Unanswered Questions

This page lists MaplePrimes questions that have not yet received an answer

I am currently unable to type in maple 2021, there is no cursor, nothing shows up when I type etc. I am also unable to save files. I went into document mode, nothing. Some of the dialogs don't show up. Where does maple save documents and how do I change that setting? That might be my problem. Furthermore, there are no tabs visable, like I can't access any documents I open.

Due to a stupid typing mistake I get this error, "Error, too many levels of recursion". Now the program is frozen and I cannot get rid of the error.  Help!

Hi,

Im trying to configure Maple's colors by modifying the X11_defaults/Maple file but nothing happens. I set the environment variable MAPLE to point to my Maple installation and load the previous file with xrdb. I am running dwm as my window manager in Arch Linux.

I am frustrated. All help is welcomed. If you have any suggestion for configuring dark mode in a different way, please share your arcane knowledge with me.

Thank you in advance.

I am slightly confused as I can't apply the seemingly correct function to a sequence. It seems like modp does not like my inverse. But I am not aware of any other way of finding the modular inverse.  

a := i -> (1025 - 2^(10 - 2^i))^(-1) mod (1025 - 2^(10 - 2*2^i));

proc (i) options operator, arrow; `mod`(1/(1025-2^(10-2^i)), 1025-2^(10-2*2^i)) end proc

(1)

a(1);

5

(2)

a(2);

17

(3)

map(i -> i + 1, {seq(1 .. 4)});

{2, 3, 4, 5}

(4)

map(i -> 1/(1025 - 2^(10 - 2^i)) mod (1025 - 2^(10 - 2*2^i)), {seq(1 .. 4)});

Error, invalid input: modp received 65599/64, which is not valid for its 2nd argument, m

 

map(a, {seq(1 .. 4)});

Error, invalid input: modp received 65599/64, which is not valid for its 2nd argument, m

 

NULL

NULL

Download example.mw

restart;
alias(u = u(x, y, t), f = f(x, y, t));
                              u, f
u := (f+sqrt(R))*exp(I*R*t);
                    /     (1/2)\           
                    \f + R     / exp(I R t)
pde1 := I*(diff(u, t))+diff(u, x, x)+2*lambda*u*abs(u)*abs(u)-gamma*(diff(u, x, t));
   // d   \                /     (1/2)\             \
 I ||--- f| exp(I R t) + I \f + R     / R exp(I R t)|
   \\ dt  /                                         /

      / d  / d   \\           
    + |--- |--- f|| exp(I R t)
      \ dx \ dx  //           

               /     (1/2)\                           2 
    + 2 lambda \f + R     / exp(I R t) (exp(-Im(R t)))  

               2
   |     (1/2)| 
   |f + R     | 

            // d  / d   \\                / d   \             \
    - gamma ||--- |--- f|| exp(I R t) + I |--- f| R exp(I R t)|
            \\ dx \ dt  //                \ dx  /             /
 

      

I am using Maple 2023.

When using PDE Numeric Help Side the text sides is not smooth moving when scrolling downwards or upwards.

Any advice what to do????

Kjell

This is old question https://www.mapleprimes.com/questions/208909-Code-For-Integer-Points-On-Sphere. Now I see this question at here 
https://mathematica.stackexchange.com/questions/288956/how-can-i-get-all-squares-on-this-sphere-so-that-its-coordinates-are-integer-num
 My idea is select all diameters which diameters are perpendicularly from the sphere (x-2)^2 + (y-4)^2 + (z-6)^2 = 15^2. How can I tell Maple to do that?

how to plot graphs for both methods and comparison of different method values for Diff(f(eta),eta, eta) at eta =0

 

NULL

NULL

restart

F[0] := al

F[1] := a2

F[2] := a3

F[3] := a4

G[0] := a5

G[1] := a6

T[0] := a7

T[1] := a8

Q[0] := a9

Q[1] := a10

n[1] := 1

for k from 0 to n[1] do F[k+4] := solve((1+a)*(k+1)*(k+2)*(k+3)*(k+4)*F[k+4]-a*(k+1)*(k+2)*G[k+2]-R*(sum(F[k-m]*(m+1)*(m+2)*(m+3)*F[m+3], m = 0 .. k))+R*(sum((k-m+1)*F[k-m+1]*(m+1)*(m+2)*F[m+2], m = 0 .. k)), F[k+4]) end do

-(1/12)*(R*a2*a3-3*R*a4*al-a*G[2])/(1+a)

 

-(1/60)*(R^2*a2*a3*al-3*R^2*a4*al^2+2*R*a*a3^2-R*a*al*G[2]+2*R*a3^2-3*a^2*G[3]-3*a*G[3])/(1+a)^2

(1)

n[2] := 3

for k from 0 to n[2] do G[k+2] := solve(b*(k+1)*(k+2)*G[k+2]+a*(k+1)*(k+2)*F[k+2]-2*a*G[k]-c*R*(sum((m+1)*G[m+1]*F[k-m], m = 0 .. k))+c*R*(sum(G[k-m]*(m+1)*F[m+1], m = 0 .. k)), G[k+2]) end do

-(1/2)*(R*a2*a5*c-R*a6*al*c+2*a*a3-2*a*a5)/b

 

-(1/6)*(R^2*a2*a5*al*c^2-R^2*a6*al^2*c^2+2*R*a*a3*al*c-2*R*a*a5*al*c+2*R*a3*a5*b*c+6*a*a4*b-2*a*a6*b)/b^2

 

-(1/24)*(R^3*a*a2*a5*al^2*c^3-R^3*a*a6*al^3*c^3+R^3*a2*a5*al^2*c^3-R^3*a6*al^3*c^3+2*R^2*a^2*a3*al^2*c^2-2*R^2*a^2*a5*al^2*c^2+R^2*a*a2^2*a5*b*c^2-R^2*a*a2*a6*al*b*c^2+2*R^2*a*a3*a5*al*b*c^2+2*R^2*a*a3*al^2*c^2-2*R^2*a*a5*al^2*c^2+R^2*a2^2*a5*b*c^2-R^2*a2*a6*al*b*c^2+2*R^2*a3*a5*al*b*c^2+2*R*a^2*a2*a3*b*c-R*a^2*a2*a5*b*c+6*R*a^2*a4*al*b*c-3*R*a^2*a6*al*b*c+2*R*a*a3*a6*b^2*c+6*R*a*a4*a5*b^2*c-2*R*a*a2*a3*b^2+2*R*a*a2*a3*b*c+6*R*a*a4*al*b^2+6*R*a*a4*al*b*c-4*R*a*a6*al*b*c+2*R*a3*a6*b^2*c+6*R*a4*a5*b^2*c+2*a^3*a3*b-2*a^3*a5*b+4*a^2*a3*b-4*a^2*a5*b)/(b^3*(1+a))

 

-(1/120)*(R^4*a^2*a2*a5*al^3*c^4-R^4*a^2*a6*al^4*c^4+2*R^4*a*a2*a5*al^3*c^4-2*R^4*a*a6*al^4*c^4+R^4*a2*a5*al^3*c^4-R^4*a6*al^4*c^4+2*R^3*a^3*a3*al^3*c^3-2*R^3*a^3*a5*al^3*c^3+3*R^3*a^2*a2^2*a5*al*b*c^3-3*R^3*a^2*a2*a6*al^2*b*c^3+2*R^3*a^2*a3*a5*al^2*b*c^3+4*R^3*a^2*a3*al^3*c^3-4*R^3*a^2*a5*al^3*c^3+6*R^3*a*a2^2*a5*al*b*c^3-6*R^3*a*a2*a6*al^2*b*c^3+4*R^3*a*a3*a5*al^2*b*c^3+2*R^3*a*a3*al^3*c^3-2*R^3*a*a5*al^3*c^3+3*R^3*a2^2*a5*al*b*c^3-3*R^3*a2*a6*al^2*b*c^3+2*R^3*a3*a5*al^2*b*c^3+6*R^2*a^3*a2*a3*al*b*c^2-4*R^2*a^3*a2*a5*al*b*c^2+6*R^2*a^3*a4*al^2*b*c^2-4*R^2*a^3*a6*al^2*b*c^2+4*R^2*a^2*a2*a3*a5*b^2*c^2-R^2*a^2*a2*a5^2*b^2*c^2+2*R^2*a^2*a3*a6*al*b^2*c^2+6*R^2*a^2*a4*a5*al*b^2*c^2+R^2*a^2*a5*a6*al*b^2*c^2-2*R^2*a^2*a2*a3*al*b^2*c+12*R^2*a^2*a2*a3*al*b*c^2-R^2*a^2*a2*a5*al*b^2*c-6*R^2*a^2*a2*a5*al*b*c^2+6*R^2*a^2*a4*al^2*b^2*c+12*R^2*a^2*a4*al^2*b*c^2+R^2*a^2*a6*al^2*b^2*c-10*R^2*a^2*a6*al^2*b*c^2-2*R^2*a*a2*a3*a5*b^3*c+8*R^2*a*a2*a3*a5*b^2*c^2-R^2*a*a2*a5^2*b^2*c^2+4*R^2*a*a3*a6*al*b^2*c^2+6*R^2*a*a4*a5*al*b^3*c+12*R^2*a*a4*a5*al*b^2*c^2+R^2*a*a5*a6*al*b^2*c^2-2*R^2*a*a2*a3*al*b^3-2*R^2*a*a2*a3*al*b^2*c+6*R^2*a*a2*a3*al*b*c^2-2*R^2*a*a2*a5*al*b*c^2+6*R^2*a*a4*al^2*b^3+6*R^2*a*a4*al^2*b^2*c+6*R^2*a*a4*al^2*b*c^2-6*R^2*a*a6*al^2*b*c^2-2*R^2*a2*a3*a5*b^3*c+4*R^2*a2*a3*a5*b^2*c^2+2*R^2*a3*a6*al*b^2*c^2+6*R^2*a4*a5*al*b^3*c+6*R^2*a4*a5*al*b^2*c^2+4*R*a^4*a3*al*b*c-4*R*a^4*a5*al*b*c+12*R*a^3*a2*a4*b^2*c-4*R*a^3*a2*a6*b^2*c+2*R*a^3*a5^2*b^2*c+12*R*a^2*a4*a6*b^3*c-2*R*a^3*a3*al*b^2+12*R*a^3*a3*al*b*c+2*R*a^3*a5*al*b^2-12*R*a^3*a5*al*b*c+24*R*a^2*a2*a4*b^2*c-8*R*a^2*a2*a6*b^2*c-4*R*a^2*a3^2*b^3+4*R*a^2*a3*a5*b^2*c+2*R*a^2*a5^2*b^2*c+24*R*a*a4*a6*b^3*c+8*R*a^2*a3*al*b*c-8*R*a^2*a5*al*b*c+12*R*a*a2*a4*b^2*c-4*R*a*a2*a6*b^2*c-4*R*a*a3^2*b^3+4*R*a*a3*a5*b^2*c+12*R*a4*a6*b^3*c+6*a^4*a4*b^2-2*a^4*a6*b^2+18*a^3*a4*b^2-6*a^3*a6*b^2+12*a^2*a4*b^2-4*a^2*a6*b^2)/(b^4*(1+a)^2)

(2)

n[3] := 3

for k from 0 to n[3] do T[k+2] := solve((k+1)*(k+2)*T[k+2]+p3*(k+1)*(k+2)*Q[k+2]+p1*(sum((m+1)*F[m+1]*T[k-m], m = 0 .. k))-p1*(sum(F[k-m]*(m+1)*T[m+1], m = 0 .. k)), T[k+2]) end do

-(1/2)*p1*a2*a7+(1/2)*p1*al*a8-p3*Q[2]

 

-(1/6)*a2*a7*al*p1^2+(1/6)*a8*al^2*p1^2-(1/3)*al*p1*p3*Q[2]-(1/3)*a3*a7*p1-p3*Q[3]

 

-p3*Q[4]-(1/24)*p1^2*a2^2*a7+(1/24)*a2*p1^2*al*a8-(1/12)*p1*a2*p3*Q[2]-(1/12)*p1*a3*a8-(1/4)*p1*a4*a7-(1/24)*a2*a7*al^2*p1^3+(1/24)*a8*al^3*p1^3-(1/12)*al^2*p1^2*p3*Q[2]-(1/12)*al*a3*a7*p1^2-(1/4)*p1*al*p3*Q[3]

 

(1/120)*(-a*a2*a7*al^3*b*p1^4+a*a8*al^4*b*p1^4-2*a*al^3*b*p1^3*p3*Q[2]-a2*a7*al^3*b*p1^4+a8*al^4*b*p1^4-3*a*a2^2*a7*al*b*p1^3+3*a*a2*a8*al^2*b*p1^3-2*a*a3*a7*al^2*b*p1^3-2*al^3*b*p1^3*p3*Q[2]-6*a*a2*al*b*p1^2*p3*Q[2]-6*a*al^2*b*p1^2*p3*Q[3]-3*a2^2*a7*al*b*p1^3+3*a2*a8*al^2*b*p1^3-2*a3*a7*al^2*b*p1^3+R*a*a2*a5*a7*c*p1-R*a*a6*a7*al*c*p1-4*a*a2*a3*a7*b*p1^2-2*a*a3*a8*al*b*p1^2-6*a*a4*a7*al*b*p1^2-6*a2*al*b*p1^2*p3*Q[2]-6*al^2*b*p1^2*p3*Q[3]+2*R*a2*a3*a7*b*p1-6*R*a4*a7*al*b*p1-12*a*a2*b*p1*p3*Q[3]-24*a*al*b*p1*p3*Q[4]-4*a2*a3*a7*b*p1^2-2*a3*a8*al*b*p1^2-6*a4*a7*al*b*p1^2+2*a^2*a3*a7*p1-2*a^2*a5*a7*p1-12*a*a4*a8*b*p1-12*a2*b*p1*p3*Q[3]-24*al*b*p1*p3*Q[4]-120*a*b*p3*Q[5]-12*a4*a8*b*p1-120*b*p3*Q[5])/(b*(1+a))

(3)

n[4] := 3

for k from 0 to n[4] do Q[k+2] := solve((k+1)*(k+2)*Q[k+2]+p4*(k+1)*(k+2)*Q[k+2]+p2*(sum((m+1)*F[m+1]*Q[k-m], m = 0 .. k))-p2*(sum(F[k-m]*(m+1)*Q[m+1], m = 0 .. k)), Q[k+2]) end do

(1/2)*p2*(a10*al-a2*a9)/(p4+1)

 

(1/6)*p2*(a10*al^2*p2-a2*a9*al*p2-2*a3*a9*p4-2*a3*a9)/(p4+1)^2

 

(1/24)*p2*(a10*al^3*p2^2-a2*a9*al^2*p2^2+a10*a2*al*p2*p4-a2^2*a9*p2*p4-2*a3*a9*al*p2*p4+a10*a2*al*p2-2*a10*a3*p4^2-a2^2*a9*p2-2*a3*a9*al*p2-6*a4*a9*p4^2-4*a10*a3*p4-12*a4*a9*p4-2*a10*a3-6*a4*a9)/(p4+1)^3

 

(1/120)*p2*(a*a10*al^4*b*p2^3-a*a2*a9*al^3*b*p2^3+R*a*a2*a5*a9*c*p4^3-R*a*a6*a9*al*c*p4^3+3*a*a10*a2*al^2*b*p2^2*p4-3*a*a2^2*a9*al*b*p2^2*p4-2*a*a3*a9*al^2*b*p2^2*p4+a10*al^4*b*p2^3-a2*a9*al^3*b*p2^3+3*R*a*a2*a5*a9*c*p4^2-3*R*a*a6*a9*al*c*p4^2+2*R*a2*a3*a9*b*p4^3-6*R*a4*a9*al*b*p4^3+3*a*a10*a2*al^2*b*p2^2-2*a*a10*a3*al*b*p2*p4^2-3*a*a2^2*a9*al*b*p2^2-4*a*a2*a3*a9*b*p2*p4^2-2*a*a3*a9*al^2*b*p2^2-6*a*a4*a9*al*b*p2*p4^2+3*a10*a2*al^2*b*p2^2*p4-3*a2^2*a9*al*b*p2^2*p4-2*a3*a9*al^2*b*p2^2*p4+3*R*a*a2*a5*a9*c*p4-3*R*a*a6*a9*al*c*p4+6*R*a2*a3*a9*b*p4^2-18*R*a4*a9*al*b*p4^2+2*a^2*a3*a9*p4^3-2*a^2*a5*a9*p4^3-4*a*a10*a3*al*b*p2*p4-12*a*a10*a4*b*p4^3-8*a*a2*a3*a9*b*p2*p4-12*a*a4*a9*al*b*p2*p4+3*a10*a2*al^2*b*p2^2-2*a10*a3*al*b*p2*p4^2-3*a2^2*a9*al*b*p2^2-4*a2*a3*a9*b*p2*p4^2-2*a3*a9*al^2*b*p2^2-6*a4*a9*al*b*p2*p4^2+R*a*a2*a5*a9*c-R*a*a6*a9*al*c+6*R*a2*a3*a9*b*p4-18*R*a4*a9*al*b*p4+6*a^2*a3*a9*p4^2-6*a^2*a5*a9*p4^2-2*a*a10*a3*al*b*p2-36*a*a10*a4*b*p4^2-4*a*a2*a3*a9*b*p2-6*a*a4*a9*al*b*p2-4*a10*a3*al*b*p2*p4-12*a10*a4*b*p4^3-8*a2*a3*a9*b*p2*p4-12*a4*a9*al*b*p2*p4+2*R*a2*a3*a9*b-6*R*a4*a9*al*b+6*a^2*a3*a9*p4-6*a^2*a5*a9*p4-36*a*a10*a4*b*p4-2*a10*a3*al*b*p2-36*a10*a4*b*p4^2-4*a2*a3*a9*b*p2-6*a4*a9*al*b*p2+2*a^2*a3*a9-2*a^2*a5*a9-12*a*a10*a4*b-36*a10*a4*b*p4-12*a10*a4*b)/((p4+1)^4*b*(1+a))

(4)

U[1] := sum(F[r]*t^r, r = 0 .. n[1]+4)

p[1] := subs(R = 1, a = 1, b = 1, c = 1, p1 = 1, p2 = .8, p3 = .1, p4 = .1, U[1])

U[2] := sum(G[r]*t^r, r = 0 .. n[2]+2)

p[2] := subs(R = 1, a = 1, b = 1, c = 1, p1 = 1, p2 = .8, p3 = .1, p4 = .1, U[2])

U[3] := sum(T[r]*t^r, r = 0 .. n[2]+2)

p[3] := subs(R = 1, a = 1, b = 1, c = 1, p1 = 1, p2 = .8, p3 = .1, p4 = .1, U[3])

U[4] := sum(Q[r]*t^r, r = 0 .. n[2]+2)

p[4] := subs(R = 1, a = 1, b = 1, c = 1, p1 = 1, p2 = .8, p3 = .1, p4 = .1, U[4])

e1 := subs(t = -1, p[1]) = 0

e2 := subs(t = -1, diff(p[1], t)) = 0

e3 := subs(t = 1, diff(p[1], t)) = -1

e4 := subs(t = 1, p[1]) = 0

e5 := subs(t = -1, p[2]) = 0

e6 := subs(t = 1, p[2]) = 1

e7 := subs(t = -1, p[3]) = 1

e8 := subs(t = 1, p[3]) = 0

e9 := subs(t = -1, p[4]) = 1

e10 := subs(t = 1, p[4]) = 0

j := {e1, e10, e2, e3, e4, e5, e6, e7, e8, e9}

j := solve(j)

sj := evalf(j)

{a10 = -3.476623407, a2 = -5.754056209, a3 = .1776219452, a4 = 11.75811242, a5 = 1.324264301, a6 = -684.5523526, a7 = -.2700369914, a8 = 1.152227714, a9 = 2.191204245, al = 0.3618902741e-1}, {a10 = -.5218741555, a2 = .2575353882, a3 = -.2672619833, a4 = -.2650707765, a5 = 0.7065354871e-1, a6 = .1172581545, a7 = .6100817436, a8 = -.5277387253, a9 = .5842364534, al = .2586309916}, {a10 = -4.849411034, a2 = 11.61910224, a3 = -20.01600142, a4 = -22.98820448, a5 = -303.7401922, a6 = -153.4446663, a7 = -7.896832028, a8 = -4.917031955, a9 = -9.645684059, al = 10.13300071}, {a10 = -12.41434918+6.055636678*I, a2 = -6.912869603-3.362489448*I, a3 = -9.364948739-.7062944755*I, a4 = 14.07573921+6.724978896*I, a5 = -106.6284397-3.087774395*I, a6 = 184.4202683+38.56644530*I, a7 = 2.689687372-4.048821750*I, a8 = -4.715343127+5.167588829*I, a9 = 8.474095612-5.785653488*I, al = 4.807474369+.3531472377*I}, {a10 = -8.462156658-37.78952093*I, a2 = -22.10322629+.7748996783*I, a3 = -2.926063539-87.71943544*I, a4 = 44.45645258-1.549799357*I, a5 = 126.1645842+1357.517358*I, a6 = -880.5344239+73.01362458*I, a7 = -96.56841781+19.40514883*I, a8 = -11.30265439-58.49348719*I, a9 = -59.25678527+13.86225901*I, al = 1.588031769+43.85971772*I}, {a10 = 21.28781597+0.9115942334e-2*I, a2 = -2.190767380-.1297694199*I, a3 = 0.4834062985e-1-8.617807139*I, a4 = 4.631534761+.2595388398*I, a5 = -1.070222696-4.103740084*I, a6 = 28.93315819+1.060309794*I, a7 = -.6440073083+2.959900705*I, a8 = 3.178056838-1.712994921*I, a9 = -1.124006374+8.865509135*I, al = .1008296851+4.308903570*I}, {a10 = -2.226772562-4.893664011*I, a2 = -5.213384606-.4953312060*I, a3 = 1.881656676-24.64377975*I, a4 = 10.67676921+.9906624121*I, a5 = -5.922885277-14.38776520*I, a6 = 9.281006594-6.268746147*I, a7 = -8.563253672+2.519226454*I, a8 = -2.293245547-7.112743663*I, a9 = -4.948019289+2.035858706*I, al = -.8158283379+12.32188987*I}, {a10 = -3.311080211+1.380948844*I, a2 = -6.825505968+3.517539795*I, a3 = 10.11566715-.6387142267*I, a4 = 13.90101194-7.035079589*I, a5 = 106.6696011-4.144959139*I, a6 = 183.4179274-43.03852019*I, a7 = -1.117431335-0.4722817327e-1*I, a8 = -1.705921790+.2164542338*I, a9 = -2.431505210+.6185873236*I, al = -4.932833576+.3193571133*I}, {a10 = 1.720689325, a2 = 11.30494181, a3 = 20.89441402, a4 = -22.35988362, a5 = 304.5741226, a6 = -141.0519632, a7 = -3.607319024, a8 = 2.107261122, a9 = -3.764007990, al = -10.32220701}, {a10 = -3.311080211-1.380948844*I, a2 = -6.825505968-3.517539795*I, a3 = 10.11566715+.6387142267*I, a4 = 13.90101194+7.035079589*I, a5 = 106.6696011+4.144959139*I, a6 = 183.4179274+43.03852019*I, a7 = -1.117431335+0.4722817327e-1*I, a8 = -1.705921790-.2164542338*I, a9 = -2.431505210-.6185873236*I, al = -4.932833576-.3193571133*I}, {a10 = -2.226772562+4.893664011*I, a2 = -5.213384606+.4953312060*I, a3 = 1.881656676+24.64377975*I, a4 = 10.67676921-.9906624121*I, a5 = -5.922885277+14.38776520*I, a6 = 9.281006594+6.268746147*I, a7 = -8.563253672-2.519226454*I, a8 = -2.293245547+7.112743663*I, a9 = -4.948019289-2.035858706*I, al = -.8158283379-12.32188987*I}, {a10 = 21.28781597-0.9115942334e-2*I, a2 = -2.190767380+.1297694199*I, a3 = 0.4834062985e-1+8.617807139*I, a4 = 4.631534761-.2595388398*I, a5 = -1.070222696+4.103740084*I, a6 = 28.93315819-1.060309794*I, a7 = -.6440073083-2.959900705*I, a8 = 3.178056838+1.712994921*I, a9 = -1.124006374-8.865509135*I, al = .1008296851-4.308903570*I}, {a10 = -8.462156658+37.78952093*I, a2 = -22.10322629-.7748996783*I, a3 = -2.926063539+87.71943544*I, a4 = 44.45645258+1.549799357*I, a5 = 126.1645842-1357.517358*I, a6 = -880.5344239-73.01362458*I, a7 = -96.56841781-19.40514883*I, a8 = -11.30265439+58.49348719*I, a9 = -59.25678527-13.86225901*I, al = 1.588031769-43.85971772*I}, {a10 = -12.41434918-6.055636678*I, a2 = -6.912869603+3.362489448*I, a3 = -9.364948739+.7062944755*I, a4 = 14.07573921-6.724978896*I, a5 = -106.6284397+3.087774395*I, a6 = 184.4202683-38.56644530*I, a7 = 2.689687372+4.048821750*I, a8 = -4.715343127-5.167588829*I, a9 = 8.474095612+5.785653488*I, al = 4.807474369-.3531472377*I}

(5)

p[1] := subs(a10 = -.5218741555, a2 = .2575353882, a3 = -.2672619833, a4 = -.2650707765, a5 = 0.7065354871e-1, a6 = .1172581545, a7 = .6100817436, a8 = -.5277387253, a9 = .5842364534, al = .2586309916, p[1])

.2586309916+.2575353882*t-.2672619833*t^2-.2650707765*t^3+0.8630991633e-2*t^4+0.7535388242e-2*t^5

(6)

p[2] := subs(a10 = -.5218741555, a2 = .2575353882, a3 = -.2672619833, a4 = -.2650707765, a5 = 0.7065354871e-1, a6 = .1172581545, a7 = .6100817436, a8 = -.5277387253, a9 = .5842364534, al = .2586309916, p[2])

0.7065354871e-1+.1172581545*t+.3439809338*t^2+.3401058738*t^3+0.8536551748e-1*t^4+0.4263597162e-1*t^5

(7)

p[3] := subs(a10 = -.5218741555, a2 = .2575353882, a3 = -.2672619833, a4 = -.2650707765, a5 = 0.7065354871e-1, a6 = .1172581545, a7 = .6100817436, a8 = -.5277387253, a9 = .5842364534, al = .2586309916, p[3])

.6100817436-.5277387253*t-.1364241818*t^2+0.3945483872e-1*t^3+0.2634243820e-1*t^4-0.1171611337e-1*t^5

(8)

p[4] := subs(a10 = -.5218741555, a2 = .2575353882, a3 = -.2672619833, a4 = -.2650707765, a5 = 0.7065354871e-1, a6 = .1172581545, a7 = .6100817436, a8 = -.5277387253, a9 = .5842364534, al = .2586309916, p[4])

.5842364534-.5218741555*t-.1037943244*t^2+0.3134539737e-1*t^3+0.1955787096e-1*t^4-0.9471241840e-2*t^5

(9)

NULL

value*of*D@@2*F(0)*For*R = 1, 1.5, `and`(2*Using*Both*DTM*scheme, dsolve*method)

 

Download DTM_practice.mw

how I can plot phi[2] as a contour like attached figure?

tez-1.mw


 

restart

``

beta := 2.5; lambda := 0.1e-1; b := Pi; a := Pi; alpha := 1; y[1] := 1.5; y[2] := 1.5; x[1] := -1; x[2] := 1; Q[1] := 40; Q[2] := 35

2.5

 

0.1e-1

 

Pi

 

Pi

 

1

 

1.5

 

1.5

 

-1

 

1

 

40

 

35

(1)

NULL

NULL

v := (2*n-1)*Pi/(2*b)

n-1/2

(2)

Delta := exp(2*v*a)*(alpha*v+beta)*(1+lambda)-(1-lambda)*(alpha*v-beta)

1.01*exp(2*(n-1/2)*Pi)*(n+2.000000000)-.99*n+2.970000000

(3)

g[22] := ((alpha*v+beta)*((1+lambda)*exp(-v*abs(x-xi))+(-1+lambda)*exp(-v*(x+xi)))*exp(2*v*a)+(alpha*v-beta)*((1+lambda)*exp(-v*(x+xi))+(-1+lambda)*exp(-v*abs(x-xi))))/(2*v*Delta)

g[21] := ((alpha*v+beta)*exp(v*(2*a+xi))+(alpha*v-beta)*exp(-v*xi))*exp(-v*x)/(v*Delta)

NULL

u[2] := int(2*g[21]*Q[1]*Dirac(xi-x[1])*sin(n*Pi*y[1]/b)/b, xi = -a .. 0)+int(2*g[22]*Q[2]*Dirac(xi-x[2])*sin(n*Pi*y[2]/b)/b, xi = 0 .. infinity)

NULL

phi[2] := sum(u[2](x)*sin(v*y), n = 1 .. 30)

NULL

``

plot3d(phi[2], x = 0 .. 5, y = 0 .. b)

 

NULL


 

Download tez-1.mw


 

restart

``

beta := 2.5; lambda := 0.1e-1; b := Pi; a := Pi; alpha := 1; y[1] := 1.5; y[2] := 1.5; x[1] := -1; x[2] := 1; Q[1] := 40; Q[2] := 35

2.5

 

0.1e-1

 

Pi

 

Pi

 

1

 

1.5

 

1.5

 

-1

 

1

 

40

 

35

(1)

NULL

NULL

v := (2*n-1)*Pi/(2*b)

n-1/2

(2)

Delta := exp(2*v*a)*(alpha*v+beta)*(1+lambda)-(1-lambda)*(alpha*v-beta)

1.01*exp(2*(n-1/2)*Pi)*(n+2.000000000)-.99*n+2.970000000

(3)

g[22] := ((alpha*v+beta)*((1+lambda)*exp(-v*abs(x-xi))+(-1+lambda)*exp(-v*(x+xi)))*exp(2*v*a)+(alpha*v-beta)*((1+lambda)*exp(-v*(x+xi))+(-1+lambda)*exp(-v*abs(x-xi))))/(2*v*Delta)

g[21] := ((alpha*v+beta)*exp(v*(2*a+xi))+(alpha*v-beta)*exp(-v*xi))*exp(-v*x)/(v*Delta)

NULL

u[2] := int(2*g[21]*Q[1]*Dirac(xi-x[1])*sin(n*Pi*y[1]/b)/b, xi = -a .. 0)+int(2*g[22]*Q[2]*Dirac(xi-x[2])*sin(n*Pi*y[2]/b)/b, xi = 0 .. infinity)

NULL

phi[2] := sum(u[2](x)*sin(v*y), n = 1 .. 30)

NULL

``

plot3d(phi[2], x = 0 .. 5, y = 0 .. b)

 

NULL


 

Download tez-1.mw

 

 

Is it possible in Maple Flow to reference to another worksheet as you can in Maple? If so, how would you do that? Thanks in advance for your help.

I'm attempting to visualize temperature averages across a 2 dimentional space (e.g., a square plate) with fixed heat sources. The 3rd dimension (z axis) represents temperature.  I have created several visualizations but have questions about how these plots work.  The model is attached and the questions will make sense once you open the worksheet.

  1. Using the "colorscheme" option on a couple of matrixplots, I get the error "[Length of output exceeds limit of 1000000]" and the plot doesn't show.  However using the "display()" command on those same plots does render the plot.  Is there a way around this error (i.e., rendering the plot directly) or should I just suppress the error using a colon at the end of the plot statement and rely on display() to show the plot?
  2. I've created a heat map as one of the visualizations.  Is there a way to access the color values at each of the "cells" of the heat map? I would like to use these colors elsewhere in the model but I'm not sure if there is a way to access the color values.
  3. Using a 3D point plot as one of the visualization options, I use the colorschemes with options "xgradient", "ygradient", and "zgradient".  For some reason, "xgradient" and "ygradient" work as expected but "zgradient" looks the same as "ygradient".  How do I get the color transition to change along the z axis rather than only x and y axes?

Thank you for your help on these questions.

temperature_profile_(experimental)(v01).mw

How can I plot stream lines between two concentric spheres?

Just wanted to ask, what the issue here is:

restart;
Int(1/(1 - x*ln(x)), x);
IntegrationTools:-Change(%,u=1-x*ln(x),u);

doesn't give the proper transformation. It gives

Int(1/u,u)

Solving for x and writing the transformation in terms of LambertW gives something else, if I'm not mistaken.

I came across what looks to me like an error in Maple 2023.  If it stands alone, Maple evaluates z^0/0! to 1, but inside the sum command it appears to evaluate the same expression to 0.

Download Weird_sum_behaviour.mw

First 13 14 15 16 17 18 19 Last Page 15 of 334