MaplePrimes Questions

I tried to solve a symbolic nonlinear system, which is shown as following:

The S,T,B is three parmeters. And I want to express X and Y by S,T,B.

However, when I use eliminate({},{}), an Error comes as following:

Error, (in SolveTools:-Basis) invalid input: ListTools:-Transpose expects its 1st argument, L, to be of type listlist, but received [[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0], [1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], FAIL, FAIL, [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]]
 

I have no idea about this problem, who can give a help?

The mw file is given: Eliminate.mw

Thanks!

 

Dear sir in this problem should accept five boundaryconditions but it is not working for five boundary conditions and showing the following error please can you tell why it is like this ??

Error, (in dsolve/numeric/bvp/convertsys) too many boundary conditions: expected 4, got 5
Error, (in plots:-display) expecting plot structures but received: [fplt[1], fplt[2], fplt[3], fplt[4], fplt[5], fplt[6], fplt[7]]
Error, (in plots:-display) expecting plot structures but received: [tplt[1], tplt[2], tplt[3], tplt[4], tplt[5], tplt[6], tplt[7]]
 

and for the progam please check the following link

stretching_cylinder_new1.mw

Hello,

I have a package with multiple subpackages that I want to correct.

For troubleshooting my package, i would be interested by 2 points :
1) I would like use subsection for each subpackage. It would enable to have a better view of the structure of my package. However, I heard that sections, and subsections can lead to syntax errors. Is there a possibility to gather lines in a subpackages as with a section or subsection ?

2) To troubleshoot my package, I would like to comment a important part of code lines. Is there a technique to comment/ uncomment an important group of lines in the same time. I would enable me to valid my code little by little.

Thanks a lot for your help and tips so as to troubleshoot a big package with many subpackages.


 

I am a little perplexed. I can no longer copy-paste equations as images from Maple to the editor here. Now, only text, either on a single line, or at several lines with parantheses made from / | \, which looks awful, is inserted. A couple of days ago there was no problem. Do others experience the same problem?

PS: On some of the copy-paste trials a couple of minutes ago my browser, Firefox, even crashed on two different occasions.

**********

Update: Today, the 28th of November, I have sent the following mail to Mapleprimes:

Dear Mapleprimes,

I would very much appreciate if the problem with the copy-pasting of images into the Mapleprimes editor, as reported at http://mapleprimes.com/questions/220134-Changed-Behaviour-Of-Editor?sq=220134, would be fixed as soon as possible.

Not being able to simply copy-paste equations as images, as was possible a week or two ago, is a real nuisance. A couple of minutes ago, for instance, I had to resort to the use of a screen-shot program to perform the task.

Sincerely,
John Fredsted

Hello! 

For the last couple of days I've been trying really hard to solve the linear PDE 

dR/dt = -dRdH/dqdp + dRdH/(dpdq) . Where R is a function R(t,q(t),p(t)) and H is the hamiltonian H=  p^2/2 +q^2 +2*q .

(dH/dp= p and dH/dq= -2q-2), q and p depends on the time t, and I'm supposed to solve the PDE and then plot the gaussian distribution (2D). 

I tried doing this:

pde := diff(R(t, q1(t), p1(t)), t) = -(diff(R(t, q(t), p(t)), q(t)))*p(t)+(diff(R(t, q(t), p(t)), p(t)))*(-2*q(t)-2)

But pdsolve(pde) gives me:  "Error, (in pdsolve/info) the name of the indeterminate function must be given". 

When I change q(t) to q and p(t) to p I get:

R(t, q, p) = _F1(p^2-2*q^2-4*q, -(1/2)*ln(sqrt(2)*q+p+sqrt(2))*sqrt(2)+t)

And then I'm lost. How do I solve this PDE in maple? 

Thankful for any help 

 

 

Hi,

I'm attempting to plot the distribution of the fractional part of a sequence of real numbers in the interval (0,1], where the fractional part of a real number x is given by <x>=x-[x], where [x] is the floor function.

In particular, I'm attempting to plot <log(n)> and <n^a> where n is a natural number and 0<a<1.

I know that I can use frac() to obtain the fractional part of the expressions.

However, I'm not sure how to plot a two-dimensional plot where the x-axis consists of a range for n and the y-axis in the inteval [0,1). I found an example of what I'm trying to do here on page 1.

Does anyone have any tips on how to do this?

dsolve(f(x,y),y(x),parametric) in Maple 9.5 outputs an expression for y(_T) and for x(_T).

(from the book "Computer Algebra Recipes for Mathematical Physics by Richard H. Enns, section 7.1.1, finding the parametric equation of the brachistochrone)

but the same command in Maple 2016 outputs an expression for y(x) only.

Why do Maple 9.5 and Maple 2016 produce different output?

Where can I find a help page explaining or giving examples of dsolve, parametric?

 

I have made an algorithm for producing random walks (only possible to walk one step to either direction except downwards(EDIT: It is possible to go downwards, but it has to be when making a turn to the right or left). The walks are determined by the rand function:

R3:=rand(1..3): (1: go straight on; 2: turn right; 3: turn left)
M:=15; N:=1500;

 

Randwalk3:=proc(R3)
  local i,j,r,X,Y,L;
  for j from 1 to M do
    X[0,j]:=0;                                # Initialization
    Y[0,j]:=0;
    X[1,j]:=1;                                # The first step should still be taken to the point (1,0)
    Y[1,j]:=0;
    for i from 2 to N do
      r:=R3();
      if r=1 then X[i,j]:=2*X[i-1,j]-X[i-2,j]; Y[i,j]:=2*Y[i-1,j]-Y[i-2,j];                   # go straight on
      elif r=2 then X[i,j]:=X[i-1,j]+Y[i-1,j]-Y[i-2,j]; Y[i,j]:=Y[i-1,j]-X[i-1,j]+X[i-2,j];    # turn right
      else X[i,j]:=X[i-1,j]-Y[i-1,j]+Y[i-2,j]; Y[i,j]:=Y[i-1,j]+X[i-1,j]-X[i-2,j];             # turn left
      end if;
      if (X[i,j]=X[j,j] and Y[i,j]=Y[j,j]) then L[j]:=i; break; end if; (This is wrong)
    end do;
  end do:
  return [X,Y,L];
end proc:
 

The question from is like this:
Modify the algorithm such that it stops at r[i] if r[i] = r[j] for any 0 <= j <= i-2. r=(xi,yi). M is the number of random walks and N is the number of steps. The length of the paths should be stored in L[m] (m=1..M). How do I implement the if-test correctly?

Alle_opgaver.mw
 

 

Dear all

My son is studying at the Danish University, DTU, where he studies engineering. He is experiencing a problem with maple as the system writes :"There were problems during the loading process. Your worksheet may be incomplete". I can see that other people have had  their file corrected by a script by Joe Riel 6845.I just want to make sure that the right way to use this script is to open .mw file in an texteditor like notepad++ and then copy the script in top of the file and then save the file again and open it in maple ? I would appreciate your help very much. As it looks now,  my son has lost his entire work, if this error cant be corrected.

Best regards
Lars Wagenblast

I meet a interesting nonlinear system in the analysis of an mechanics problem. This system can be shown as following:

wherein, the X and Y is the solutions. A, B, S, and T is the symbolic parameters.

I want to express X and Y with A, B, S, T. Who can give me a help, thanks a lot!

PS:the mw file is given here.

A_symbolic_nonlinear_system.mw

Dear all,

I am trying to run a maple worksheet as an input file, in another maple worksheet. Therefore, I have exported my input worksheet to an inputfile (.mpl).

In the input file I have a variable H, which I vary in the second worksheet.

restart;
with(ExcelTools);
with(ListTools);
B := Import("C:\\Users\\s110950\\Dropbox\\Afstuderen\\New formula\\Importdata\\161005 - Staalprofielen.xlsx", "Blad1", "A7:AA344");

V := ["IPE 330", "IPE 360"];
currentdir("C:\\Users\\s110950\\Dropbox\\Afstuderen\\New formula\\Afrondingstraal")

for i  from 1 to 2 do
H := V[i];
cmaple.exe<"C:\\Users\\s110950\\Dropbox\\Afstuderen\\New formula\\Afrondingstraal\\Model38loop.mpl">;
 end do; 

However, it does not run the file. Does anyone know how to make it run?

Kind regards,
Bastiaan Overdorp

I've been tasked with generating "phase plots" which are visualizations of complex functions. 

A 2D phase plot is easy to create: Given a complex function F : C -> C colour points (x, y) in R^2 by [ arg(F(x+I*y)), 1, 1, colortype=HSV].   Something like the following seems to do the trick
    
    p := plot3d( 
        1,
        x=-5..5,
        y=-5..5,
        scaling=constrained,
        color=[ argument(f(x+I*y))/2/Pi, 1, 1, colortype=HSV],
        axes=none,
        style=patchnogrid,
    ):

    
    g := plottools[transform]((x,y,z)->[x,y],p);
    plots[display]( g(p) ):

Now, "colouring each point of R^2" is only possible using some type of bijection onto the Riemann sphere or Pseudosphere.

The pseudosphere is:

    x := (u,v) -> sech(u)*cos(v);
    y := sech(u)*sin(v);
    z := u - tanh(u);
    
    return  plot3d(
        [x(u,v),y(u,v),z(u,v)],
        u=0..3,
        v=0..2*Pi,
        numpoints=2^10,
        lightmodel=none,
        color=ColorFunc(u,v) );

In this case I need  ColorFunc to be:

ColorFunc := proc(u,v)
    x, y := v, exp(u);
    ans  := Re( f(x+I*y) );
    if ans > 2*Pi then
       return [0,0,0,colortype=HSV];
    end if;
    return [ans/2/Pi,1,1,colortype=HSV];
end proc;

But it seems that "ColorFunc" cannot be very sophisticated.  Namely, it cannot contain "frems" or even "if" statements because (as far as I can tell) of the order of evaluations.  

It seems possible that I can generate a psuedosphere then change colours AFTER by swapping out the COLOR information in a more sophisticated way.  How can I do this?  I really just need to know how to identify and swap out points from a MESH.

h1_y_h2.mw
 

(-9.481411*10^(-6)*(T__1(t)+T__1s(t))^2+2.1356735*10^(-3)*(T__1(t)+T__1s(t))+.5599920949)*(.825+.387*(((-(9.8*.11^3*4190)*(4.216485*10^(-2)-7.097451*10^(-3)*(T__1(t)+T__1s(t))+2.63217825*10^(-5)*(T__1(t)+T__1s(t))^2-4.9518879*10^(-8)*(T__1(t)+T__1s(t))^3)/(999.9399+2.1082425*10^(-2)*(T__1(t)+T__1s(t))-1.77436275*10^(-3)*(T__1(t)+T__1s(t))^2+.438696375*10^(-5)*(T__1(t)+T__1s(t))^3-.6189861563*10^(-8)*(T__1(t)+T__1s(t))^4))*((999.9399+2.1082425*10^(-2)*(T__1(t)+T__1s(t))-1.77436275*10^(-3)*(T__1(t)+T__1s(t))^2+.438696375*10^(-5)*(T__1(t)+T__1s(t))^3-.6189861563*10^(-8)*(T__1(t)+T__1s(t))^4)^2))*(T__1(t)-T__1s(t))/((0.178910466924394e-2-(0.593656020810955e-4*(1/2))*(T__1(t)+T__1s(t))+(0.130419399687942e-5*(1/4))*(T__1(t)+T__1s(t))^2-(1.79236416162215*(1/8))*10^(-8)*(T__1(t)+T__1s(t))^3+(1.33479173942873*(1/16))*10^(-10)*(T__1(t)+T__1s(t))^4-(4.03880841196434*(1/32))*10^(-13)*(T__1(t)+T__1s(t))^5)*(-9.481411*10^(-6)*(T__1(t)+T__1s(t))^2+2.1356735*10^(-3)*(T__1(t)+T__1s(t))+.5599920949)))^(1/6)/(1+((.492*(-9.481411*10^(-6)*(T__1(t)+T__1s(t))^2+2.1356735*10^(-3)*(T__1(t)+T__1s(t))+.5599920949))/(4190*(0.178910466924394e-2-(0.593656020810955e-4*(1/2))*(T__1(t)+T__1s(t))+(0.130419399687942e-5*(1/4))*(T__1(t)+T__1s(t))^2-(1.79236416162215*(1/8))*10^(-8)*(T__1(t)+T__1s(t))^3+(1.33479173942873*(1/16))*10^(-10)*(T__1(t)+T__1s(t))^4-(4.03880841196434*(1/32))*10^(-13)*(T__1(t)+T__1s(t))^5)))^(9/16))^(8/27))^2/(.11)

subs({T__1(t) = T__1, T__1s(t) = T__1s}, (-9.481411*10^(-6)*(T__1(t)+T__1s(t))^2+2.1356735*10^(-3)*(T__1(t)+T__1s(t))+.5599920949)*(.825+.387*(((-(9.8*.11^3*4190)*(4.216485*10^(-2)-7.097451*10^(-3)*(T__1(t)+T__1s(t))+2.63217825*10^(-5)*(T__1(t)+T__1s(t))^2-4.9518879*10^(-8)*(T__1(t)+T__1s(t))^3)/(999.9399+2.1082425*10^(-2)*(T__1(t)+T__1s(t))-1.77436275*10^(-3)*(T__1(t)+T__1s(t))^2+.438696375*10^(-5)*(T__1(t)+T__1s(t))^3-.6189861563*10^(-8)*(T__1(t)+T__1s(t))^4))*((999.9399+2.1082425*10^(-2)*(T__1(t)+T__1s(t))-1.77436275*10^(-3)*(T__1(t)+T__1s(t))^2+.438696375*10^(-5)*(T__1(t)+T__1s(t))^3-.6189861563*10^(-8)*(T__1(t)+T__1s(t))^4)^2))*(T__1(t)-T__1s(t))/((0.178910466924394e-2-(0.593656020810955e-4*(1/2))*(T__1(t)+T__1s(t))+(0.130419399687942e-5*(1/4))*(T__1(t)+T__1s(t))^2-(1.79236416162215*(1/8))*10^(-8)*(T__1(t)+T__1s(t))^3+(1.33479173942873*(1/16))*10^(-10)*(T__1(t)+T__1s(t))^4-(4.03880841196434*(1/32))*10^(-13)*(T__1(t)+T__1s(t))^5)*(-9.481411*10^(-6)*(T__1(t)+T__1s(t))^2+2.1356735*10^(-3)*(T__1(t)+T__1s(t))+.5599920949)))^(1/6)/(1+((.492*(-9.481411*10^(-6)*(T__1(t)+T__1s(t))^2+2.1356735*10^(-3)*(T__1(t)+T__1s(t))+.5599920949))/(4190*(0.178910466924394e-2-(0.593656020810955e-4*(1/2))*(T__1(t)+T__1s(t))+(0.130419399687942e-5*(1/4))*(T__1(t)+T__1s(t))^2-(1.79236416162215*(1/8))*10^(-8)*(T__1(t)+T__1s(t))^3+(1.33479173942873*(1/16))*10^(-10)*(T__1(t)+T__1s(t))^4-(4.03880841196434*(1/32))*10^(-13)*(T__1(t)+T__1s(t))^5)))^(9/16))^(8/27))^2/(.11))

9.090909091*(-0.9481411000e-5*(T__1+T__1s)^2+0.2135673500e-2*T__1+0.2135673500e-2*T__1s+.5599920949)*(.825+.387*(-54.6535220*(0.4216485000e-1-0.7097451000e-2*T__1-0.7097451000e-2*T__1s+0.2632178250e-4*(T__1+T__1s)^2-0.4951887900e-7*(T__1+T__1s)^3)*(999.9399+0.2108242500e-1*T__1+0.2108242500e-1*T__1s-0.1774362750e-2*(T__1+T__1s)^2+0.4386963750e-5*(T__1+T__1s)^3-0.6189861563e-8*(T__1+T__1s)^4)*(T__1-T__1s)/((0.178910466924394e-2-0.2968280104e-4*T__1-0.2968280104e-4*T__1s+0.3260484992e-6*(T__1+T__1s)^2-0.2240455202e-8*(T__1+T__1s)^3+0.8342448369e-11*(T__1+T__1s)^4-0.1262127629e-13*(T__1+T__1s)^5)*(-0.9481411000e-5*(T__1+T__1s)^2+0.2135673500e-2*T__1+0.2135673500e-2*T__1s+.5599920949)))^(1/6)/(1+.6710121288*((-0.9481411000e-5*(T__1+T__1s)^2+0.2135673500e-2*T__1+0.2135673500e-2*T__1s+.5599920949)/(7.496348563-.1243709364*T__1-.1243709364*T__1s+0.1366143212e-2*(T__1+T__1s)^2-0.9387507296e-5*(T__1+T__1s)^3+0.3495485867e-7*(T__1+T__1s)^4-0.5288314766e-10*(T__1+T__1s)^5))^(9/16))^(8/27))^2

(1)

h__1 := proc (T__1, T__1s) options operator, arrow; (-0.9481411000e-5*(T__1+T__1s)^2+0.2135673500e-2*T__1+0.2135673500e-2*T__1s+.5599920949)*(.825+.387*((0.4216485000e-1-0.7097451000e-2*T__1-0.7097451000e-2*T__1s+0.2632178250e-4*(T__1+T__1s)^2-0.4951887900e-7*(T__1+T__1s)^3)*(999.9399+0.2108242500e-1*T__1+0.2108242500e-1*T__1s-0.1774362750e-2*(T__1+T__1s)^2+0.4386963750e-5*(T__1+T__1s)^3-0.6189861563e-8*(T__1+T__1s)^4)*(T__1-T__1s)*(-54.6535220)/((0.178910466924394e-2-0.2968280104e-4*T__1-0.2968280104e-4*T__1s+0.3260484992e-6*(T__1+T__1s)^2-0.2240455202e-8*(T__1+T__1s)^3+0.8342448369e-11*(T__1+T__1s)^4-0.1262127629e-13*(T__1+T__1s)^5)*(-0.9481411000e-5*(T__1+T__1s)^2+0.2135673500e-2*T__1+0.2135673500e-2*T__1s+.5599920949)))^(1/6)/(1+.6710121288*((-0.9481411000e-5*(T__1+T__1s)^2+0.2135673500e-2*T__1+0.2135673500e-2*T__1s+.5599920949)/(7.496348563-.1243709364*T__1-.1243709364*T__1s+0.1366143212e-2*(T__1+T__1s)^2-0.9387507296e-5*(T__1+T__1s)^3+0.3495485867e-7*(T__1+T__1s)^4-0.5288314766e-10*(T__1+T__1s)^5))^(9/16))^(8/27))^2*9.090909091 end proc

proc (T__1, T__1s) options operator, arrow; (-0.9481411000e-5*((T__1+T__1s)^2)+0.2135673500e-2*T__1+0.2135673500e-2*T__1s+.5599920949)*(.825+.387*(((0.4216485000e-1-0.7097451000e-2*T__1-0.7097451000e-2*T__1s+0.2632178250e-4*((T__1+T__1s)^2)-0.4951887900e-7*((T__1+T__1s)^3))*(999.9399+0.2108242500e-1*T__1+0.2108242500e-1*T__1s-0.1774362750e-2*((T__1+T__1s)^2)+0.4386963750e-5*((T__1+T__1s)^3)-0.6189861563e-8*((T__1+T__1s)^4))*(T__1-T__1s)*(-1)*54.6535220/(((0.178910466924394e-2-0.2968280104e-4*T__1-0.2968280104e-4*T__1s+0.3260484992e-6*((T__1+T__1s)^2)-0.2240455202e-8*((T__1+T__1s)^3)+0.8342448369e-11*((T__1+T__1s)^4)-0.1262127629e-13*((T__1+T__1s)^5))*(-0.9481411000e-5*((T__1+T__1s)^2)+0.2135673500e-2*T__1+0.2135673500e-2*T__1s+.5599920949))))^(1/6))/(((1+.6710121288*(((-0.9481411000e-5*((T__1+T__1s)^2)+0.2135673500e-2*T__1+0.2135673500e-2*T__1s+.5599920949)/(7.496348563-.1243709364*T__1-.1243709364*T__1s+0.1366143212e-2*((T__1+T__1s)^2)-0.9387507296e-5*((T__1+T__1s)^3)+0.3495485867e-7*((T__1+T__1s)^4)-0.5288314766e-10*((T__1+T__1s)^5)))^(9/16)))^(8/27))))^2*9.090909091 end proc

(2)

(-9.481411*10^(-6)*(T__2(t)+T__2s(t))^2+2.1356735*10^(-3)*(T__2(t)+T__2s(t))+.5599920949)*(.825+.387*(((-(9.8*.11^3*4190)*(4.216485*10^(-2)-7.097451*10^(-3)*(T__2(t)+T__2s(t))+2.63217825*10^(-5)*(T__2(t)+T__2s(t))^2-4.9518879*10^(-8)*(T__2(t)+T__2s(t))^3)/(999.9399+2.1082425*10^(-2)*(T__2(t)+T__2s(t))-1.77436275*10^(-3)*(T__2(t)+T__2s(t))^2+.438696375*10^(-5)*(T__2(t)+T__2s(t))^3-.6189861563*10^(-8)*(T__2(t)+T__2s(t))^4))*((999.9399+2.1082425*10^(-2)*(T__2(t)+T__2s(t))-1.77436275*10^(-3)*(T__2(t)+T__2s(t))^2+.438696375*10^(-5)*(T__2(t)+T__2s(t))^3-.6189861563*10^(-8)*(T__2(t)+T__2s(t))^4)^2))*(T__2s(t)-T__2(t))/((0.178910466924394e-2-(0.593656020810955e-4*(1/2))*(T__2(t)+T__2s(t))+(0.130419399687942e-5*(1/4))*(T__2(t)+T__2s(t))^2-(1.79236416162215*(1/8))*10^(-8)*(T__2(t)+T__2s(t))^3+(1.33479173942873*(1/16))*10^(-10)*(T__2(t)+T__2s(t))^4-(4.03880841196434*(1/32))*10^(-13)*(T__2(t)+T__2s(t))^5)*(-9.481411*10^(-6)*(T__2(t)+T__2s(t))^2+2.1356735*10^(-3)*(T__2(t)+T__2s(t))+.5599920949)))^(1/6)/(1+((.492*(-9.481411*10^(-6)*(T__2(t)+T__2s(t))^2+2.1356735*10^(-3)*(T__2(t)+T__2s(t))+.5599920949))/(4190*(0.178910466924394e-2-(0.593656020810955e-4*(1/2))*(T__2(t)+T__2s(t))+(0.130419399687942e-5*(1/4))*(T__2(t)+T__2s(t))^2-(1.79236416162215*(1/8))*10^(-8)*(T__2(t)+T__2s(t))^3+(1.33479173942873*(1/16))*10^(-10)*(T__2(t)+T__2s(t))^4-(4.03880841196434*(1/32))*10^(-13)*(T__2(t)+T__2s(t))^5)))^(9/16))^(8/27))^2/(.11)

subs({T__2(t) = T__2, T__2s(t) = T__2s}, (-9.481411*10^(-6)*(T__2(t)+T__2s(t))^2+2.1356735*10^(-3)*(T__2(t)+T__2s(t))+.5599920949)*(.825+.387*(((-(9.8*.11^3*4190)*(4.216485*10^(-2)-7.097451*10^(-3)*(T__2(t)+T__2s(t))+2.63217825*10^(-5)*(T__2(t)+T__2s(t))^2-4.9518879*10^(-8)*(T__2(t)+T__2s(t))^3)/(999.9399+2.1082425*10^(-2)*(T__2(t)+T__2s(t))-1.77436275*10^(-3)*(T__2(t)+T__2s(t))^2+.438696375*10^(-5)*(T__2(t)+T__2s(t))^3-.6189861563*10^(-8)*(T__2(t)+T__2s(t))^4))*((999.9399+2.1082425*10^(-2)*(T__2(t)+T__2s(t))-1.77436275*10^(-3)*(T__2(t)+T__2s(t))^2+.438696375*10^(-5)*(T__2(t)+T__2s(t))^3-.6189861563*10^(-8)*(T__2(t)+T__2s(t))^4)^2))*(T__2s(t)-T__2(t))/((0.178910466924394e-2-(0.593656020810955e-4*(1/2))*(T__2(t)+T__2s(t))+(0.130419399687942e-5*(1/4))*(T__2(t)+T__2s(t))^2-(1.79236416162215*(1/8))*10^(-8)*(T__2(t)+T__2s(t))^3+(1.33479173942873*(1/16))*10^(-10)*(T__2(t)+T__2s(t))^4-(4.03880841196434*(1/32))*10^(-13)*(T__2(t)+T__2s(t))^5)*(-9.481411*10^(-6)*(T__2(t)+T__2s(t))^2+2.1356735*10^(-3)*(T__2(t)+T__2s(t))+.5599920949)))^(1/6)/(1+((.492*(-9.481411*10^(-6)*(T__2(t)+T__2s(t))^2+2.1356735*10^(-3)*(T__2(t)+T__2s(t))+.5599920949))/(4190*(0.178910466924394e-2-(0.593656020810955e-4*(1/2))*(T__2(t)+T__2s(t))+(0.130419399687942e-5*(1/4))*(T__2(t)+T__2s(t))^2-(1.79236416162215*(1/8))*10^(-8)*(T__2(t)+T__2s(t))^3+(1.33479173942873*(1/16))*10^(-10)*(T__2(t)+T__2s(t))^4-(4.03880841196434*(1/32))*10^(-13)*(T__2(t)+T__2s(t))^5)))^(9/16))^(8/27))^2/(.11))

9.090909091*(-0.9481411000e-5*(T__2+T__2s)^2+0.2135673500e-2*T__2+0.2135673500e-2*T__2s+.5599920949)*(.825+.387*(-54.6535220*(0.4216485000e-1-0.7097451000e-2*T__2-0.7097451000e-2*T__2s+0.2632178250e-4*(T__2+T__2s)^2-0.4951887900e-7*(T__2+T__2s)^3)*(999.9399+0.2108242500e-1*T__2+0.2108242500e-1*T__2s-0.1774362750e-2*(T__2+T__2s)^2+0.4386963750e-5*(T__2+T__2s)^3-0.6189861563e-8*(T__2+T__2s)^4)*(T__2s-T__2)/((0.178910466924394e-2-0.2968280104e-4*T__2-0.2968280104e-4*T__2s+0.3260484992e-6*(T__2+T__2s)^2-0.2240455202e-8*(T__2+T__2s)^3+0.8342448369e-11*(T__2+T__2s)^4-0.1262127629e-13*(T__2+T__2s)^5)*(-0.9481411000e-5*(T__2+T__2s)^2+0.2135673500e-2*T__2+0.2135673500e-2*T__2s+.5599920949)))^(1/6)/(1+.6710121288*((-0.9481411000e-5*(T__2+T__2s)^2+0.2135673500e-2*T__2+0.2135673500e-2*T__2s+.5599920949)/(7.496348563-.1243709364*T__2-.1243709364*T__2s+0.1366143212e-2*(T__2+T__2s)^2-0.9387507296e-5*(T__2+T__2s)^3+0.3495485867e-7*(T__2+T__2s)^4-0.5288314766e-10*(T__2+T__2s)^5))^(9/16))^(8/27))^2

(3)

h__2 := proc (T__2, T__2s) options operator, arrow; (-0.9481411000e-5*(T__2+T__2s)^2+0.2135673500e-2*T__2+0.2135673500e-2*T__2s+.5599920949)*(.825+.387*((0.4216485000e-1-0.7097451000e-2*T__2-0.7097451000e-2*T__2s+0.2632178250e-4*(T__2+T__2s)^2-0.4951887900e-7*(T__2+T__2s)^3)*(999.9399+0.2108242500e-1*T__2+0.2108242500e-1*T__2s-0.1774362750e-2*(T__2+T__2s)^2+0.4386963750e-5*(T__2+T__2s)^3-0.6189861563e-8*(T__2+T__2s)^4)*(T__2s-T__2)*(-54.6535220)/((0.178910466924394e-2-0.2968280104e-4*T__2-0.2968280104e-4*T__2s+0.3260484992e-6*(T__2+T__2s)^2-0.2240455202e-8*(T__2+T__2s)^3+0.8342448369e-11*(T__2+T__2s)^4-0.1262127629e-13*(T__2+T__2s)^5)*(-0.9481411000e-5*(T__2+T__2s)^2+0.2135673500e-2*T__2+0.2135673500e-2*T__2s+.5599920949)))^(1/6)/(1+.6710121288*((-0.9481411000e-5*(T__2+T__2s)^2+0.2135673500e-2*T__2+0.2135673500e-2*T__2s+.5599920949)/(7.496348563-.1243709364*T__2-.1243709364*T__2s+0.1366143212e-2*(T__2+T__2s)^2-0.9387507296e-5*(T__2+T__2s)^3+0.3495485867e-7*(T__2+T__2s)^4-0.5288314766e-10*(T__2+T__2s)^5))^(9/16))^(8/27))^2*9.090909091 end proc

proc (T__2, T__2s) options operator, arrow; (-0.9481411000e-5*((T__2+T__2s)^2)+0.2135673500e-2*T__2+0.2135673500e-2*T__2s+.5599920949)*(.825+.387*(((0.4216485000e-1-0.7097451000e-2*T__2-0.7097451000e-2*T__2s+0.2632178250e-4*((T__2+T__2s)^2)-0.4951887900e-7*((T__2+T__2s)^3))*(999.9399+0.2108242500e-1*T__2+0.2108242500e-1*T__2s-0.1774362750e-2*((T__2+T__2s)^2)+0.4386963750e-5*((T__2+T__2s)^3)-0.6189861563e-8*((T__2+T__2s)^4))*(T__2s-T__2)*(-1)*54.6535220/(((0.178910466924394e-2-0.2968280104e-4*T__2-0.2968280104e-4*T__2s+0.3260484992e-6*((T__2+T__2s)^2)-0.2240455202e-8*((T__2+T__2s)^3)+0.8342448369e-11*((T__2+T__2s)^4)-0.1262127629e-13*((T__2+T__2s)^5))*(-0.9481411000e-5*((T__2+T__2s)^2)+0.2135673500e-2*T__2+0.2135673500e-2*T__2s+.5599920949))))^(1/6))/(((1+.6710121288*(((-0.9481411000e-5*((T__2+T__2s)^2)+0.2135673500e-2*T__2+0.2135673500e-2*T__2s+.5599920949)/(7.496348563-.1243709364*T__2-.1243709364*T__2s+0.1366143212e-2*((T__2+T__2s)^2)-0.9387507296e-5*((T__2+T__2s)^3)+0.3495485867e-7*((T__2+T__2s)^4)-0.5288314766e-10*((T__2+T__2s)^5)))^(9/16)))^(8/27))))^2*9.090909091 end proc

(4)

``

``

im trying to build a matrix starting from a function, so i can later use this matrix to get a more simple function using linearfit from the statistics package, like a kind of regression.

i want to get a matrix starting from h__1(T1,T__1s) so it has to be a 3 columns matrix (T__1,T__1s,h__1). so as you can see, i have got the functions h__1 and h__2, but i need to evaluate it at differents values for T__1 and T__1s and building a kind of value-table in matrix form.

for h__1, T__1 must be higher than T__1s, or you could get imaginary values, don't know if that important for building the matrix.

thank you very much for your help.

Download h1_y_h2.mw

 

I want to plot some color points in CIE 1976 color space with SpatterPlot command exactly as showed on the help page. When I try:

restart:with(ColorTools):with(ImageTools):
barvy:=Color("Lab",[80.38,13.50,7.96]); 	
SpatterPlot(barvy,symbol="box");

I got the error:

Error, invalid input: ColorTools:-SpatterPlot expects its 1st argument, colors, to be of type list({ColorTools:-Color, name, string, list({float, nonnegint}), specfunc({COLOR, COLOUR})}), but received _m2194815429568

Where is the problem?
 

with(IterativeMaps);
with(ImageTools);
Logistic := Bifurcation([x], [r*x*(1-x)], [.5], 2.5, 4);
ArrayTools:-Dimensions(Logistic);
ColouringProcedures:-HueToRGB(Logistic);
Embed(Logistic);

This is the code for Bifurcation program of the Logistic map. How can I change the black background color of this figure, and How can I save this figure.

First 924 925 926 927 928 929 930 Last Page 926 of 2308