Unanswered Questions

This page lists MaplePrimes questions that have not yet received an answer

To run Maple script, on windows, I type

cmaple.exe   my_file.mpl

and this works well. So if my_file.mpl has the line int(sin(x),x);  the result of the above is:

> int(sin(x),x);
                                                        -cos(x)
> quit
memory used=0.9MB, alloc=8.3MB, time=0.05

 

sometimes, it will be nice to use cmaple to quickly do one time calculation on the fly such as the above, without having to open Maple GUI or write/edit a file. For example, I'd like to be able to do something like

cmaple.exe   "int(sin(x),x);"

but ofcourse the above does not work as is, since it expects its input to be a file. I tried

cmaple.exe   << "int(sin(x),x);"

but that did not work (for obvious reasons, since the input string is not a file name).

I tried different re-directions, as shown in this page for windows, but maple expects the input to be a file.

Is there a way to use cmaple with command directly written as string as above? I am using Maple 2015.

 

There is no menu item called "Startup Code"

in the "Edit" menu item of my Maple 13.

Please help!

 

Thanks!

We're starting on indefinite integrals in my 1st year calculus class.

 

A quick example would be int(sin(x), x);=-cos(x)+C

 

Maple doesn't add the +C on the end of it's solution. Can someone explain or point me to a resource? I've tried searching but I can't find an answer. 

Dear,

I have a perfectly working when all parameters are known (figure 1), however I want to perform a sensitivity analysis by derivating the code if one parameter is unknown. Because of multiple possible answers and because of the complexity of the formula, I cannot run this script and get solutions. Any ideas how I can this calculation lighter so it is able to run? Values should be real and positive (so 1 or 2 solutions are the only one I'm interested in)

Any ideas, how I can make this code runnable? (file is below)

I'm stuck on this for a while now :/ So I hope someone will be able to help me

Many thanks in advance!l

Question.mw

Figure 1: [URL=http://s1240.photobucket.com/user/laggstar/media/Parameter%20f%20known.png.html][IMG]http://i1240.photobucket.com/albums/gg494/laggstar/Parameter%20f%20known.png[/IMG][/URL]

 

Figure 2: [URL=http://s1240.photobucket.com/user/laggstar/media/Parameter%20f%20unknown.png.html][IMG]http://i1240.photobucket.com/albums/gg494/laggstar/Parameter%20f%20unknown.png[/IMG][/URL]

This should be trivial but I am not able to figure out the right syntax to execute it

The pdf is given by :

f_X(x)={ 1/25 *x, 0<=x<5

             2/5 -x/25, 5<=x<10

             0, otherwise

I have tried to use the "CumulativeDistributiveFunction" so far

Hi!

 

I am trying to solve a large nxl system of coupled differential equations. Maple seems to have trouble even for small n's so I wanted to know if anyone has any suggestions. Take the case of the following system of ODEs for my unknown functions f[0,0](x) and f[1,0](x). 

 

ODEs:= {diff(f[0, 0](x), x)+2.*f[0, 0](x)/x^5+.5000000000*f[0, 0](x)/x = -15.58845727*sin(.5773502693*x)/x^2+140.2961154*sin(.5773502693*x)/x^4-81.*cos(.5773502693*x)/x^3, diff(f[1, 0](x), x)+6.*f[1, 0](x)/x^5+1.500000000*f[1, 0](x)/x-1.*f[0, 0](x)/x = -15.58845727*sin(.5773502693*x)/x^2+25.98076212*sin(.5773502693*x)*(1/x^4)^(1/4)*exp(1/x^4)*GAMMA(.7500000000, 1/x^4)/x^2+140.2961154*sin(.5773502693*x)/x^4-233.8268591*sin(.5773502693*x)*(1/x^4)^(1/4)*exp(1/x^4)*GAMMA(.7500000000, 1/x^4)/x^4-81.*cos(.5773502693*x)/x^3+135.*cos(.5773502693*x)*(1/x^4)^(1/4)*exp(1/x^4)*GAMMA(.7500000000, 1/x^4)/x^3-20.78460970*sin(.5773502693*x)/x^6+6.000000004*cos(.5773502693*x)/x^5+62.35382908*sin(.5773502693*x)/x^8-36.00000002*cos(.5773502693*x)/x^7, f[0, 0](.1) = 1.503497680, f[1, 0](.1) = -.5011660086}

 

 

Following Preben Alsholm's suggestion from my previous thread I am using lsode[adamsfull], since no other method i have tried worked for this problem. I am currently using:

 

Sollsodefull:=dsolve({ODEs}, numeric, method = lsode[adamsfull])

 

and it seems to work. I am wondering if there is a way to optimize this, as I will be extending my problem to n and l much larger than order unity numbers, therefore my system will contain about 10^4-10^5 equations. Solving this symple system of 2 equations takes a bit less than a second, but still it takes some time for the processor on my MBP. I am affraid it will be a nightmare for the full problem. Whats the most optimal dsolve option for this kind of problem? Any ideas?

 

I have also attempted dverk78, rkf45,rosenbrock, lsode(without the adamsfull option), and all failed for this particular system. Errors were:

1. For rkf45: Error, (in f00) cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up

2. For dverk78: Error, (in Soldverk78) cannot evaluate the solution past .1, step size < hmin, problem may be singular or error tolerance may be too small

3. For rosenbrock: Error, (in dsolve/numeric/SC/firststep) unable to evaluate the partial derivatives of f(x,y) for stiff solution

4. For lsode without [adamsfull]: Error, (in Sollsode) an excessive amount of work (greater than mxstep) was done

5. For default method with stiff=true and inplicit=true options: Error, (in dsolve/numeric/SC/firststep) unable to evaluate the partial derivatives of f(x,y) for stiff solution

Dear all,

I want to use the Maple Compiler to improve the performance of some of my codes. To get used to it, I tried doing the examples from the ?Compiler help-page, but everytime I run the compiler, I get the error message:

"Error, (in Compiler:-Compile) compiler exited with nonzero status 1: 

Do some of you know a possible reason for this?

Thank you all.

Download test.mw


Hi
Please give me the matlab coding for plot together of attach figure by matlab.fig
thanks...!

Hello, 

is there a way I can use data (variables) from Maple environment in the Maplesim environment. 

I have a scirpt in maple that generates the robots joints angles and need to use them in the 3D robot built in maplesim. I know I can export/Import data, but this sounds redundant. Is there a way to simply use an input block as a source of the data in maplesim and have the variable name generated in maple used int. Similar to what Matlab/Simulink does.. 

 

 

thanks.

Могу ли я использовать Клен, чтобы найти конкретные решения, которые выражаются либо в начальных и эллиптических функций для систем обыкновенных дифференциальных уравнений. Например, вы можете получить в Maple решений (sub_Solve01, sub_Solve02) для систем, которые перечислены в файле?
exp01.mw

I have a system of pdes and solved numerically using pdsolve (numeric) command.

The system consists of four first order partial differentia equations.

for example u(x,t), R(x,t)....

what command should I give to the Maple and get the graph of u(x,t) at a specific point x_0?

For example, I need a plot for u(30,t).

Is it possible with the maple plot?

I really appreciate your help.

Thank you for reading this post. :)

 

So this is my minimal working code. Everything works, but I cannot get the arrow size fixed you can see the animation propperly. Adding wid=1/2 gives an error message.

Hi,

Is there a way to export worksheet to pdf format but not in A4 size since some lines are going beyond the page?


restart; with(Physics); with(Tetrads); with(PDETools)

0, "%1 is not a command in the %2 package", Tetrads, Physics

(1)

coords := zetabar, zeta, v, u

zetabar, zeta, v, u

(2)

X = [coords]

X = [zetabar, zeta, v, u]

(3)

ds2 := Physics:-`*`(Physics:-`*`(2, dzeta), dzetabar)+Physics:-`*`(Physics:-`*`(2, du), dv)+Physics:-`*`(Physics:-`*`(2, H(coords)), Physics:-`^`(du+Physics:-`*`(Ybar(coords), dzeta)+Physics:-`*`(Y(coords), dzetabar)-Physics:-`*`(Physics:-`*`(Y(coords), Ybar(coords)), dv), 2))

2*dzeta*dzetabar+2*du*dv+2*H(zetabar, zeta, v, u)*(du+Ybar(zetabar, zeta, v, u)*dzeta+Y(zetabar, zeta, v, u)*dzetabar-Y(zetabar, zeta, v, u)*Ybar(zetabar, zeta, v, u)*dv)^2

(4)

PDEtools:-declare(ds2)

Ybar(zetabar, zeta, v, u)*`will now be displayed as`*Ybar

(5)

vierbien := Matrix([[1, 0, -Ybar(coords), 0], [0, 1, -Y(coords), 0], [Physics:-`*`(H(coords), Y(coords)), Physics:-`*`(H(coords), Ybar(coords)), 1-Physics:-`*`(Physics:-`*`(H(coords), Y(coords)), Ybar(coords)), H(coords)], [Y(coords), Ybar(coords), -Physics:-`*`(Y(coords), Ybar(coords)), 1]])

vierbien := Matrix(4, 4, {(1, 1) = 1, (1, 2) = 0, (1, 3) = -Ybar(zetabar, Zeta, v, u), (1, 4) = 0, (2, 1) = 0, (2, 2) = 1, (2, 3) = -Y(zetabar, Zeta, v, u), (2, 4) = 0, (3, 1) = H(zetabar, Zeta, v, u)*Y(zetabar, Zeta, v, u), (3, 2) = H(zetabar, Zeta, v, u)*Ybar(zetabar, Zeta, v, u), (3, 3) = 1-H(zetabar, Zeta, v, u)*Y(zetabar, Zeta, v, u)*Ybar(zetabar, Zeta, v, u), (3, 4) = H(zetabar, Zeta, v, u), (4, 1) = Y(zetabar, Zeta, v, u), (4, 2) = Ybar(zetabar, Zeta, v, u), (4, 3) = -Y(zetabar, Zeta, v, u)*Ybar(zetabar, Zeta, v, u), (4, 4) = 1})

(6)

``

Physics:-Setup(coordinatesystem = (X = [zetabar, zeta, v, u]), metric = ds2, tetrad = vierbien, mathematicalnotation = true, automaticsimplification = true, signature = "+++-")

RicciT := proc (a, b) options operator, arrow; Physics:-SumOverRepeatedIndices(Ricci[mu, nu]*e_[a, `~mu`]*e_[b, `~nu`]) end proc

proc (a, b) options operator, arrow; Physics:-SumOverRepeatedIndices(Physics:-`*`(Physics:-`*`(Physics:-Ricci[mu, nu], Physics:-Tetrads:-e_[a, `~mu`]), Physics:-Tetrads:-e_[b, `~nu`])) end proc

(7)

SlashD := proc (f, a) options operator, arrow; Physics:-SumOverRepeatedIndices(Physics:-D_[mu](f)*e_[a, `~mu`]) end proc

proc (f, a) options operator, arrow; Physics:-SumOverRepeatedIndices(Physics:-`*`(Physics:-D_[mu](f), Physics:-Tetrads:-e_[a, `~mu`])) end proc

(8)

SlashD(H(X), 4) = H(X)[4]

(diff(H(X), zetabar))*Ybar(X)+(diff(H(X), zeta))*Y(X)+diff(H(X), v)-(diff(H(X), u))*Y(X)*Ybar(X) = H(X)[4]

(9)

Gamma := proc (a, b, c) options operator, arrow; -gamma_[a, b, c] end proc

proc (a, b, c) options operator, arrow; Physics:-`*`(Physics:-Tetrads:-gamma_[a, b, c], -1) end proc

(10)

Gamma(1, 4, 4) = 0

-(diff(Ybar(X), u))*Y(X)*Ybar(X)+Y(X)*(diff(Ybar(X), zeta))+Ybar(X)*(diff(Ybar(X), zetabar))+diff(Ybar(X), v) = 0

(11)

``

Gamma(2, 4, 4) = 0

-(diff(Y(X), u))*Y(X)*Ybar(X)+Y(X)*(diff(Y(X), zeta))+(diff(Y(X), zetabar))*Ybar(X)+diff(Y(X), v) = 0

(12)

``

Gamma(3, 4, 4) = 0

0 = 0

(13)

``

Gamma(4, 4, 4) = 0

0 = 0

(14)

Gamma(4, 1, 1) = 0

-(diff(Ybar(X), zeta))+(diff(Ybar(X), u))*Ybar(X) = 0

(15)

``

Gamma(4, 2, 2) = 0

-(diff(Y(X), zetabar))+(diff(Y(X), u))*Y(X) = 0

(16)

NULL

shearconditions := {-(diff(Y(X), zetabar))+(diff(Y(X), u))*Y(X) = 0, -(diff(Ybar(X), zeta))+(diff(Ybar(X), u))*Ybar(X) = 0, -(diff(Y(X), u))*Y(X)*Ybar(X)+Y(X)*(diff(Y(X), zeta))+(diff(Y(X), zetabar))*Ybar(X)+diff(Y(X), v) = 0, -(diff(Ybar(X), u))*Y(X)*Ybar(X)+Y(X)*(diff(Ybar(X), zeta))+Ybar(X)*(diff(Ybar(X), zetabar))+diff(Ybar(X), v) = 0}

{-(diff(Y(X), zetabar))+(diff(Y(X), u))*Y(X) = 0, -(diff(Ybar(X), zeta))+(diff(Ybar(X), u))*Ybar(X) = 0, -(diff(Y(X), u))*Y(X)*Ybar(X)+Y(X)*(diff(Y(X), zeta))+(diff(Y(X), zetabar))*Ybar(X)+diff(Y(X), v) = 0, -(diff(Ybar(X), u))*Y(X)*Ybar(X)+Y(X)*(diff(Ybar(X), zeta))+Ybar(X)*(diff(Ybar(X), zetabar))+diff(Ybar(X), v) = 0}

(17)

simplify(RicciT(1, 2), shearconditions) = 0

H(X)*(diff(diff(Y(X), zeta), zetabar))*Ybar(X)-H(X)*Ybar(X)*Y(X)*(diff(diff(Ybar(X), u), zetabar))-H(X)*Ybar(X)^2*(diff(diff(Y(X), u), zetabar))-H(X)*Y(X)^2*(diff(diff(Ybar(X), u), zeta))-2*H(X)*Y(X)*Ybar(X)*(diff(diff(Y(X), u), zeta))+H(X)*Y(X)^2*Ybar(X)*(diff(diff(Ybar(X), u), u))-H(X)*Y(X)*(diff(diff(Ybar(X), u), v))+H(X)*Y(X)*Ybar(X)^2*(diff(diff(Y(X), u), u))-H(X)*(diff(diff(Y(X), u), v))*Ybar(X)+H(X)*(diff(Ybar(X), zetabar))^2+(-3*H(X)*Y(X)*(diff(Ybar(X), u))-(diff(H(X), u))*Y(X)*Ybar(X)+(diff(H(X), zeta))*Y(X)+(diff(H(X), zetabar))*Ybar(X)+diff(H(X), v))*(diff(Ybar(X), zetabar))+H(X)*(diff(Y(X), zeta))^2+(-4*H(X)*(diff(Y(X), u))*Ybar(X)-(diff(H(X), u))*Y(X)*Ybar(X)+(diff(H(X), zeta))*Y(X)+(diff(H(X), zetabar))*Ybar(X)+diff(H(X), v))*(diff(Y(X), zeta))+2*H(X)*Y(X)^2*(diff(Ybar(X), u))^2-Y(X)*((diff(H(X), zetabar))*Ybar(X)+(diff(H(X), zeta))*Y(X)+diff(H(X), v)-(diff(H(X), u))*Y(X)*Ybar(X))*(diff(Ybar(X), u))+2*(H(X)*(diff(Y(X), u))*Ybar(X)+(1/2)*(diff(H(X), u))*Y(X)*Ybar(X)-(1/2)*(diff(H(X), zeta))*Y(X)-(1/2)*(diff(H(X), zetabar))*Ybar(X)-(1/2)*(diff(H(X), v)))*(diff(Y(X), u))*Ybar(X) = 0

(18)

0 = 0

0 = 0

(19)

The values in the paraenthesis  should substitute H[4]. This sequence works in Maple 18 but not in Maple 2015

 

NULL


Download Question_algsubs_3.27.15.mw

First 204 205 206 207 208 209 210 Last Page 206 of 334