Gr*theta(x, t)+Gm*phi(x, t), diff(w(x, t), t) = diff(w(x, t), x, x)+M^2*(m*u(x, t)-w(x, t))/(m^2+1)-w(x, t)/`ϰ`+2*Omega^2*u(x, t)}

{diff(phi(x, t), t) = 4.545454545*(diff(diff(phi(x, t), x), x))-1.0*phi(x, t)+.5*(diff(diff(theta(x, t), x), x)), diff(theta(x, t), t) = 1.408450704*(diff(diff(theta(x, t), x), x)), diff(u(x, t), t) = diff(diff(u(x, t), x), x)-9.999999999*u(x, t)-5.999999996*w(x, t)+6.0*theta(x, t)+5.0*phi(x, t), diff(w(x, t), t) = diff(diff(w(x, t), x), x)+14.00000000*u(x, t)-9.999999999*w(x, t)}

(1)

``

IBC := {phi(0, t) = 1, phi(9, t) = 0, phi(x, 0) = 0, theta(0, t) = 1, theta(9, t) = 0, theta(x, 0) = 0, u(0, t) = t, u(9, t) = 0, u(x, 0) = 0, w(0, t) = 0, w(9, t) = 0, w(x, 0) = 0}

sol := pdsolve(PDE, IBC, numeric, spacestep = 0.1e-1)

_m2167514531200

(2)

p1 := sol:-plot(t = .3, color = red); p2 := sol:-plot(t = .5, color = gold); p3 := sol:-plot(t = .7, color = purple); p4 := sol:-plot(t = 1., color = green); plots[display]({p1, p2, p3, p4})

 

q1, q2, q3, q4 := seq(eval(u(x, t), sol:-value(t = t0, output = listprocedure)), t0 = [.3, .5, .7, 1]); plot([q1, q2, q3, q4], 0 .. 10, color = [red, gold, purple, green])

 

p1 := sol:-plot(t = 1, S__c = .1, color = red); p2 := sol:-plot(t = 1, S__c = .2, color = gold); p3 := sol:-plot(t = 1, S__c = .3, color = purple); p4 := sol:-plot(t = 1, S__c = .4, color = green); plots[display]({p1, p2, p3, p4})

Error, (in plot/options2d) unexpected option: .22 = .1

 

Error, (in plot/options2d) unexpected option: .22 = .2

 

Error, (in plot/options2d) unexpected option: .22 = .3

 

Error, (in plot/options2d) unexpected option: .22 = .4

 

 

q1, q2, q3, q4 := seq(eval(diff(u(0, t), t), sol:-value(t = t0, output = listprocedure)), t0 = [.3, .5, .7, 1]); plot([q1, q2, q3, q4], 0 .. 10, color = [red, gold, purple, green])

Error, (in plot) procedure expected, as range contains no plotting variable

 

``


 

Download pde_baru.mwpde_baru.mw

Dear Prof DRs ,Please see the attachments

how to PLOT PDE IBCS for different  Sc , Pr, Gr, Gm at fixed t? Also for Nusselt (theta prime)  ,skin friction (f double prime)?

sys*{A2+D2 = 0, B1*sin(192*K1)+D1 = 0, 3.383*B2*K1+C2 = 0, B1*K1^2*sin(192*K1)+11.444689*A2*K1^2*cos(568.344*K1)+11.444689*B2*K1^2*sin(568.344*K1) = 0, A2*cos(568.344*K1)+B2*sin(568.344*K1)+168*C2+D2 = 0, -3.383*A2*K1*sin(568.344*K1)+3.383*B2*K1*cos(568.344*K1)+C2-B1*K1*cos(192*K1) = 0};
     /                                                               
sys { A2 + D2 = 0, B1 sin(192 K1) + D1 = 0, 3.383 B2 K1 + C2 = 0, B1 
     \                                                               

    2                              2                
  K1  sin(192 K1) + 11.444689 A2 K1  cos(568.344 K1)

                    2                      
   + 11.444689 B2 K1  sin(568.344 K1) = 0, 

  A2 cos(568.344 K1) + B2 sin(568.344 K1) + 168 C2 + D2 = 0, 
-3.383 A2 K1 sin(568.344 K1) + 3.383 B2 K1 cos(568.344 K1) + C2

                          \ 
   - B1 K1 cos(192 K1) = 0 }
                          / 
fsolve(sys*{A2, B1, B2, C2, D1, D2});
Error, (in fsolve) number of equations, 1, does not match number of variables, 7

E_dislocated_bar.mws

I wish to make the letter E from a previous program of the letter F - which seemed to work perfectly.  I've added the base arm to the F - with it looking like the letter Fand trailing base.  Further comments in the program.  Tags are polygon, patchnogrid, LINE, animation  Help please. 

cos(440*2*pi*t)+cos(554*2*pi*t)+cos(659*2*pi*t)

How to turn the above row into complex exponential Fourier series?

Hello,

How to write the Newton's method and Bisection method in Maple of a function depending on a parameter ? The goal is to solve the equation F(y, eta) = 0 and find the root y(eta) using the Newton's method or Bisection method. An example is attached. 

Thank you

First time maple user here,

I have a set of equations, as follows

u_o = u-(diff(v(x), x)) . y-(diff(w(x), x)) . z

v__o = v-phi . z

w__o = w+phi . y

 

where u,v,w are all differentiable w.r.t. x,y,z. I want to evaluate the partial derivative of each of these three expressions w.r.t. x,y,z.

For example, epsilon = Diff(u__o,x) (this is supposed to be a partial derivative)

When I try epsilon = diff(uo, x), i get this epsilon = -(diff(v(x), x, x)) . y-(diff(w(x), x, x)) . z

which is evaluating u as a constant but not giving me Diff(u,x)

when I try using convert((D(uo))(x), diff), I get diff(u(x), x)-(diff(diff((v(x))(x), x), x)) . y(x)-(diff((v(x))(x), x)) . (diff(y(x), x))-(diff(diff((w(x))(x), x), x)) . z(x)-(diff((w(x))(x), x)) . (diff(z(x), x))

which doesn't know that Diff(y,x)=0

How can I evaluate these expressions appropriately?

Any help will be greatly appreciated!

 

Dear all,

 

I am saving a logplot as :

plotsetup(jpeg, plotoutput = "/Users/test.jpg", plotoptions = "quality=200,height=1100, width=1500"); display(logplot(x^2-3, x = 0 .. 100), legendstyle = [font = [bold, "TimesNewRoman", 30], location = right], thickness = 4, font = [bold, "TimesNewRoman", 30]); plotsetup("inline", plotoutput = "terminal", plotoptions = "quality=100,height=1000, width=1500")

and the output is the plot attached.

test.jpg

This is my problem: I do not want the y-axis tickmarks to be shown as .1 e2, .1e3, ...

I would like them to be 10^2, 10^3, ...

Please remember that I need them to be saved like this because the quality is much better than when you export the plot directly.

Can someone help me, please?

Hi!

Looking the Maple's help, I see that the command "isolve"  tries to solve an equations   over the integers. Then, given m>1 and t in the interval [0,1], How can used this command to find an integer j>=1 such that (j-1)/m<=t<j/m. That is, fin j such that t belongs to the interval [(j-1)/m,j/m].

 

Thanks in advance for your comments and help.

First 736 737 738 739 740 741 742 Last Page 738 of 2308