MaplePrimes Questions

any assistence here will be much appreciated the website gave me a zip containing the template tex and other files, but for what ever reason its not working when i copy in output using the maple to latex conversion feature from inside the interface. literally im sick of having to work outside of the maple interface but yes believe it or not this is the one thing i use to procrastinate writting a formal publication yep i really need the first one of those to get this done and dusted.

hi..when i use rule [for] in maple code i encounter error'''''

Error, (in dsolve/numeric/process_input) input system must be an ODE system, found {f1(x), f2(x), f3(x), ApproximateInt(-4*cos(theta)^2, theta = 0. .. 1, method = simpson), ApproximateInt(4*cos(theta)^2, theta = 0. .. 1, method = simpson), ApproximateInt(8*cos(theta)^2, theta = 0. .. 1, method = simpson)}''''''''

please help me for remove it

99999999999999.mw

i want for different beta for example beta=0, 40 and 80 this lines will computed three times  

 ''with(Student[Calculus1]); a1 := ApproximateInt(g1*g1, theta = a .. 1, method = simpson); a2 := ApproximateInt(2*(g1*g1)+3*g1*(diff(g1, theta, theta)), theta = a .. 1, method = simpson).......................''          

 by {for i from 1 by 1 to 3 do } and final gain ''ITRA_1_W[m] := eval(fy33*g3, fixedparameter)'' that have 3 amount.

when i use  rule {for i from 1 by 1 to 3 do ...  }   integral not computed and showed for example:::

a1=ApproximateInt(4*cos(theta)^2, theta = 0. .. 1, method = simpson)!!!!!!!!

thanks..

another problem with itegral, again intergal is getting unevaluated answers or folated ( infinity )
what should i do ?

``

``

restart

with(LinearAlgebra):

Digits := 30;

30

(1)

``

N := 8;

8

 

proc (x, s) options operator, arrow; exp(x*s) end proc

 

proc (x) options operator, arrow; exp(2*x)+(exp(x*(x+2))-exp(-x-2))/(x+2) end proc

(2)

alpha := -1/2;

-1/2

 

-1/2

(3)

for n from 0 to N+1 do J[n] := unapply(simplify((-1)^n*(1-x)^(-alpha)*(1+x)^(-beta)*(diff((1-x)^(n+alpha)*(1+x)^(n+beta), [`$`(x, n)]))/(2^n*factorial(n))), x) end do;

proc (x) options operator, arrow; 1 end proc

 

proc (x) options operator, arrow; (1/2)*x end proc

 

proc (x) options operator, arrow; (3/4)*x^2-3/8 end proc

 

proc (x) options operator, arrow; (5/4)*x^3-(15/16)*x end proc

 

proc (x) options operator, arrow; (35/16)*x^4-(35/16)*x^2+35/128 end proc

 

proc (x) options operator, arrow; (315/256)*x+(63/16)*x^5-(315/64)*x^3 end proc

 

proc (x) options operator, arrow; (231/32)*x^6-231/1024-(693/64)*x^4+(2079/512)*x^2 end proc

 

proc (x) options operator, arrow; -(3003/2048)*x+(429/32)*x^7-(3003/128)*x^5+(3003/256)*x^3 end proc

 

proc (x) options operator, arrow; (6435/256)*x^8+6435/32768-(6435/128)*x^6+(32175/1024)*x^4-(6435/1024)*x^2 end proc

 

proc (x) options operator, arrow; (109395/65536)*x+(12155/256)*x^9-(109395/1024)*x^7+(328185/4096)*x^5-(182325/8192)*x^3 end proc

(4)

u := unapply(exp(2*x), x);

proc (x) options operator, arrow; exp(2*x) end proc

(5)

for i from 0 to N do phi[i] := J[i](x) end do

1

 

(1/2)*x

 

(3/4)*x^2-3/8

 

(5/4)*x^3-(15/16)*x

 

(35/16)*x^4-(35/16)*x^2+35/128

 

(315/256)*x+(63/16)*x^5-(315/64)*x^3

 

(231/32)*x^6-231/1024-(693/64)*x^4+(2079/512)*x^2

 

-(3003/2048)*x+(429/32)*x^7-(3003/128)*x^5+(3003/256)*x^3

 

(6435/256)*x^8+6435/32768-(6435/128)*x^6+(32175/1024)*x^4-(6435/1024)*x^2

(6)

w1 := (1-x)^alpha*(1+x)^beta;

1/((1-x)^(1/2)*(1+x)^(1/2))

(7)

for j from 0 to N do S[j] := simplify(evalf(int(k(x, s)*subs(x = s, phi[j]), s = -1 .. x))) end do;

(-1.*exp(-1.*x)+1.*exp(x^2))/x

 

.5*(exp(x^2)*x^2+exp(-1.*x)*x+exp(-1.*x)-exp(x^2))/x^2

 

((.75*x^4-1.875*x^2+1.5)*exp(x^2)-.375*(x+2.)^2*exp(-1.*x))/x^3

 

((1.25*x^6-4.6875*x^4+8.4375*x^2-7.5)*exp(x^2)+(.3125*x^3+2.8125*x^2+7.5*x+7.5)*exp(-1.*x))/x^4

 

((2.1875*x^8-10.9375*x^6+30.8984375*x^4-56.875*x^2+52.5)*exp(x^2)+(-.2734375*x^4-4.375*x^3-21.875*x^2-52.5*x-52.5)*exp(-1.*x))/x^5

 

((3.9375*x^10-24.609375*x^8+94.74609375*x^6-267.01171875*x^4+502.03125*x^2-472.5)*exp(x^2)+(.24609375*x^5+6.15234375*x^4+49.21875*x^3+206.71875*x^2+472.5*x+472.5)*exp(-1.*x))/x^6

 

((7.21875*x^12-54.140625*x^10+263.935546875*x^8-1004.5341796875*x^6+2866.74609375*x^4-5457.375*x^2+5197.5)*exp(x^2)+(-.2255859375*x^6-8.12109375*x^5-94.74609375*x^4-606.375*x^3-2338.875*x^2-5197.5*x-5197.5)*exp(-1.*x))/x^7

 

((13.40625*x^14-117.3046875*x^12+692.09765625*x^10-3321.18896484375*x^8+12740.75537109375*x^6-36669.4453125*x^4+70382.8125*x^2-67567.5)*exp(x^2)+(.20947265625*x^7+10.26416015625*x^6+164.2265625*x^5+1478.0390625*x^4+8445.9375*x^3+30968.4375*x^2+67567.5*x+67567.5)*exp(-1.*x))/x^8

 

((25.13671875*x^16-251.3671875*x^14+1740.7177734375*x^12-10086.1083984375*x^10+48652.315521240234375*x^8-187783.857421875*x^6+543707.2265625*x^4-1049709.375*x^2+1013512.5)*exp(x^2)+(-.196380615234375*x^8-12.568359375*x^7-263.935546875*x^6-3167.2265625*x^5-24885.3515625*x^4-132721.875*x^3-470559.375*x^2-1013512.5*x-1013512.5)*exp(-1.*x))/x^9

(8)

A := Matrix(N+1, N+1):

for i from 0 to N do for j from 0 to N do A[i+1, j+1] := evalf(Int(phi[i]*phi[j]*w1, x = -1 .. 1, epsilon = 0.1e-24)) end do end do;

A

Matrix([[3.14159265358979323846264338328, 0., 0.111111111111111111111111111111e-32, 0., -0.333333333333333333333333333333e-32, 0., -0.173333333333333333333333333333e-31, 0., -0.291851851851851851851851851852e-30], [0., .392699081698724154807830422910, 0., 0.370370370370370370370370370370e-33, 0., -0.370370370370370370370370370370e-33, 0., -0.718518518518518518518518518519e-32, 0.], [0.111111111111111111111111111111e-32, 0., .220893233455532337079404612887, 0., 0.407407407407407407407407407407e-33, 0., 0.666666666666666666666666666667e-32, 0., 0.966666666666666666666666666667e-31], [0., 0.370370370370370370370370370370e-33, 0., .153398078788564122971808758949, 0., 0.740740740740740740740740740741e-33, 0., 0.128888888888888888888888888889e-31, 0.], [-0.333333333333333333333333333333e-32, 0., 0.407407407407407407407407407407e-33, 0., .117445404072494406650291081070, 0., -0.429629629629629629629629629630e-32, 0., -0.459259259259259259259259259259e-31], [0., -0.370370370370370370370370370370e-33, 0., 0.740740740740740740740740740741e-33, 0., 0.951307772987204693867357756671e-1, 0., -0.135555555555555555555555555556e-31, 0.], [-0.173333333333333333333333333333e-31, 0., 0.666666666666666666666666666667e-32, 0., -0.429629629629629629629629629630e-32, 0., 0.799362781468415055263543670536e-1, 0., 0.157777777777777777777777777778e-31], [0., -0.718518518518518518518518518519e-32, 0., 0.128888888888888888888888888889e-31, 0., -0.135555555555555555555555555556e-31, 0., 0.689246479939602777242545307758e-1, 0.], [-0.291851851851851851851851851852e-30, 0., 0.966666666666666666666666666667e-31, 0., -0.459259259259259259259259259259e-31, 0., 0.157777777777777777777777777778e-31, 0., 0.605783039009416503435830836897e-1]])

(9)

B := Matrix(N+1, N+1):

for j from 0 to N do for i from 0 to N do B[i+1, j+1] := evalf(Int(simplify(phi[i]*S[j]*w1), x = -1 .. 1, epsilon = 0.1e-5), 15) end do end do;

B := Matrix(B)

B := Matrix(9, 9, {(1, 1) = 3.41340669637960, (1, 2) = -.219853801558141, (1, 3) = -.371445167328337, (1, 4) = -0.940736800940411e-2, (1, 5) = -0.845889943042008e-1, (1, 6) = 0.334727115780295e-1, (1, 7) = -0.257221402047336e84, (1, 8) = Float(infinity), (1, 9) = Float(undefined), (2, 1) = .765483256689808, (2, 2) = .141014141031686, (2, 3) = -.165532642864785, (2, 4) = -0.499428359428865e-1, (2, 5) = -0.73434901130578e-2, (2, 6) = -0.111757807839544e-1, (2, 7) = 0.123803381671991e68, (2, 8) = Float(undefined), (2, 9) = Float(-infinity), (3, 1) = 0.515972557667626e-1, (3, 2) = .125811948358948, (3, 3) = 0.408759073542022e-2, (3, 4) = -0.716662760034337e-1, (3, 5) = -0.51685004360437e-2, (3, 6) = 0.716801959003042e67, (3, 7) = Int((43.3125*(2.*x^2-1.)*(0.625e-1*x^12-.46875*x^10+2.28515625*x^8-8.697265625*x^6+24.8203125*x^4-47.25*x^2+45.)*exp(x^2)+43.3125*(2.*x^2-1.)*(-0.1953125e-2*x^6-0.703125e-1*x^5-.8203125*x^4-5.25*x^3-20.25*x^2-45.*x-45.)*exp(-1.*x))/((1.+x)^(1/2)*(1.-1.*x)^(1/2)*x^7), x = -1. .. 1.), (3, 8) = Float(-infinity), (3, 9) = Float(infinity), (4, 1) = 0.899030920810901e-1, (4, 2) = 0.21384118669396e-2, (4, 3) = 0.393313755295959e-1, (4, 4) = -0.17596837269261e-3, (4, 5) = -0.341293873201944e-1, (4, 6) = -0.107499338429209e52, (4, 7) = 0.188236331912532e46, (4, 8) = Float(-infinity), (4, 9) = Int(0.625000000000000e-1*((-15202687.5+502.73437500*x^18-5404.39453125*x^16+38584.8632812500*x^14-227832.934570312*x^12+1124337.93640137*x^10-4485461.88125610*x^8+13690902.3925781*x^6-29149795.8984375*x^4+36015890.625*x^2)*exp(x^2)+5.*(4.*x^2-3.)*(-.196380615234375*x^8-12.568359375*x^7-263.935546875*x^6-3167.2265625*x^5-24885.3515625*x^4-132721.875*x^3-470559.375*x^2-1013512.5*x-1013512.5)*exp(-1.*x))/((1.+x)^(1/2)*(1.-1.*x)^(1/2)*x^8), x = -1. .. 1.), (5, 1) = 0.463651486782722e-3, (5, 2) = 0.157757505144122e-1, (5, 3) = 0.7529674755144e-4, (5, 4) = 0.205695133452456e-1, (5, 5) = 0.323627840089429e50, (5, 6) = -0.194229780735106e-1, (5, 7) = Int((31.58203125*(8.*x^4-8.*x^2+1.)*(0.625e-1*x^12-.46875*x^10+2.28515625*x^8-8.697265625*x^6+24.8203125*x^4-47.25*x^2+45.)*exp(x^2)+31.58203125*(8.*x^4-8.*x^2+1.)*(-0.1953125e-2*x^6-0.703125e-1*x^5-.8203125*x^4-5.25*x^3-20.25*x^2-45.*x-45.)*exp(-1.*x))/((1.+x)^(1/2)*(1.-1.*x)^(1/2)*x^7), x = -1. .. 1.), (5, 8) = Float(infinity), (5, 9) = Float(-infinity), (6, 1) = 0.63086454697723e-2, (6, 2) = 0.148539925067e-4, (6, 3) = 0.678853225186884e-2, (6, 4) = 0.10778334378e-5, (6, 5) = 0.131282639565718e-1, (6, 6) = -0.271179086613e-5, (6, 7) = -0.124971422339580e-1, (6, 8) = -0.810764520616245e86, (6, 9) = 0.973719186742316e103, (7, 1) = 0.225892591375e-5, (7, 2) = 0.119535935984917e-2, (7, 3) = 0.47254024736e-6, (7, 4) = 0.406635846209016e-2, (7, 5) = -0.353102865787386e29, (7, 6) = 0.914224761911803e-2, (7, 7) = Int(0.976562500000000e-3*(231.*(32.*x^6-48.*x^4+18.*x^2-1.)*(7.21875*x^12-54.140625*x^10+263.935546875*x^8-1004.5341796875*x^6+2866.74609375*x^4-5457.375*x^2+5197.5)*exp(x^2)+231.*(32.*x^6-48.*x^4+18.*x^2-1.)*(-.2255859375*x^6-8.12109375*x^5-94.74609375*x^4-606.375*x^3-2338.875*x^2-5197.5*x-5197.5)*exp(-1.*x))/((1.+x)^(1/2)*(1.-1.*x)^(1/2)*x^7), x = -1. .. 1.), (7, 8) = Int(0.976562500000000e-3*(231.*(32.*x^6-48.*x^4+18.*x^2-1.)*(13.40625*x^14-117.3046875*x^12+692.09765625*x^10-3321.18896484375*x^8+12740.7553710938*x^6-36669.4453125*x^4+70382.8125*x^2-67567.5)*exp(x^2)+231.*(32.*x^6-48.*x^4+18.*x^2-1.)*(.20947265625*x^7+10.26416015625*x^6+164.2265625*x^5+1478.0390625*x^4+8445.9375*x^3+30968.4375*x^2+67567.5*x+67567.5)*exp(-1.*x))/((1.+x)^(1/2)*(1.-1.*x)^(1/2)*x^8), x = -1. .. 1.), (7, 9) = Int(0.976562500000000e-3*(231.*(32.*x^6-48.*x^4+18.*x^2-1.)*(25.13671875*x^16-251.3671875*x^14+1740.7177734375*x^12-10086.1083984375*x^10+48652.3155212402*x^8-187783.857421875*x^6+543707.2265625*x^4-1049709.375*x^2+1013512.5)*exp(x^2)+231.*(32.*x^6-48.*x^4+18.*x^2-1.)*(-.196380615234375*x^8-12.568359375*x^7-263.935546875*x^6-3167.2265625*x^5-24885.3515625*x^4-132721.875*x^3-470559.375*x^2-1013512.5*x-1013512.5)*exp(-1.*x))/((1.+x)^(1/2)*(1.-1.*x)^(1/2)*x^9), x = -1. .. 1.), (8, 1) = 0.340365610524644e-3, (8, 2) = 0.5813755404e-7, (8, 3) = 0.59941816605747e-3, (8, 4) = 0.1233441019e-7, (8, 5) = 0.275221040025479e-2, (8, 6) = -0.804784322e-8, (8, 7) = -0.187505962866890e33, (8, 8) = Int(0.488281250000000e-3*(429.*(64.*x^6-112.*x^4+56.*x^2-7.)*(13.40625*x^14-117.3046875*x^12+692.09765625*x^10-3321.18896484375*x^8+12740.7553710938*x^6-36669.4453125*x^4+70382.8125*x^2-67567.5)*exp(x^2)+429.*(64.*x^6-112.*x^4+56.*x^2-7.)*(.20947265625*x^7+10.26416015625*x^6+164.2265625*x^5+1478.0390625*x^4+8445.9375*x^3+30968.4375*x^2+67567.5*x+67567.5)*exp(-1.*x))/((1.+x)^(1/2)*(1.-1.*x)^(1/2)*x^7), x = -1. .. 1.), (8, 9) = Int(0.488281250000000e-3*(429.*(64.*x^6-112.*x^4+56.*x^2-7.)*(25.13671875*x^16-251.3671875*x^14+1740.7177734375*x^12-10086.1083984375*x^10+48652.3155212402*x^8-187783.857421875*x^6+543707.2265625*x^4-1049709.375*x^2+1013512.5)*exp(x^2)+429.*(64.*x^6-112.*x^4+56.*x^2-7.)*(-.196380615234375*x^8-12.568359375*x^7-263.935546875*x^6-3167.2265625*x^5-24885.3515625*x^4-132721.875*x^3-470559.375*x^2-1013512.5*x-1013512.5)*exp(-1.*x))/((1.+x)^(1/2)*(1.-1.*x)^(1/2)*x^8), x = -1. .. 1.), (9, 1) = 0.6793714722e-8, (9, 2) = 0.68406690337078e-4, (9, 3) = 0.1624492831e-8, (9, 4) = 0.386156856246160e-3, (9, 5) = 0.815546544069708e28, (9, 6) = -0.277132564813689e67, (9, 7) = Int(0.305175781250000e-4*(6435.*(128.*x^8-256.*x^6+160.*x^4-32.*x^2+1.)*(7.21875*x^12-54.140625*x^10+263.935546875*x^8-1004.5341796875*x^6+2866.74609375*x^4-5457.375*x^2+5197.5)*exp(x^2)+6435.*(128.*x^8-256.*x^6+160.*x^4-32.*x^2+1.)*(-.2255859375*x^6-8.12109375*x^5-94.74609375*x^4-606.375*x^3-2338.875*x^2-5197.5*x-5197.5)*exp(-1.*x))/((1.+x)^(1/2)*(1.-1.*x)^(1/2)*x^7), x = -1. .. 1.), (9, 8) = Int(0.305175781250000e-4*(6435.*(128.*x^8-256.*x^6+160.*x^4-32.*x^2+1.)*(13.40625*x^14-117.3046875*x^12+692.09765625*x^10-3321.18896484375*x^8+12740.7553710938*x^6-36669.4453125*x^4+70382.8125*x^2-67567.5)*exp(x^2)+6435.*(128.*x^8-256.*x^6+160.*x^4-32.*x^2+1.)*(.20947265625*x^7+10.26416015625*x^6+164.2265625*x^5+1478.0390625*x^4+8445.9375*x^3+30968.4375*x^2+67567.5*x+67567.5)*exp(-1.*x))/((1.+x)^(1/2)*(1.-1.*x)^(1/2)*x^8), x = -1. .. 1.), (9, 9) = Int(0.305175781250000e-4*(6435.*(128.*x^8-256.*x^6+160.*x^4-32.*x^2+1.)*(25.13671875*x^16-251.3671875*x^14+1740.7177734375*x^12-10086.1083984375*x^10+48652.3155212402*x^8-187783.857421875*x^6+543707.2265625*x^4-1049709.375*x^2+1013512.5)*exp(x^2)+6435.*(128.*x^8-256.*x^6+160.*x^4-32.*x^2+1.)*(-.196380615234375*x^8-12.568359375*x^7-263.935546875*x^6-3167.2265625*x^5-24885.3515625*x^4-132721.875*x^3-470559.375*x^2-1013512.5*x-1013512.5)*exp(-1.*x))/((1.+x)^(1/2)*(1.-1.*x)^(1/2)*x^9), x = -1. .. 1.)})

(10)

G := Vector(N+1):

for i from 0 to N do G[i+1] := evalf(Int(phi[i]*g(x)*w1, x = -1 .. 1, epsilon = 0.1e-24)) end do;

12.1371438004283064513879002531

 

4.46097069166807099930513349705

 

1.64462130209908212771492915391

 

.558865818865511551008391285165

 

.171719662671619385727054996451

 

0.517117975778639694922219536331e-1

 

0.149941760016965250201187504967e-1

 

0.424140250877931274184205530350e-2

 

0.114813711532765772695860143813e-2

(11)

G[1]

12.1371438004283064513879002531

(12)

C := simplify(Matrix(A+B))

C := Matrix(9, 9, {(1, 1) = 6.55499934996939323846264338328, (1, 2) = -.219853801558141, (1, 3) = -.371445167328337, (1, 4) = -0.940736800940411e-2, (1, 5) = -0.845889943042008000000000000000e-1, (1, 6) = 0.334727115780295e-1, (1, 7) = -0.257221402047336e84, (1, 8) = Float(infinity), (1, 9) = Float(undefined), (2, 1) = .765483256689808, (2, 2) = .533713222730410154807830422910, (2, 3) = -.165532642864785, (2, 4) = -0.499428359428865e-1, (2, 5) = -0.73434901130578e-2, (2, 6) = -0.111757807839544e-1, (2, 7) = 0.123803381671991e68, (2, 8) = Float(undefined), (2, 9) = Float(-infinity), (3, 1) = 0.515972557667626000000000000000e-1, (3, 2) = .125811948358948, (3, 3) = .224980824190952557079404612887, (3, 4) = -0.716662760034337e-1, (3, 5) = -0.516850043604370000000000000000e-2, (3, 6) = 0.716801959003042e67, (3, 7) = 0.666666666666666666666666666667e-32+43.3125*(Int(((-45.+.1250*x^14-1.00000*x^12+5.03906250*x^10-19.679687500*x^8+58.337890625*x^6-119.3203125*x^4+137.25*x^2)*exp(x^2)+(2.*x^2-1.)*(-0.1953125e-2*x^6-0.703125e-1*x^5-.8203125*x^4-5.25*x^3-20.25*x^2-45.*x-45.)*exp(-1.*x))/((1.+x)^(1/2)*(1.-x)^(1/2)*x^7), x = -1. .. 1.)), (3, 8) = Float(-infinity), (3, 9) = Float(infinity), (4, 1) = 0.899030920810901e-1, (4, 2) = 0.213841186693960000000000000000e-2, (4, 3) = 0.393313755295959e-1, (4, 4) = .153222110415871512971808758949, (4, 5) = -0.341293873201944e-1, (4, 6) = -0.107499338429209e52, (4, 7) = 0.188236331912532e46, (4, 8) = Float(-infinity), (4, 9) = 0.3125e-1*(Int(((-30405375.+1005.46875*x^18-10808.7890625*x^16+77169.7265625*x^14-455665.869140624*x^12+2248675.87280274*x^10-8970923.7625122*x^8+27381804.7851562*x^6-58299591.796875*x^4+72031781.25*x^2)*exp(x^2)+(-7.855224609375*x^10-502.734375*x^9-10551.53045654296875*x^8-126312.01171875*x^7-987495.99609375*x^6-5213858.203125*x^5-18075814.453125*x^4-36558843.75*x^3-26423718.75*x^2+30405375.*x+30405375.)*exp(-1.*x))/((1.+x)^(1/2)*(1.-x)^(1/2)*x^8), x = -1. .. 1.)), (5, 1) = 0.463651486782721999999999999997e-3, (5, 2) = 0.157757505144122e-1, (5, 3) = 0.752967475514400000000000000004e-4, (5, 4) = 0.205695133452456e-1, (5, 5) = 0.323627840089429e50, (5, 6) = -0.194229780735106e-1, (5, 7) = -0.429629629629629629629629629630e-32+31.58203125*(Int(((8.*x^4-8.*x^2+1.)*(0.625e-1*x^12-.46875*x^10+2.28515625*x^8-8.697265625*x^6+24.8203125*x^4-47.25*x^2+45.)*exp(x^2)+(8.*x^4-8.*x^2+1.)*(-0.1953125e-2*x^6-0.703125e-1*x^5-.8203125*x^4-5.25*x^3-20.25*x^2-45.*x-45.)*exp(-1.*x))/((1.+x)^(1/2)*(1.-x)^(1/2)*x^7), x = -1. .. 1.)), (5, 8) = Float(infinity), (5, 9) = Float(-infinity), (6, 1) = 0.63086454697723e-2, (6, 2) = 0.148539925066999999999999999996e-4, (6, 3) = 0.678853225186884e-2, (6, 4) = 0.107783343780000000000000000074e-5, (6, 5) = 0.131282639565718e-1, (6, 6) = 0.951280655078543393867357756671e-1, (6, 7) = -0.124971422339580e-1, (6, 8) = -0.810764520616245e86, (6, 9) = 0.973719186742316e103, (7, 1) = 0.225892591374999999999999998267e-5, (7, 2) = 0.119535935984917e-2, (7, 3) = 0.472540247360000000000000006667e-6, (7, 4) = 0.406635846209016e-2, (7, 5) = -0.353102865787386e29, (7, 6) = 0.914224761911803e-2, (7, 7) = 0.799362781468415055263543670536e-1+26.05517578125*(Int(((32.*x^6-48.*x^4+18.*x^2-1.)*(0.625e-1*x^12-.46875*x^10+2.28515625*x^8-8.697265625*x^6+24.8203125*x^4-47.25*x^2+45.)*exp(x^2)+(32.*x^6-48.*x^4+18.*x^2-1.)*(-0.1953125e-2*x^6-0.703125e-1*x^5-.8203125*x^4-5.25*x^3-20.25*x^2-45.*x-45.)*exp(-1.*x))/((1.+x)^(1/2)*(1.-x)^(1/2)*x^7), x = -1. .. 1.)), (7, 8) = .11279296875*(Int(((32.*x^6-48.*x^4+18.*x^2-1.)*(26.8125*x^14-234.609375*x^12+1384.1953125*x^10-6642.3779296875*x^8+25481.5107421876*x^6-73338.890625*x^4+140765.625*x^2-135135.)*exp(x^2)+(32.*x^6-48.*x^4+18.*x^2-1.)*(.4189453125*x^7+20.5283203125*x^6+328.453125*x^5+2956.078125*x^4+16891.875*x^3+61936.875*x^2+135135.*x+135135.)*exp(-1.*x))/((1.+x)^(1/2)*(1.-x)^(1/2)*x^8), x = -1. .. 1.)), (7, 9) = 0.157777777777777777777777777778e-31+1.24072265625*(Int(((32.*x^6-48.*x^4+18.*x^2-1.)*(4.5703125*x^16-45.703125*x^14+316.494140625*x^12-1833.837890625*x^10+8845.8755493164*x^8-34142.51953125*x^6+98855.859375*x^4-190856.25*x^2+184275.)*exp(x^2)+(32.*x^6-48.*x^4+18.*x^2-1.)*(-0.3570556640625e-1*x^8-2.28515625*x^7-47.98828125*x^6-575.859375*x^5-4524.609375*x^4-24131.25*x^3-85556.25*x^2-184275.*x-184275.)*exp(-1.*x))/((1.+x)^(1/2)*(1.-x)^(1/2)*x^9), x = -1. .. 1.)), (8, 1) = 0.340365610524644e-3, (8, 2) = 0.581375540399999999999999928148e-7, (8, 3) = 0.59941816605747e-3, (8, 4) = 0.123344101900000000000000128889e-7, (8, 5) = 0.275221040025479e-2, (8, 6) = -0.804784322000000000000001355556e-8, (8, 7) = -0.187505962866890e33, (8, 8) = 0.689246479939602777242545307758e-1+.104736328125*(Int(((64.*x^6-112.*x^4+56.*x^2-7.)*(26.8125*x^14-234.609375*x^12+1384.1953125*x^10-6642.3779296875*x^8+25481.5107421876*x^6-73338.890625*x^4+140765.625*x^2-135135.)*exp(x^2)+(64.*x^6-112.*x^4+56.*x^2-7.)*(.4189453125*x^7+20.5283203125*x^6+328.453125*x^5+2956.078125*x^4+16891.875*x^3+61936.875*x^2+135135.*x+135135.)*exp(-1.*x))/((1.+x)^(1/2)*(1.-x)^(1/2)*x^7), x = -1. .. 1.)), (8, 9) = 1.152099609375*(Int(((64.*x^6-112.*x^4+56.*x^2-7.)*(4.5703125*x^16-45.703125*x^14+316.494140625*x^12-1833.837890625*x^10+8845.8755493164*x^8-34142.51953125*x^6+98855.859375*x^4-190856.25*x^2+184275.)*exp(x^2)+(64.*x^6-112.*x^4+56.*x^2-7.)*(-0.3570556640625e-1*x^8-2.28515625*x^7-47.98828125*x^6-575.859375*x^5-4524.609375*x^4-24131.25*x^3-85556.25*x^2-184275.*x-184275.)*exp(-1.*x))/((1.+x)^(1/2)*(1.-x)^(1/2)*x^8), x = -1. .. 1.)), (9, 1) = 0.679371472199999999999970814815e-8, (9, 2) = 0.68406690337078e-4, (9, 3) = 0.162449283100000000000009666667e-8, (9, 4) = 0.386156856246160e-3, (9, 5) = 0.815546544069708e28, (9, 6) = -0.277132564813689e67, (9, 7) = 0.157777777777777777777777777778e-31+22.6819610595703125*(Int(((128.*x^8-256.*x^6+160.*x^4-32.*x^2+1.)*(0.625e-1*x^12-.46875*x^10+2.28515625*x^8-8.697265625*x^6+24.8203125*x^4-47.25*x^2+45.)*exp(x^2)+(128.*x^8-256.*x^6+160.*x^4-32.*x^2+1.)*(-0.1953125e-2*x^6-0.703125e-1*x^5-.8203125*x^4-5.25*x^3-20.25*x^2-45.*x-45.)*exp(-1.*x))/((1.+x)^(1/2)*(1.-x)^(1/2)*x^7), x = -1. .. 1.)), (9, 8) = 0.196380615234375e-1*(Int(((128.*x^8-256.*x^6+160.*x^4-32.*x^2+1.)*(134.0625*x^14-1173.046875*x^12+6920.9765625*x^10-33211.8896484375*x^8+127407.553710938*x^6-366694.453125*x^4+703828.125*x^2-675675.)*exp(x^2)+(128.*x^8-256.*x^6+160.*x^4-32.*x^2+1.)*(2.0947265625*x^7+102.6416015625*x^6+1642.265625*x^5+14780.390625*x^4+84459.375*x^3+309684.375*x^2+675675.*x+675675.)*exp(-1.*x))/((1.+x)^(1/2)*(1.-x)^(1/2)*x^8), x = -1. .. 1.)), (9, 9) = 0.605783039009416503435830836897e-1+.2160186767578125*(Int(((128.*x^8-256.*x^6+160.*x^4-32.*x^2+1.)*(22.8515625*x^16-228.515625*x^14+1582.470703125*x^12-9169.189453125*x^10+44229.377746582*x^8-170712.59765625*x^6+494279.296875*x^4-954281.25*x^2+921375.)*exp(x^2)+(128.*x^8-256.*x^6+160.*x^4-32.*x^2+1.)*(-.17852783203125*x^8-11.42578125*x^7-239.94140625*x^6-2879.296875*x^5-22623.046875*x^4-120656.25*x^3-427781.25*x^2-921375.*x-921375.)*exp(-1.*x))/((1.+x)^(1/2)*(1.-x)^(1/2)*x^9), x = -1. .. 1.))})

(13)

C1 := MatrixInverse(C)

Warning,  computation interrupted

 

``

t := C1.G

s[u] := add(subs(theta = sols[l+1], ((x+1)*(1/2))*k(x, ss(x, theta)))*u(ss(x, sols[l+1])), l = 0 .. N)

U := unapply(add(t[j+1].phi[j], j = 0 .. N), x)

``

with(numapprox)

E := infnorm(abs(u(x)-U(x)), x = -1 .. 1)

``

E[1] := (int((u(x)-U(x))^2, x = -1 .. .1))^(1/2)

``

plot([U(x), u(x)], x = -1 .. 1)

 

``

NULL

 

Download chebichef_cont.mw

 Hi all,

 Is there anyone who could help me with this error? I am sure there is at least one solution for the equation.

 Thanks

Maple Worksheet - Error

Failed to load the worksheet /maplenet/convert/EQ.mw .

Download EQ.mw

Typically sets are created like:

A:={a,b,c};

B:={c,q,w,e};

and then you can carryout A union B or B\A

 

what if  you wanted to create the set as

A:={values in some three dimensional space};

B:={volume, based on values taken from A};

Can these relationships be set up in Maple? If so, how? If there are commands that specifically handle these types of sets, what does maple call them?  I've seen the term 'set function' but what might Maple call them?

Note: I am not even sure i 'tagged' this correctly because it I am not sure the proper terms for these functions/sets.

Thanks in advance for any help.

I read a posting by Mr. Stephen Forrest on Thingiverse about using the exportplot command to export a 3D plot as a .stl file. I have a 3D printer and need the convert the plot from the Maple file into an .stl file.

Here is the posting I am referencing:

Thingiverse/3dmodelimportexport.pdf

I was able to follow the commands successfully in the referenced paper for a hyperboloid or revolution that I plotted in Maple - it was very helpful. However, I could not figure out how to access the temporary .stl file that was created so that I could open it using my 3D printer's software.

My question is: Once I execute the "exportplot(stl, hyprev)" command that I inputted, how can I find the file in the Temporary Directory in order to open it from the software I use for my 3D printer?

I would appreciate any further details you can provide for accessing the temporary .stl file I created in order to be able to print the object.

Thank you!

I wote a command that creates a plot with a single point:

plots[pointplot](a*[1, 1])

Before hitting Enter I called the context menu and chose Explore. As I change the parameter a the point remains fixed in the picture but the scales change. I wanted the opposite: the scales should stay fixed and the point should move. How can I do this using Explore or in some other way? I would like to see the point move as I drag a slider control.

Thanks for the help.

 

hi every one , i have a problem with integration,which one is correct !? also when i remove epsilon option, it returns unevaluated integral . can i have crorrect and reliable answer?

restart

with(LinearAlgebra):

Digits := 30;

30

(1)

``

N := 4;

4

 

proc (x, s) options operator, arrow; exp(x*s) end proc

 

proc (x) options operator, arrow; exp(2*x)+(exp(x*(x+2))-exp(-x-2))/(x+2) end proc

(2)

alpha := -1/2;

-1/2

 

-1/2

(3)

for n from 0 to N+1 do J[n] := unapply(simplify((-1)^n*(1-x)^(-alpha)*(1+x)^(-beta)*(diff((1-x)^(n+alpha)*(1+x)^(n+beta), [`$`(x, n)]))/(2^n*factorial(n))), x) end do;

proc (x) options operator, arrow; 1 end proc

 

proc (x) options operator, arrow; (1/2)*x end proc

 

proc (x) options operator, arrow; (3/4)*x^2-3/8 end proc

 

proc (x) options operator, arrow; (5/4)*x^3-(15/16)*x end proc

 

proc (x) options operator, arrow; (35/16)*x^4-(35/16)*x^2+35/128 end proc

 

proc (x) options operator, arrow; (315/256)*x+(63/16)*x^5-(315/64)*x^3 end proc

(4)

u := unapply(exp(2*x), x);

proc (x) options operator, arrow; exp(2*x) end proc

(5)

for i from 0 to N do phi[i] := J[i](x) end do

1

 

(1/2)*x

 

(3/4)*x^2-3/8

 

(5/4)*x^3-(15/16)*x

 

(35/16)*x^4-(35/16)*x^2+35/128

(6)

w1 := (1-x)^alpha*(1+x)^beta;

1/((1-x)^(1/2)*(1+x)^(1/2))

(7)

for j from 0 to N do S[j] := simplify(evalf(int(k(x, s)*subs(x = s, phi[j]), s = -1 .. x))) end do;

(-1.*exp(-1.*x)+1.*exp(x^2))/x

 

.5*(exp(x^2)*x^2+exp(-1.*x)*x+exp(-1.*x)-exp(x^2))/x^2

 

((.75*x^4-1.875*x^2+1.5)*exp(x^2)-.375*(x+2.)^2*exp(-1.*x))/x^3

 

((1.25*x^6-4.6875*x^4+8.4375*x^2-7.5)*exp(x^2)+(.3125*x^3+2.8125*x^2+7.5*x+7.5)*exp(-1.*x))/x^4

 

((2.1875*x^8-10.9375*x^6+30.8984375*x^4-56.875*x^2+52.5)*exp(x^2)+(-.2734375*x^4-4.375*x^3-21.875*x^2-52.5*x-52.5)*exp(-1.*x))/x^5

(8)

for i from 0 to N do evalf(Int(phi[i]*S[3]*w1, x = -1 .. 1, epsilon = 0.1e-24)) end do

-0.940736801761282474970573535984e-2

 

-0.499428361530268194608821964968e-1

 

-0.716662760275484038621082776589e-1

 

-0.175968374179810236471161325565e-3

 

0.205695155661022012897834537769e-1

(9)

for i from 0 to N do evalf(Student:-Calculus1:-ApproximateInt(phi[i]*S[3]*w1, x = -1 .. 1)) end do

0.112342629325121433520368350257e-1

 

-0.372785154811933200270010346236e-1

 

-0.625152339329758587804224387138e-1

 

0.880883783666879589242935631796e-2

 

0.300672960958837351790545896762e-1

(10)

 

NULL

 

Download kk.mw

I use Maple on a Surface Pro 4 tablet and the math input panel does not work with Maple.  This would be a great feature to have.  Or does anybody know how to get it working?

Why can't I sub both values at the same time and/or why does k stay symbolic but not d?

how i tackle an bvp ode,derivative involve in bcs.i want to solve by dsolve comand or by using Rk meethod.i am attaching the maple sheet,ode wrrten in attached maple sheet

thank you  

restart

NULL

NULL

NULL

``

``

 few boundary conditions: expected 7, got 2

 

``

NULL


Download kummer_sol.mwkummer_sol.mw

restart

NULL

NULL

NULL

``

``

Error, (in dsolve/numeric/bvp/convertsys) too few boundary conditions: expected 7, got 2

 

``

NULL


Download kummer_sol.mw

Hello awesome maple people

I have the following Matrix

R := Matrix([[1, -2, 2, 6, -6], [2, -3, 4, 9, -8]])

then i do

ReducedRowEchelonForm(R);

and i get an output, but is there any way to get it to give me the output in Parametric form?

Like this https://snag.gy/BQniuR.jpg

Thanks in advance :)

 

 

i have 2 PDE equations with some boundary conditions,maple get me errors, what should i do ? please help
how can i make correction in my system or boundary to have a solution ?

Download pde2.mw

tnx in advance


Hello Dr/Prof?sir?madam

i have problem on running the ode bcs

there is cos n sine in ther ode

any idea to solve this ?

i have attched it

thnks
Maple Worksheet - Error

Failed to load the worksheet /maplenet/convert/Sc.mw .

Download Sc.mw

First 966 967 968 969 970 971 972 Last Page 968 of 2308