MaplePrimes Questions

for example, we need define  inverse function of g(x) where 

g(x)=int(exp(z^2), z = 0 .. x).

 

 

In the link below I attempt to solve 2 trig series which are essentially equivalent as indicated by the numerical output of eq (5).  The series  represented by S13 & S14 has arguments of the trig functions that realizes that only the odd terms for k yield non-zero results.  The case represented S11 & S12 by makes no such presumption; nonetheless, all cases agree within reason numerically.  Now to find min/max values taking the derivative is needed which is simply done by removing the integral as indicated by Q1 through Q6.

Now resolving the roots works OK for Q6 because beta = 2*pi *t/T conveniently collapsed the numerator into factorable expressions.  Resolving the roots for Q3 did not work so well because what I think is that the expression in red has multiple roots so it only spits out t as the solution?  I expressed the angle alpha in terms of beta & probably need to resolve kappa to somehow get the expression in red to collapse into a factored expression, but I am not sure how to execute this.  When I solve for kappa I get ZERO.

Does anyone have suggestions?  Remember I demonstrated that both series are practically idendical numerically; hence, there derivatives should be as well as long as both series are well behaved functions.  So the solutions must be the same as well.

trig_series_solns.mw

can result ?

Please help me?

 

Hi Dears,

Let us consider the following polyhedral cone which is defined by 8 inequalities (also, x,y,z ≥0): 

1. y-z ≥0

2. 3y-2z ≥0

3. 2y-2z ≥0

4. x-2y+z ≥0

5. x-y ≥0

6. 2x-y ≥0

7. x-z ≥0

8. x+y-z ≥0. 

How can we deduce that the inequalities 3 and 4 may be define this polyhedral cone and the others are redundant?

How can remove the redundant inequalities for defining this polyhedral cone?

Is there any Maple command or function that recive these 8 inequalities and return inequalities 3 and 4? In fact, inequalities 3 and 4 are facets of this polyhedral cone. 

 

Thank you in advanced. 

Sincerely yours

Hi,

I am a little bit surprised by the result of the operation evalf[8](f(y)) in the piece of code that follows.
I was expected the answer to be 2.4494897, not 2.4494898.

Happily the sequence
res := f(y) ; evalf[8](res)
returns the expected result 2.4494897

I suspect the difference comes from some precedence of the operators (f and evalf) but I can't figure out what really happens

Could you enlight me please ?

Thanks in advance

 

restart:

interface(version);

`Standard Worksheet Interface, Maple 2015.2, Mac OS X, December 21 2015 Build ID 1097895`

(1)

Digits;

10

(2)

f := x -> sqrt(2.0)*x;

proc (x) options operator, arrow; sqrt(2.0)*x end proc

(3)

y := sqrt(3.0):

f(y);

2.449489743

(4)

evalf[9](f(y));  # right

2.44948974

(5)

evalf[8](f(y));  # ????

2.4494898

(6)

res := f(y);
evalf[8](res);  # right

2.449489743

 

2.4494897

(7)

 

 

 

with maple

How can in maple 2015? Help me?

hi every one

I need to rearrange the matrix variables after using collect command

R[3, 3] := collect(R[3, 3], z^2);
                                  2             
               (-cos(theta) + 1) z  + cos(theta)
sort(R[3, 3]);
                                  2             
               (-cos(theta) + 1) z  + cos(theta)

i want it to appear as z(1-cos(theta))+cos(theta) ,  can i use sort or sequence or there is another command to do this   ???

hi everyone,

i have attached a maple worksheet which you can see the issue...azido_displacement.mw
i think tittle says by itself... thanks in advance for taking the time to review and aswer me.

 

theta__o := (1/4)*Pi

(1/4)*Pi

(1)

omega__o := 0

0

(2)

tau := 1

1

(3)

m := 2.28335

2.28335

(4)

g := 9.80665

9.80665

(5)

L := .35

.35

(6)

Iota := 0.9996799726e-1

0.9996799726e-1

(7)

with(DirectSearch)

[BoundedObjective, CompromiseProgramming, DataFit, ExponentialWeightedSum, GlobalOptima, GlobalSearch, Minimax, ModifiedTchebycheff, Search, SolveEquations, WeightedProduct, WeightedSum]

(8)

SolveEquations([omega__o+(1/3)*alpha__1*tau-(1/3)*alpha__2*tau+(1/3)*alpha__3*tau = 0, theta__o+(1/3)*omega__o*tau+(1/2)*alpha__1*((1/3)*tau)^2+(1/3)*(omega__o+(1/3)*alpha__1*tau)*tau-(1/2)*alpha__2*((1/3)*tau)^2+(1/3)*(omega__o+(1/3)*alpha__1*tau-(1/3)*alpha__2*tau)*tau+(1/2)*alpha__3*((1/3)*tau)^2 = (1/2)*Pi, int((m*g*cos(omega__o*t+theta__o+(1/2)*alpha__1*t^2)+alpha__1*(L*m+Iota))/(m*sin(omega__o*t+theta__o+(1/2)*alpha__1*t^2)), t = 0 .. (1/3)*tau)+int((m*g*cos(theta__o+(1/3)*omega__o*tau+(1/2)*alpha__1*((1/3)*tau)^2+(omega__o+(1/3)*alpha__1*tau)*t-(1/2)*alpha__2*t^2)-alpha__2*(L*m+Iota))/(m*sin(theta__o+(1/3)*omega__o*tau+(1/2)*alpha__1*((1/3)*tau)^2+(omega__o+(1/3)*alpha__1*tau)*t-(1/2)*alpha__2*t^2)), t = 0 .. (1/3)*tau)+int((m*g*cos(theta__o+(1/3)*omega__o*tau+(1/2)*alpha__1*((1/3)*tau)^2+(1/3)*(omega__o+(1/3)*alpha__1*tau)*tau-(1/2)*alpha__2*((1/3)*tau)^2+(omega__o+(1/3)*alpha__1*tau-(1/3)*alpha__2*tau)*t+(1/2)*alpha__3*t^2)+alpha__3*(L*m+Iota))/(m*sin(theta__o+(1/3)*omega__o*tau+(1/2)*alpha__1*((1/3)*tau)^2+(1/3)*(omega__o+(1/3)*alpha__1*tau)*tau-(1/2)*alpha__2*((1/3)*tau)^2+(omega__o+(1/3)*alpha__1*tau-(1/3)*alpha__2*tau)*t+(1/2)*alpha__3*t^2)), t = 0 .. (1/3)*tau) = 0], initialpoint = [alpha__1 = 12.7751705882228, alpha__2 = 18.4817577058678, alpha__3 = 5.70658711764534])

[6.74607137501932*10^(-24), Vector(3, {(1) = HFloat(1.936228954946273e-13), (2) = HFloat(2.027322754116767e-12), (3) = 0.1612e-11}), [`#msub(mi("α",fontstyle = "normal"),mi("1"))` = 14.7208062595154, `#msub(mi("α",fontstyle = "normal"),mi("2"))` = 22.3730290484357, `#msub(mi("α",fontstyle = "normal"),mi("3"))` = 7.65222278892092], 139]

(9)

alpha__1 := 14.7208062595154

14.7208062595154

(10)

alpha__2 := 22.3730290484357

22.3730290484357

(11)

alpha__3 := 7.65222278892092

7.65222278892092

(12)

x__1 := int(int((m*g*cos(omega__o*t+theta__o+(1/2)*alpha__1*t^2)+alpha__1*(L*m+Iota))/(m*sin(omega__o*t+theta__o+(1/2)*alpha__1*t^2)), t = 0 .. t), t = 0 .. t2)

int(int(.4379530076*(22.39201428*cos((1/4)*Pi+7.360403130*t^2)+13.23607306)/sin((1/4)*Pi+7.360403130*t^2), t = 0 .. t), t = 0 .. t2)

(13)

x__2 := int(int((m*g*cos(omega__o*t+theta__o+(1/2)*alpha__1*t^2)+alpha__1*(L*m+Iota))/(m*sin(omega__o*t+theta__o+(1/2)*alpha__1*t^2)), t = 0 .. t), t = 0 .. (1/3)*tau)+t2*(int((m*g*cos(omega__o*t+theta__o+(1/2)*alpha__1*t^2)+alpha__1*(L*m+Iota))/(m*sin(omega__o*t+theta__o+(1/2)*alpha__1*t^2)), t = 0 .. (1/3)*tau))+int(int((m*g*cos(theta__o+(1/3)*omega__o*tau+(1/2)*alpha__1*((1/3)*tau)^2+(omega__o+(1/3)*alpha__1*tau)*t-(1/2)*alpha__2*t^2)-alpha__2*(L*m+Iota))/(m*sin(theta__o+(1/3)*omega__o*tau+(1/2)*alpha__1*((1/3)*tau)^2+(omega__o+(1/3)*alpha__1*tau)*t-(1/2)*alpha__2*t^2)), t = 0 .. t), t = 0 .. t2)

int(int(.4379530076*(22.39201428*cos((1/4)*Pi+7.360403130*t^2)+13.23607306)/sin((1/4)*Pi+7.360403130*t^2), t = 0 .. t), t = 0 .. 1/3)+t2*(int(.4379530076*(22.39201428*cos((1/4)*Pi+7.360403130*t^2)+13.23607306)/sin((1/4)*Pi+7.360403130*t^2), t = 0 .. 1/3))+int(int(-.4379530076*(22.39201428*cos(-1.603220734-4.906935420*t+11.18651452*t^2)-20.11649647)/sin(-1.603220734-4.906935420*t+11.18651452*t^2), t = 0 .. t), t = 0 .. t2)

(14)

x__3 := int(int((m*g*cos(omega__o*t+theta__o+(1/2)*alpha__1*t^2)+alpha__1*(L*m+Iota))/(m*sin(omega__o*t+theta__o+(1/2)*alpha__1*t^2)), t = 0 .. t), t = 0 .. (1/3)*tau)+(1/3)*tau*(int((m*g*cos(omega__o*t+theta__o+(1/2)*alpha__1*t^2)+alpha__1*(L*m+Iota))/(m*sin(omega__o*t+theta__o+(1/2)*alpha__1*t^2)), t = 0 .. (1/3)*tau))+int(int((m*g*cos(theta__o+(1/3)*omega__o*tau+(1/2)*alpha__1*((1/3)*tau)^2+(omega__o+(1/3)*alpha__1*tau)*t-(1/2)*alpha__2*t^2)-alpha__2*(L*m+Iota))/(m*sin(theta__o+(1/3)*omega__o*tau+(1/2)*alpha__1*((1/3)*tau)^2+(omega__o+(1/3)*alpha__1*tau)*t-(1/2)*alpha__2*t^2)), t = 0 .. t), t = 0 .. (1/3)*tau)+t2*(int((m*g*cos(omega__o*t+theta__o+(1/2)*alpha__1*t^2)+alpha__1*(L*m+Iota))/(m*sin(omega__o*t+theta__o+(1/2)*alpha__1*t^2)), t = 0 .. (1/3)*tau)+int((m*g*cos(theta__o+(1/3)*omega__o*tau+(1/2)*alpha__1*((1/3)*tau)^2+(omega__o+(1/3)*alpha__1*tau)*t-(1/2)*alpha__2*t^2)-alpha__2*(L*m+Iota))/(m*sin(theta__o+(1/3)*omega__o*tau+(1/2)*alpha__1*((1/3)*tau)^2+(omega__o+(1/3)*alpha__1*tau)*t-(1/2)*alpha__2*t^2)), t = 0 .. (1/3)*tau))+int(int((m*g*cos(theta__o+(1/3)*omega__o*tau+(1/2)*alpha__1*((1/3)*tau)^2+(1/3)*(omega__o+(1/3)*alpha__1*tau)*tau-(1/2)*alpha__2*((1/3)*tau)^2+(omega__o+(1/3)*alpha__1*tau-(1/3)*alpha__2*tau)*t+(1/2)*alpha__3*t^2)+alpha__3*(L*m+Iota))/(m*sin(theta__o+(1/3)*omega__o*tau+(1/2)*alpha__1*((1/3)*tau)^2+(1/3)*(omega__o+(1/3)*alpha__1*tau)*tau-(1/2)*alpha__2*((1/3)*tau)^2+(omega__o+(1/3)*alpha__1*tau-(1/3)*alpha__2*tau)*t+(1/2)*alpha__3*t^2)), t = 0 .. t), t = 0 .. t2)

int(int(.4379530076*(22.39201428*cos((1/4)*Pi+7.360403130*t^2)+13.23607306)/sin((1/4)*Pi+7.360403130*t^2), t = 0 .. t), t = 0 .. 1/3)+(1/3)*(int(.4379530076*(22.39201428*cos((1/4)*Pi+7.360403130*t^2)+13.23607306)/sin((1/4)*Pi+7.360403130*t^2), t = 0 .. 1/3))+int(int(-.4379530076*(22.39201428*cos(-1.603220734-4.906935420*t+11.18651452*t^2)-20.11649647)/sin(-1.603220734-4.906935420*t+11.18651452*t^2), t = 0 .. t), t = 0 .. 1/3)+t2*(int(.4379530076*(22.39201428*cos((1/4)*Pi+7.360403130*t^2)+13.23607306)/sin((1/4)*Pi+7.360403130*t^2), t = 0 .. 1/3)+int(-.4379530076*(22.39201428*cos(-1.603220734-4.906935420*t+11.18651452*t^2)-20.11649647)/sin(-1.603220734-4.906935420*t+11.18651452*t^2), t = 0 .. 1/3))+int(int(.4379530076*(22.39201428*cos(1.995919816-2.550740930*t+3.826111394*t^2)+6.880423404)/sin(1.995919816-2.550740930*t+3.826111394*t^2), t = 0 .. t), t = 0 .. t2)

(15)

plot([x__1, x__2, x__3], t2 = 0 .. (1/3)*tau)

 

``


 

Download azido_displacement.mw

 

FLRW_Metric.mw

I have been tasked with calculating all the non-vanishing Christoffel symbols (first kind) of a metric and have done these long-hand using the Lagrangian method and shown my working. However, for peace of mind I would like to run the metric through Maple and double-check that it returns the same answers (going back through my calculations if I have missed anything). I have attached the code I have written at the bottom.

I have no trouble defining the metric and the manifold but I receive an error message when I try to compute the Christoffel symbols 'improper op or subscript selector'. Could someone point out where I have made a mistake. The metric is the FLRW metric if that helps.

with(DifferentialGeometry):with(Tensor);

g1:=evalDG(-(dt)^2 +a(t)^2*((dx)^2+(dy)^2+(dz)^2)/(1+(k/4)*(x^(2)+y^(2)+z^2))^2 );

C1:=Christoffel(g1, "FirstKind");

 

 

Plot3d in this worksheet calls a procedure which conditionally returns the values for a parametrically defined ellipsoid, but the plot command fails. However the procedure passes the correct list of parametric values when it is called directly.

Is there a way to call a procedure within plot3d which successfully plots a parametrically defined surface?

Plot3d_proc_parametric.mw

Can we overide Maple default dot derivative with 'tau' instead of 't'?

When I use listcontplot, the tickmarks on the axis show the ordinal of the point plotted, so if I have 20x50 points, it shows (1 to 21)x(1 to 51).

Is there any way to reescalate the axis to show the actual units of the points?, so for example (0.3 to 0.7)x(2.2 to 3.7).

Thanks.

Is the first output correct?

m := [[1, 2], [3, 4]];

m[[1, 2], 2];
                             [3, 4]
Matrix(m)[[1, 2], 2];
                  Vector[column](2, [2, 4])

m[1 .. 2, 2];
                             [2, 4]
Matrix(m)[1 .. 2, 2];
                  Vector[column](2, [2, 4])

The other three map the index 2 over the indices [1,2], giving the second column. The first one does m[[1,2]][2] instead.

I couldn't find a definite statement in the documentation about how this should work for lists (not rtables).

Also, ?selection says:

"To select trailing elements, use A[..n]."

"Use A[...,a[i]] to select the ith column."

I think it should have been

"To select trailing elements, use A[n..]."

"Use A[...,i] to select the ith column."

 

I used Maple a few times, years ago.

I've just installed Maple (2017.3).

Here is my first,  very confusing dialogue.

 

3
 =                              3

3(1+x)
 =                           3 + 3 x

factor(x^2-1)
 =                       (x - 1) (1 + x)


(x-1)(1+x)
 =                         x(1 + x) - 1

Oops

Mathematically that it just wrong (unless x = 0)   

It uses implicit multiplication on output.  

And accepts it on input.

And then prints(what appears to be) garbage.

I struggle to find any interpretation of (x-1)(1+x) => x(1 + x) - 1 that makes sense

On the other hand I don't feel quite arrogant enough to file a fundamental bug report in Maple after 5 minutes use.

Can anyone tell me what is going on here?  Or is it just early onset dementia?

 

 

 

 

 

 

Can anyone figure this out? Just getting solutions may have been lost :/ 

 


Kabel FeAl35
restart;
r[FeAl] := .51;
x[FeAl] := I*.38;
c[FeAl] := 9.5*10^(-9);
l[12] := 14;

PEX 240 Al
r[PEX] := 0.8e-1;
x[PEX] := I*.32;
c[PEX] := 11.4*10^(-9);
l[23] := 5;

Beregner Admittanser
X[12] := x[FeAl]*l[12];
R[12] := r[FeAl]*l[12];
Z[12] := R[12]+X[12];
X[23] := x[PEX]*l[23];
R[23] := r[PEX]*l[23];
Z[23] := R[23]+X[23];
C[12] := c[FeAl]*l[12];
C[23] := c[PEX]*l[23];
X[C1] := -I/(50*Pi*C[12]);
X[C2] := -I/(50*Pi*C[23]);
YC1 := 1/X[C1];
YC2 := 1/X[C2];
Y12 := 1/Z[12];
Y23 := 1/Z[23];
Y11 := Y12+YC1;
Y22 := Y12+YC1+Y23+YC2;
Y33 := Y23+YC2;
Y13 := 0;
Y := Matrix([[Y11, -Y12, -Y13], [-Y12, Y22, -Y23], [-Y13, -Y23, Y33]]);
PL2 := 5000000;
PL3 := 3000000;
PG3 := 2300000;
PF := .98;
P2 := -PL2;
Q2 := P2*tan(arccos(PF));
P3 := PG3-PL3;
Q3 := P3*tan(arccos(PF));
V1 := 22000;
eq1 := conjugate(V2)*V2*V2 = ((P2-I*Q2)*V2-conjugate(V2)*V2*(V1*Y12+V3*Y23))/Y22;
eq2 := conjugate(V3)*V3*V3 = ((P3-I*Q3)*V3-conjugate(V3)*V3*(V1*Y13+V2*Y23))/Y33;
solve({eq1, eq2}, {V2, V3});
 

First 757 758 759 760 761 762 763 Last Page 759 of 2308