MaplePrimes Questions

Dear Maple  users,

I am facing the memory allocation problem while calculating the inverse Laplace transformation of a big expression. I have many such terms (401) and I am importing them from a text file.

For an individual term itself, Maple consumes huge memory but at the end, it is able to calculate it in about an hour. I want to automate the process of reading and writing the terms one by one from the different text files. While doing so, maple eats a lot of memory and I see the error msg

"Error, (in expand/bigprod) Maple was unable to allocate enough memory to complete this computation.
Please see ?alloc "

Is there a way to do so? The maple file is attached.

InvLaplace_ex.mw

Thanks,

Dear all

I have invalid operator parameter name, i don't know where is the mistake.

Many thanks for your help

 

fdfd.mw

I'm producing multiple matrices via a for-loop (n = + 100) and I want to export each matrix into the same Excel-sheet, however I want to insert all matrices in cells beneath each other. I'm wondering if anyone knows how to do this? I've tried a loop variable but that doesn't work inside the "  " to specify the cells...

Note: Matrices are all 11x6. That means I want them inserted in the same sheet, in cells like this:
1st matrix: A1:F11
2nd matrix: A12:F23
3rd matrix: A24:F35
etc.

In other words: how to execute a loop-variable inside the " ", or to bypass it???
Please help! It's for my MSc Thesis:)

Helo dearz!

I want to find the inverse laplace transfrom (numerically) of the attached file of solution u and v for any values of M. I am waiting for your positive response. 

Help_v2.mw

how to download  wkptest from http://cpc.cs.qub.ac.uk/summaries/ADTY_v1_0.html and install on maple?

I understand that matlab has function 'rfwrite' to generate touchstone file. This is a datafile used for high frequency modeling.

Is there any such package in Maple?

 

 

I´m new to Maple and I´m trying to find the minimum distance of an ECC from its parity check matrix or the generator matrix. Is this possible?

I have work sheet full of greek letters as words and parameters, some times I need to find where the specific letter is, but it seems find facility (Ctrl+F) couldnt find greek letters. 

Suppose I have following workshee
 

restart

II := 1

1

(1)

JJ := 1

1

(2)

N := 1

``

UK2

 

U1 := add(add(add(add(add((2*Rr[i, m]*Rr[k, m]/((2*m+1)*(2*j+1))*(2*b/(2*a)))*(A[1, 1]*U[i, j]*U[k, j]+2*A[1, 6]*U[i, j]*V[k, j]+A[5, 5]*W[i, j]*W[k, j]+A[6, 6]*V[i, j]*V[k, j]+2*B[1, 1]*Phi[i, j]*U[k, j]+2*B[1, 6]*V[i, j]*Phi[k, j]+2*B[1, 6]*Xi[i, j]*U[k, j]+2*B[6, 6]*Xi[i, j]*V[k, j]+Dd[1, 1]*Phi[i, j]*Phi[k, j]+2*Dd[1, 6]*Phi[i, j]*Xi[k, j]+Dd[6, 6]*Xi[i, j]*Xi[k, j]+(-R[1, 1, q]*`#mover(mi("z"),mo("&uminus0;"))`[q]^4+4*S[1, 1, q]*`#mover(mi("z"),mo("&uminus0;"))`[q]^3-6*T[1, 1, q]*`#mover(mi("z"),mo("&uminus0;"))`[q]^2+4*K[1, 1, q]*`#mover(mi("z"),mo("&uminus0;"))`[q]-Delta[1, 1, q])*GAMMA[i, j, q]*GAMMA[k, j, q]+(2*R[1, 1, q]*`#mover(mi("z"),mo("&uminus0;"))`[q]^3-6*S[1, 1, q]*`#mover(mi("z"),mo("&uminus0;"))`[q]^2+6*T[1, 1, q]*`#mover(mi("z"),mo("&uminus0;"))`[q]-2*K[1, 1, q])*Omega[i, j, q]*GAMMA[k, j, q]+(-2*R[1, 1, q]*`#mover(mi("z"),mo("&uminus0;"))`[q]^2+4*S[1, 1, q]*`#mover(mi("z"),mo("&uminus0;"))`[q]-2*T[1, 1, q])*Theta[i, j, q]*GAMMA[k, j, q]+(2*E[1, 5, q]*`#mover(mi("z"),mo("&uminus0;"))`[q]^2-4*F[1, 5, q]*`#mover(mi("z"),mo("&uminus0;"))`[q]+2*G[1, 5, q])*W[i, j]*GAMMA[k, j, q]+(-R[1, 1, q]*`#mover(mi("z"),mo("&uminus0;"))`[q]^2+2*S[1, 1, q]*`#mover(mi("z"),mo("&uminus0;"))`[q]-T[1, 1, q])*Omega[i, j, q]*Omega[k, j, q]+(2*R[1, 1, q]*`#mover(mi("z"),mo("&uminus0;"))`[q]-2*S[1, 1, q])*Theta[i, j, q]*Omega[k, j, q]+(-2*E[1, 5, q]*`#mover(mi("z"),mo("&uminus0;"))`[q]+2*F[1, 5, q])*W[i, j]*Omega[k, j, q]-R[1, 1, q]*Theta[i, j, q]*Theta[k, j, q]+2*E[1, 5, q]*W[i, j]*Theta[k, j, q]), i = 0 .. II), k = 0 .. II), m = 0 .. II), j = 0 .. JJ), q = 1 .. N):

``


 

Download greekfind.mw

t, how to find for example `#mover(mi("z"),mo("&uminus0;"))`[q] in it?

A fact that seems to be not documented. Probably it should be obvious.

 

Digits := d0
evalf[d](expr);

 

The toplevel float sub-expressions in expr  are computed with Digits=d0 but in procedures Digits is set to d.
Notice that the actual float parameters of the toplevel procedures are evalf-ed with Digits=d0.

 

restart;

g:=proc() convert(1/3., string) end:
h:=proc() 1/3. end:

Digits:=3;
evalf[10]([
  1/3. = h(),
  convert(1/3.,string) = g(),  
  fsolve(3*x=1) = add([1/3]),
  fsolve(x/3=1/9.) # 1/9. being at top level is evalf-ed with Digits=3
])

3

 

[.333 = .3333333333, ".333" = ".3333333333", .3333333333 = .3333333333, .3330000000]

(1)

 

k:=proc(x) convert(x,string) end:

kernelopts(floatPi);

true

(2)

4.+Pi;

7.14

(3)

evalf(k(1/3.+Pi));
# floatPi seems to be ignored inside actual parameters

".333+Pi"

(4)

evalf(k(4+evalf(Pi)));

"7.14"

(5)

evalf(k(4+Pi));
# 4 not being float (or "infected" by a float) is not evalf-ed

"4+Pi"

(6)

 

### (this is documented)

`evalf/h` := proc() 7.777 end:

evalf(h(1/3));

.333

(7)

evalf('h'(1/3));

7.777

(8)

 

 

Download digits.mw

(edited)

restart;
variables := s, phi(s);
                           s, phi(s)
expr := (k*s^2+1)*(diff(phi(s), s, s))-k*phi(s)+s*k*(diff(phi(s), s));
  /   2    \ / d  / d        \\                  / d        \
  \k s  + 1/ |--- |--- phi(s)|| - k phi(s) + s k |--- phi(s)|
             \ ds \ ds       //                  \ ds       /
expr2 := int(expr, s);
                           /   2    \ / d        \
             -s k phi(s) + \k s  + 1/ |--- phi(s)|
                                      \ ds       /
int(expr2, s);
            /              /   2    \ / d        \   \
         int|-s k phi(s) + \k s  + 1/ |--- phi(s)|, s|
            \                         \ ds       /   /

solve({int(expr2, s)});
Error, (in solve) cannot solve expressions with int(-s*k*phi(s)+(k*s^2+1)*(diff(phi(s), s)), s) for s

I DIDN'T GET THE SOLUTION.PLEASE HELP
 

I have two big symbolic and numerical matrices in a worksheet, whats the best way and easiest way to transfer them to another maple worksheet?

Why is Maple 13 giving me

instead of (s-3)/((s-3)^2+4)?

Thank you!
mapleatha

It seems if for some reason Maple runs a command that returns an error but the error is outputing to the display, and it is very very large, javaw.exe will consume enormous amounts of memory and pretty much freeze your system.  It took me forever to get into task manager on Windows to try to kill the processes slowing my system down to a crawl. 

For example if you run say listplot on a 60,000 set data element which is not in the correct form for listplot, Maple will error each element and attempt to output it to the screen which on my system quickly ran javaw.exe up to 2.5 Gb of memory usage. But then it went to zero again (probably due to garbage collection or something) and quickly ramped back up into 2 Gb.  Momentarily I was given enough system control to kill some processes to Maple and Firefox which eventually allowed me to take back control of my system.  When this first occurred, I did a hard reset, the second time I wanted to see if I could have any luck otherwise, but it took 5 minutes of frustration to get my system back to normal operating condition.

Hopefully Maple developers can use this information to prevent system hangs like this in the future.  Additionally pushing the interupt the current operation did little to stop the process already underway. 

how to intergrate 6*(int(int(r(1-r^p*cos(t)^p-r^p*sin(t)^p)^(1/p), t = 0 .. (1/2)*pi), r = 0 .. 1))

when p = 0.05 to 4 with 0.05 increments.

Thanks a lot

it should be (cos(t))^p not cos(t)^p. same for sin(t)^p

int(sqrt(t^4+1)-t^2, t = 1 .. infinity);
       -(1/3*I)*sqrt(2)*(-(2*I)*EllipticK(I)-EllipticK(I*sqrt(-2)))+(1/3*I)*sqrt(2)*EllipticF((1/2)*sqrt(2)+
       (1/2*I)*sqrt(2), I)+(1/3)*sqrt(2)*(-(2*I)*EllipticK(I)-EllipticK(I*sqrt(-2)))-(1/3)*sqrt(2)*
       EllipticF((1/2)*sqrt(2)+(1/2*I)*sqrt(2), I)-(1/3)*sqrt(2)+1/3

The result is the correct value for int(sqrt(t^4+1)-t^2, t = 1 .. -infinity).

First 786 787 788 789 790 791 792 Last Page 788 of 2308