Unanswered Questions

This page lists MaplePrimes questions that have not yet received an answer

I  generated some graphs via maple and would like to put them in my paper. So I am going to convert the following worksheet to pdf.

with(GraphTheory):
Graphs:=[NonIsomorphicGraphs(6,8,output=graphs,outputform = graph)]:
num_g:=nops(Graphs):
num:=ceil((num_g)/5.):
M1:=Matrix (num,5,(i,j)->`if`((i-1)*5+j<=num_g, DrawGraph(Graphs[(i-1)*5+j],size=[250,250] ,overrideoptions ,showlabels=false,style=planar, stylesheet =  [
 vertexcolor     = orange
,vertexfontcolor = black
,vertexborder    = false
,edgethickness   = 0.6
,edgecolor       = MidnightBlue
,vertexshape     =  "circle"
,vertexfont      = [Arial, 4],
vertexthickness=5], caption = cat(H__,5*(i-1)+j),captionfont=["ROMAN",7]),plot(x = 0 .. 1, axes = none))):
DocumentTools:-Tabulate (M1[1..5,.. ],widthmode=percentage ,width=80 , exterior =all) :

 

 

But there was a problem with the exported pdf. There was some mosaic stuff at the vertices of all those graphs. It was strange. (I want to reduce the size of vertices of the graphs in order not to look crowded.)

 

Only when I insert the option vertexpadding and set a large enough size  of vertex (for this example, we set vertexpadding=7),  it won't go wrong. However, in fact, we often need make vertice‘s size smaller , especially when there are more vertices.

How to integrate the below function from 0 to eta.

A := P(eta)+S(H-2*`cos&theta;`(eta+1)*F)+`cos&theta;`*(2*F(eta)-2*H*F) = S(eta+1)*`sin&theta;`*F(theta)-`sin&theta;`(F*H(theta)-H*F(theta)+F(theta, eta))

Thanks in advance

I need to make my base class local variable static, so that when extending the class, the subclass will share these variable and use their current values as set by the base class. If I do not make them static, then the base class when extended, will get fresh instance of these variable, losing their original values, which is not what I want.

To do this, one must make the base class variables static

This works, but now I do not know the syntax where to put the type on the variable. 

I can't write   local m::integer::static; nor local m::static::integer;

I could only write local m::static; but this means I lost the ability to have a type on the variable and lost some of the type checking which is nice to have in Maple. From Maple help:

 

Here is example

restart;

base_class:=module()
  option object;
  local n::static;  #I want this type to ::integer also. But do not know how

  export set_n::static:=proc(_self,n::integer,$)
     _self:-n := n;
  end proc;
  
  export process::static:=proc(_self,$)
    local o;
    o:=Object(sub_class);
    o:-process();
  end proc;
end module;    

sub_class:=module()
   option object(base_class);
   process:=proc(_self,$)
      print("in sub class. _self:-n = ",_self:-n);
   end proc;
end module;

o:=Object(base_class);
o:-set_n(10);
o:-process()


            "in sub class. _self:-n = ", 10

The above is all working OK. I just would like to make n in the base class of type ::integer as well as ::static

Is there a syntax for doing this?

 

Hi,

One of my areas of expertise is in Designer Filters EMC. Could any professional that already uses MapleFlow for EMC and Electromagnetism, help me about the main functions of this amazing software?

Thanks.

Leandro Zamaro

I have a set of formulas I saved in a matrix and the exported the matrix to Excel. However when I open the file in Excel the equations are in prefix notation (I think).  That's not exactly human readable friendly.  If I copy and paste straight into excel they are readable.

It there a way to make the Maple export similar?

EDIT:-  I exported as a.csv file because if export as .xlsx    all the equation change into "#NUM!" in the spreadsheed.

restart

NULL

Digits := 5

5

(1)

interface(displayprecision = 5); interface(rtablesize = 30)

5

(2)

cosrule := proc (a, b, c, A) options operator, arrow; a^2 = b^2+c^2-2*b*c*cos(A) end proc

proc (a, b, c, A) options operator, arrow; a^2 = b^2+c^2-2*b*c*cos(A) end proc

(3)

Ang := solve(cosrule(a, b, c, A), A)

Pi-arccos((1/2)*(a^2-b^2-c^2)/(b*c))

(4)

Formulas := Matrix(20, 4)

 

 

 

 

data := [L[1] = 619.35, L[2] = 891.12, pos = 180, tos = 90, x1 = 600, y1 = -800, z1 = 500, x2 = 900, y2 = -200, z2 = 850, `&Theta;t` = 29.34*Pi*(1/180), `&Theta;p` = 53.98*Pi*(1/180)]
 

 

 

 

i := 3

res0 := `&Delta;Z` = z2-z1; Formulas[i, 1] := lhs(res0); Formulas[i, 2] := rhs(res0)

`&Delta;Z` = z2-z1

(5)

res0 := eval(res0, data); Formulas[i, 3] := rhs(res0); Formulas; i := i+1

`&Delta;Z` = 350

(6)

res1 := dt[1] = sqrt(tos^2+L[1]^2); Formulas[i, 1] := lhs(res1); Formulas[i, 2] := rhs(res1); res1 := eval(res1, data); Formulas[i, 3] := rhs(res1); Formulas; i := i+1

dt[1] = 625.85

(7)

NULL

res2 := d[1] = sqrt(pos^2+tos^2+L[1]^2); Formulas[i, 1] := lhs(res2); Formulas[i, 2] := rhs(res2); res2 := eval(res2, data); Formulas[i, 3] := rhs(res2); Formulas; i := i+1

d[1] = 651.22

(8)

res3 := dt[2] = sqrt(tos^2+L[2]^2); Formulas[i, 1] := lhs(res3); Formulas[i, 2] := rhs(res3); res3 := eval(res3, data); Formulas[i, 3] := rhs(res3); Formulas; i := i+1

dt[2] = 895.65

(9)

NULL

res4 := d[2] = sqrt(pos^2+tos^2+L[2]^2); Formulas[i, 1] := lhs(res4); Formulas[i, 2] := rhs(res4); res4 := eval(res4, data); Formulas[i, 3] := rhs(res4); Formulas; i := i+1

d[2] = 913.56

(10)

NULL

res7 := tau = arctan(tos/L[1]); Formulas[i, 1] := lhs(res7); Formulas[i, 2] := rhs(res7); res7 := eval(res7, data); Formulas[i, 3] := rhs(res7); 180*(eval(rhs(`%%`), data))/Pi; Formulas[i, 4] := %; Formulas; i := i+1

8.2678

(11)

NULL

res8 := rho = arctan(tos/L[2]); Formulas[i, 1] := lhs(res8); Formulas[i, 2] := rhs(res8); res8 := eval(res8, data); Formulas[i, 3] := rhs(res8); 180*(eval(rhs(`%%`), data))/Pi; Formulas[i, 4] := %; Formulas; i := i+1; data := [op(data), res0, res1, res2, res3, res4, res7, res8]

5.7674

(12)

NULL

res9 := alpha = `&Theta;t`+tau-rho; Formulas[i, 1] := lhs(res9); Formulas[i, 2] := rhs(res9); res9 := eval(res9, data); Formulas[i, 3] := rhs(res9); 180*(eval(rhs(`%%`), data))/Pi; Formulas[i, 4] := %; Formulas; i := i+1; data := [op(data), res9]

31.840

(13)

NULL

NULL

NULL

res10 := dt[3] = solve(cosrule(dt[3], dt[2], dt[1], alpha), dt[3])[1]; Formulas[i, 1] := lhs(res10); Formulas[i, 2] := rhs(res10); res10 := eval(res10, data); Formulas[i, 3] := rhs(res10); Formulas; i := i+1; data := [op(data), res10]

dt[3] = 491.45

(14)

NULL

NULL

res11 := beta = solve(cosrule(dt[1], dt[2], dt[3], beta), beta); Formulas[i, 1] := lhs(res11); Formulas[i, 2] := rhs(res11); res11 := eval(res11, data); Formulas[i, 3] := rhs(res11); 180*(eval(rhs(`%%`), data))/Pi; Formulas[i, 4] := %; Formulas; i := i+1; data := [op(data), res11]

42.215

(15)

NULL

NULL

NULL

NULL

res12 := Zeta = arccos(`&Delta;Z`/dt[3]); Formulas[i, 1] := lhs(res12); Formulas[i, 2] := rhs(res12); res12 := eval(res12, data); Formulas[i, 3] := rhs(res12); 180*(eval(rhs(`%%`), data))/Pi; Formulas[i, 4] := %; Formulas; i := i+1; data := [op(data), res12]

44.588

(16)

NULL

NULL

res13 := dt[4] = dt[3]*sin(Zeta); Formulas[i, 1] := lhs(res13); Formulas[i, 2] := rhs(res13); res13 := eval(res13, data); Formulas[i, 3] := rhs(res13); Formulas; i := i+1; data := [op(data), res13]

Matrix(%id = 36893490716944981036)

(17)

 

``

NULL

``

NULL

currentdir()

"C:\Users\Ronan\Documents\MAPLE\A & Q Maple primes"

(18)

NULL

with(ExcelTools)

[Export, Import, WorkbookData]

(19)

NULLExport(Formulas, "Frmls.csv")NULL

Download test_eqn_export.mw

Hi.

What wrong could be there with the color line?

restart:

with(plots):

equ1 := BesselJ(sqrt(17)/2, 10*sqrt(t)*sqrt(2))/t^(1/4) + BesselY(sqrt(17)/2, 10*sqrt(t)*sqrt(2))/t^(1/4):

equ2 := BesselJ(sqrt(17)/2, 10*sqrt(t)*sqrt(2))/t^(1/4) + 5*BesselY(sqrt(17)/2, 10*sqrt(t)*sqrt(2))/t^(1/4):

equ3 := BesselJ(sqrt(17)/2, 10*sqrt(t))/t^(1/4) + 5*BesselY(sqrt(17)/2, 10*sqrt(t))/t^(1/4):

tmax   := 30:
colors := ["Red", "Violet", "Blue"]:

p1 := plot([equ1, equ2, equ3], t = 0 .. tmax, labels = [t, T[2](t)], tickmarks = [0, 0], labelfont = [TIMES, ITALIC, 12], axes = boxed, color = colors):

ymin := min(op~(1, op~(2, op~(2, [plottools:-getdata(p1)])))):
ymax := max(op~(2, op~(2, op~(2, [plottools:-getdata(p1)])))):
dy   := 2*ymax:

legend1 := typeset(C[3] = 1, ` , `, C[4] = 1, ` , `, Omega^2 = 50):
legend2 := typeset(C[3] = 1, ` , `, C[4] = 5, ` , `, Omega^2 = 50):
legend3 := typeset(C[3] = 1, ` , `, C[4] = 5, ` , `, Omega^2 = 25):

p2 := seq(textplot([tmax-2, ymax-k*dy/20, legend||k], align=left), k=1..3):

p3 := seq(plot([[tmax-2, ymax-k*dy/20], [tmax-1, ymax-k*dy/20]], color=colors[k]), k=1..3):
display(p1, p2, p3, view=[default, -ymax..ymax], size=[800, 500])

Error, (in plot) invalid color specification: colors[1]

 

display(p1, p2, p3, view = [default, -ymax .. ymax], size = [800, 500])

(1)

 

Download Legend_Inside.mw

I want to calculate the double integral of the following expression which includes sum of several Legendre polynomial terms, but the speed is so low. Any suggestion to speed up the calculation?

NULL

Restart:

NULL

II := 9:

JJ := 9:

M := 9:

NULL

`&Delta;P1` := add(add(add(add(add(add(add(-(LegendreP(i, zeta__1)*LegendreP(j, eta__1)*(diff(diff(tau[r](t), t), t))+LegendreP(m, zeta__1)*LegendreP(j, eta__1)*(diff(tau[r](t), t))+LegendreP(m, zeta__1)*LegendreP(j, eta__1)*tau[r](t))/sqrt(LegendreP(m, zeta__1)*LegendreP(j, eta__1)+LegendreP(i, zeta__1)*LegendreP(l, eta__1)), i = 1 .. II), j = 1 .. JJ), k = 1 .. II), m = 1 .. II), l = 1 .. JJ), n = 1 .. JJ), r = 1 .. M):

A := int(int(`&Delta;P1`, zeta__1 = -1 .. 1), eta__1 = -1 .. 1):

A

``

Download Soal.mw

When I run this code, I will get a error information:

CompositionSeries(SmallGroup(336, 209))

It's mean this function just work in transitive group? But IsTransitive(SmallGroup(336, 209)) will get true. Is it a bug of maple? Or do I have any misunderstandings?

Hi,

I am using the following (dummy) code to generate a density plot.

densityplot(x-y^2, x=-5..5, y=-5..5, axes=boxed, style=patchnogrid, numpoints=1000, legendstyle=[location=bottom], labels=[x, y]);

While this command does generate x vs y plots with varying color shared, I cannot figure out where the function (x-y^2) value by looking at the color shades. Is there a way to produce a legend along with the plot that will demonstrate how the function is taking different values with parameters? 

I found a similar post, dated 2005, that suggests using the "s_tyle=" command. However, it does not work for some reasons. I would appreciate help in this regard. 

Thank you,

Omkar

HI, I have numerically solved the given problem using the dsolve command But I want to solve the same problem using the Differential transformation method.
Can anyone help me to get the series solution for the given problem using DTM.

I want to compare the numerical results with DTM results when lambda =0.5.

eqn1 := diff(f(eta), `$`(eta, 3))+f(eta)*(diff(f(eta), `$`(eta, 2)))-(diff(f(eta), eta))^2-lambda*(diff(f(eta), eta)) = 0.

eqn2 := diff(theta(eta), `$`(eta, 2))+f(eta)*(diff(theta(eta), eta))*Pr = 0

Bcs := (D(f))(0) = 1, f(0) = 0, (D(f))(infinity) = 0, theta(0) = 1, theta(infinity) = 0;

[lambda = .5, Pr = 6.3]

restart;
read "C:/Program Files/Maple 2020/lib/ASP v4.6.3.txt";

    DESOLVII_V5R5 (March 2011)(c), by Dr. K. T. Vu, Dr. J.

       Carminati and Miss G. Jefferson

 

The authors kindly request that this software be referenced, if

   it is used in work eventuating in a publication, by citing

   the article:


  K.T. Vu, G.F. Jefferson, J. Carminati, Finding generalised

     symmetries of differential equations


  using the MAPLE package DESOLVII,Comput. Phys. Commun. 183

     (2012) 1044-1054.

 

                         -------------

 ASP (November 2011), by Miss G. Jefferson and Dr. J. Carminati


The authors kindly request that this software be referenced, if

   it is used in work eventuating in a publication, by citing

   the article:


     G.F. Jefferson, J. Carminati, ASP: Automated Symbolic

        Computation of Approximate Symmetries


   of Differential Equations, Comput. Phys. Comm. 184 (2013)

      1045-1063.

 

 [classify, comtab, defeqn, deteq_split, extgenerator, gendef,

   genvec, icde_cons, liesolve, mod_eq, originalVar, pdesolv,

   reduceVar, reduceVargen, symmetry, varchange]


                     ASP := _m2229977204928

with(ASP);
       [ApproximateSymmetry, applygenerator, commutator]

with(desolv);
 [classify, comtab, defeqn, deteq_split, extgenerator, gendef,

   genvec, icde_cons, liesolve, mod_eq, originalVar, pdesolv,

   reduceVar, reduceVargen, symmetry, varchange]


read "C:/Program Files/Maple 2020/lib/FracSym.v1.16.txt";
FracSym (April 2013), by Miss G. Jefferson and Dr. J. Carminati


The authors kindly request that this software be referenced, if

   it is used in work eventuating in a publication, by citing:


   G.F. Jefferson, J. Carminati, FracSym: Automated symbolic

      computation of Lie symmetries


   of fractional differential equations, Comput. Phys. Comm.

      Submitted May 2013.

 

with(FracSym);
[Rfracdiff, TotalD, applyFracgen, evalTotalD, expandsum, fracDet,

  fracGen, split]


Rfracdiff(u(x, t), t, alpha);
                          alpha          
                       D[t     ](u(x, t))

Rfracdiff(u(x, t) &* v(x, t), t, alpha);
infinity                                                          
 -----                                                            
  \                                                               
   )                          (alpha - n)              n          
  /     binomial(alpha, n) D[t           ](u(x, t)) D[t ](v(x, t))
 -----                                                            
 n = 0                                                            

Rfracdiff(v(x, t) &* u(x, t), t, alpha);
infinity                                                          
 -----                                                            
  \                                                               
   )                          (alpha - n)              n          
  /     binomial(alpha, n) D[t           ](v(x, t)) D[t ](u(x, t))
 -----                                                            
 n = 0                                                            

Rfracdiff(u(x, t) &* v(x, t), t, 2);
     /  2         \                                        
     | d          |             / d         \ / d         \
     |---- u(x, t)| v(x, t) + 2 |--- u(x, t)| |--- v(x, t)|
     |   2        |             \ dt        / \ dt        /
     \ dt         /                                        

                  /  2         \
                  | d          |
        + u(x, t) |---- v(x, t)|
                  |   2        |
                  \ dt         /


TotalD(xi[x](x, y), x, 2);
                          2              
                       D[x ](xi[x](x, y))

evalTotalD([%], [y], [x]);
     [     /  2             \     /   2              \    
     [   2 | d              |     |  d               |    
     [y_x  |---- xi[x](x, y)| + 2 |------ xi[x](x, y)| y_x
     [     |   2            |     \ dy dx            /    
     [     \ dy             /                             

                                   /  2             \]
               / d             \   | d              |]
        + y_xx |--- xi[x](x, y)| + |---- xi[x](x, y)|]
               \ dy            /   |   2            |]
                                   \ dx             /]


fde1 := Rfracdiff(u(x, t), t, alpha) = -u(x, t)*diff(u(x, t), x) - diff(u(x, t), x, x) - diff(u(x, t), x, x, x) - diff(u(x, t), x, x, x, x);
                alpha                      / d         \
     fde1 := D[t     ](u(x, t)) = -u(x, t) |--- u(x, t)|
                                           \ dx        /

          /  2         \   /  3         \   /  4         \
          | d          |   | d          |   | d          |
        - |---- u(x, t)| - |---- u(x, t)| - |---- u(x, t)|
          |   2        |   |   3        |   |   4        |
          \ dx         /   \ dx         /   \ dx         /


deteqs := fracDet([fde1], [u], [x, t], 2);
  Intervals/values considered for the fractional derivative/s:

                     {0 < alpha, alpha < 1}

          [                                           
          [                                           
          [[  2                                       
          [[ d                     d                  
deteqs := [[---- eta[u](x, t, u), --- xi[t](x, t, u),
          [[   2                   du                 
          [[ du                                       

   d                   d                   d                  
  --- xi[t](x, t, u), --- xi[t](x, t, u), --- xi[x](x, t, u),
   du                  dx                  du                 

                        2                    2                  
   d                   d                    d                   
  --- xi[x](x, t, u), ---- xi[t](x, t, u), ---- xi[t](x, t, u),
   du                    2                    2                 
                       du                   du                  

    2                                              
   d                         / d                \  
  ---- xi[t](x, t, u), alpha |--- xi[x](x, t, u)|,
     2                       \ dt               /  
   du                                              

                                2                  
        / d                \   d                   
  alpha |--- xi[x](x, t, u)|, ---- xi[t](x, t, u),
        \ du               /     2                 
                               du                  

    2                    2                    3                  
   d                    d                    d                   
  ---- xi[x](x, t, u), ---- xi[x](x, t, u), ---- xi[t](x, t, u),
     2                    2                    3                 
   du                   du                   du                  

    3                    3                    4                  
   d                    d                    d                   
  ---- xi[t](x, t, u), ---- xi[x](x, t, u), ---- xi[t](x, t, u),
     3                    3                    4                 
   du                   du                   du                  

    4                  
   d                   
  ---- xi[x](x, t, u),
     4                 
   du                  

     /  2                \                           
     | d                 |     / d                \  
  -6 |---- xi[t](x, t, u)| - 3 |--- xi[t](x, t, u)|,
     |   2               |     \ dx               /  
     \ dx                /                           

        / d                \     / d                \  
  alpha |--- xi[t](x, t, u)| - 4 |--- xi[x](x, t, u)|,
        \ dt               /     \ dx               /  

  / d                \              
  |--- xi[t](x, t, u)| (alpha - 1),
  \ du               /              

                               /   2                 \  
     / d                \      |  d                  |  
  -3 |--- xi[t](x, t, u)| - 12 |------ xi[t](x, t, u)|,
     \ du               /      \ dx du               /  

        / d                \              
  alpha |--- xi[t](x, t, u)| (alpha - 1),
        \ du               /              

        / d                \              
  alpha |--- xi[x](x, t, u)| (alpha - 1),
        \ du               /              

     /  2                \      /   3                  \  
     | d                 |      |  d                   |  
  -3 |---- xi[t](x, t, u)| - 12 |------- xi[t](x, t, u)|,
     |   2               |      |      2               |  
     \ du                /      \ dx du                /  

        /   2                 \              
        |  d                  |              
  alpha |------ xi[t](x, t, u)| (alpha - 1),
        \ du dt               /              

        /   2                 \              
        |  d                  |              
  alpha |------ xi[x](x, t, u)| (alpha - 1),
        \ du dt               /              

        /  2                \              
        | d                 |              
  alpha |---- xi[t](x, t, u)| (alpha - 1),
        |   2               |              
        \ du                /              

        /  2                \              
        | d                 |              
  alpha |---- xi[x](x, t, u)| (alpha - 1),
        |   2               |              
        \ dt                /              

        /  2                \              
        | d                 |              
  alpha |---- xi[x](x, t, u)| (alpha - 1),
        |   2               |              
        \ du                /              

   /  3                \     /   4                  \  
   | d                 |     |  d                   |  
  -|---- xi[t](x, t, u)| - 4 |------- xi[t](x, t, u)|,
   |   3               |     |      3               |  
   \ du                /     \ dx du                /  
                          /   2                 \
 / d                \     |  d                  |
-|--- xi[t](x, t, u)| - 4 |------ xi[t](x, t, u)|
 \ du               /     \ dx du               /

           / d                \     / d                \
   + alpha |--- xi[t](x, t, u)|, -4 |--- xi[x](x, t, u)|
           \ du               /     \ du               /

       /  2                 \      /   2                 \  
       | d                  |      |  d                  |  
   + 4 |---- eta[u](x, t, u)| - 16 |------ xi[x](x, t, u)|,
       |   2                |      \ dx du               /  
       \ du                 /                               
                            /  2                 \
   / d                \     | d                  |
-3 |--- xi[x](x, t, u)| + 3 |---- eta[u](x, t, u)|
   \ du               /     |   2                |
                            \ du                 /

        /   2                 \     /  3                \
        |  d                  |     | d                 |
   - 12 |------ xi[x](x, t, u)|, -4 |---- xi[t](x, t, u)|
        \ dx du               /     |   3               |
                                    \ dx                /

                                /  2                \  
       / d                \     | d                 |  
   - 2 |--- xi[t](x, t, u)| - 3 |---- xi[t](x, t, u)|,
       \ dx               /     |   2               |  
                                \ dx                /  
   /   2                 \      /   3                  \
   |  d                  |      |  d                   |
-6 |------ xi[t](x, t, u)| - 12 |------- xi[t](x, t, u)|
   \ dx du               /      |   2                  |
                                \ dx  du               /

       / d                \  
   - 2 |--- xi[t](x, t, u)|,
       \ du               /  

        / d                \                          
  alpha |--- xi[t](x, t, u)| (alpha - 1) (alpha - 2),
        \ du               /                          
   /  2                \     /  3                 \
   | d                 |     | d                  |
-6 |---- xi[x](x, t, u)| + 6 |---- eta[u](x, t, u)|
   |   2               |     |   3                |
   \ du                /     \ du                 /

        /   3                  \     /   3                  \
        |  d                   |     |  d                   |
   - 24 |------- xi[x](x, t, u)|, -3 |------- xi[t](x, t, u)|
        |      2               |     |      2               |
        \ dx du                /     \ dx du                /

       /    4                  \   /  2                \         
       |   d                   |   | d                 |        /
   - 6 |-------- xi[t](x, t, u)| - |---- xi[t](x, t, u)|, alpha |
       |   2   2               |   |   2               |        \
       \ dx  du                /   \ du                /         

   d                \     / d                \
  --- xi[t](x, t, u)| - 3 |--- xi[x](x, t, u)|
   dt               /     \ dx               /

       /   2                  \     /  2                \  
       |  d                   |     | d                 |  
   + 4 |------ eta[u](x, t, u)| - 6 |---- xi[x](x, t, u)|,
       \ dx du                /     |   2               |  
                                    \ dx                /  

        /   2                 \                          
        |  d                  |                          
  alpha |------ xi[t](x, t, u)| (alpha - 1) (alpha - 2),
        \ du dt               /                          

        /  2                \                          
        | d                 |                          
  alpha |---- xi[t](x, t, u)| (alpha - 1) (alpha - 2),
        |   2               |                          
        \ du                /                          
   /   2                 \     /   3                  \
   |  d                  |     |  d                   |
-3 |------ xi[t](x, t, u)| - 6 |------- xi[t](x, t, u)|
   \ dx du               /     |   2                  |
                               \ dx  du               /

                                                              /
     / d                \         / d                \        |
   - |--- xi[t](x, t, u)| + alpha |--- xi[t](x, t, u)|, alpha |
     \ du               /         \ du               /        |
                                                              \
       /  2                \     /   2                  \
       | d                 |     |  d                   |
-alpha |---- xi[t](x, t, u)| + 2 |------ eta[u](x, t, u)|
       |   2               |     \ du dt                /
       \ dt                /                             

     /  2                \\   /  3                \
     | d                 ||   | d                 |
   + |---- xi[t](x, t, u)||, -|---- xi[x](x, t, u)|
     |   2               ||   |   3               |
     \ dt                //   \ du                /

       /   4                  \   /  4                 \  
       |  d                   |   | d                  |  
   - 4 |------- xi[x](x, t, u)| + |---- eta[u](x, t, u)|,
       |      3               |   |   4                |  
       \ dx du                /   \ du                 /  
                          /  2                \
   / d                \   | d                 |
-u |--- xi[t](x, t, u)| - |---- xi[t](x, t, u)|
   \ dx               /   |   2               |
                          \ dx                /

     /  3                \   /  4                \  
     | d                 |   | d                 |  
   - |---- xi[t](x, t, u)| - |---- xi[t](x, t, u)|,
     |   3               |   |   4               |  
     \ dx                /   \ dx                /  

        /   3                  \                          
        |  d                   |                          
  alpha |------- xi[t](x, t, u)| (alpha - 1) (alpha - 2),
        |      2               |                          
        \ du dt                /                          

        /   3                  \                          
        |  d                   |                          
  alpha |------- xi[t](x, t, u)| (alpha - 1) (alpha - 2),
        |   2                  |                          
        \ du  dt               /                          

        /  3                \                          
        | d                 |                          
  alpha |---- xi[t](x, t, u)| (alpha - 1) (alpha - 2),
        |   3               |                          
        \ du                /                          
                            /  2                 \
   / d                \     | d                  |
-3 |--- xi[x](x, t, u)| + 3 |---- eta[u](x, t, u)|
   \ du               /     |   2                |
                            \ du                 /

       /   2                 \      /   3                   \
       |  d                  |      |  d                    |
   - 9 |------ xi[x](x, t, u)| + 12 |------- eta[u](x, t, u)|
       \ dx du               /      |      2                |
                                    \ dx du                 /

        /   3                  \                              
        |  d                   |        / d                \  
   - 18 |------- xi[x](x, t, u)|, alpha |--- xi[t](x, t, u)| u
        |   2                  |        \ du               /  
        \ dx  du               /                              

       /   3                  \     /   4                  \
       |  d                   |     |  d                   |
   - 3 |------- xi[t](x, t, u)| - 4 |------- xi[t](x, t, u)|
       |   2                  |     |   3                  |
       \ dx  du               /     \ dx  du               /

       /   2                 \                                  
       |  d                  |   / d                \          /
   - 2 |------ xi[t](x, t, u)| - |--- xi[t](x, t, u)| u, alpha |
       \ dx du               /   \ du               /          \

                          /  3                \
   d                \     | d                 |
  --- xi[t](x, t, u)| - 4 |---- xi[x](x, t, u)|
   dt               /     |   3               |
                          \ dx                /

       /  2                \                         
       | d                 |     / d                \
   - 3 |---- xi[x](x, t, u)| - 2 |--- xi[x](x, t, u)|
       |   2               |     \ dx               /
       \ dx                /                         

       /   3                   \     /   2                  \  
       |  d                    |     |  d                   |  
   + 6 |------- eta[u](x, t, u)| + 3 |------ eta[u](x, t, u)|,
       |   2                   |     \ dx du                /  
       \ dx  du                /                               
 /  2                \   /  3                 \
 | d                 |   | d                  |
-|---- xi[x](x, t, u)| + |---- eta[u](x, t, u)|
 |   2               |   |   3                |
 \ du                /   \ du                 /

       /   3                  \     /   4                   \
       |  d                   |     |  d                    |
   - 3 |------- xi[x](x, t, u)| + 4 |------- eta[u](x, t, u)|
       |      2               |     |      3                |
       \ dx du                /     \ dx du                 /

       /    4                  \              /
       |   d                   |              |
   - 6 |-------- xi[x](x, t, u)|, (alpha - 1) |
       |   2   2               |              |
       \ dx  du                /              \
       /  3                \     /   3                   \
       | d                 |     |  d                    |
-alpha |---- xi[t](x, t, u)| + 3 |------- eta[u](x, t, u)|
       |   3               |     |      2                |
       \ dt                /     \ du dt                 /

       /  3                \\                               
       | d                 ||           / d                \
   + 2 |---- xi[t](x, t, u)|| alpha, -u |--- xi[x](x, t, u)|
       |   3               ||           \ du               /
       \ dt                //                               

     /  2                 \     /   2                 \
     | d                  |     |  d                  |
   + |---- eta[u](x, t, u)| - 2 |------ xi[x](x, t, u)|
     |   2                |     \ dx du               /
     \ du                 /                            

       /   3                   \     /   3                  \
       |  d                    |     |  d                   |
   + 3 |------- eta[u](x, t, u)| - 3 |------- xi[x](x, t, u)|
       |      2                |     |   2                  |
       \ dx du                 /     \ dx  du               /

       /   4                  \     /    4                   \  
       |  d                   |     |   d                    |  
   - 4 |------- xi[x](x, t, u)| + 6 |-------- eta[u](x, t, u)|,
       |   3                  |     |   2   2                |  
       \ dx  du               /     \ dx  du                 /  
   / d                \                  
-u |--- xi[x](x, t, u)| + eta[u](x, t, u)
   \ dx               /                  

                                      /   2                  \
           / d                \       |  d                   |
   + alpha |--- xi[t](x, t, u)| u + 2 |------ eta[u](x, t, u)|
           \ dt               /       \ dx du                /

     /  2                \     /   3                   \
     | d                 |     |  d                    |
   - |---- xi[x](x, t, u)| + 3 |------- eta[u](x, t, u)|
     |   2               |     |   2                   |
     \ dx                /     \ dx  du                /

     /  3                \     /   4                   \
     | d                 |     |  d                    |
   - |---- xi[x](x, t, u)| + 4 |------- eta[u](x, t, u)|
     |   3               |     |   3                   |
     \ dx                /     \ dx  du                /

                             [                          
                             [                          
     /  4                \]  [                          
     | d                 |]  [                          
   - |---- xi[x](x, t, u)|], [xi[t](x, 0, u) = 0, (Diff(
     |   4               |]  [                          
     \ dx                /]  [                          

                                   / d                 \
  eta[u](x, t, u), t $ alpha)) + u |--- eta[u](x, t, u)|
                                   \ dx                /

       /    / d                            \\
   - u |Diff|--- eta[u](x, t, u), t $ alpha||
       \    \ du                           //

     /  3                 \   /  4                 \
     | d                  |   | d                  |
   + |---- eta[u](x, t, u)| + |---- eta[u](x, t, u)|
     |   3                |   |   4                |
     \ dx                 /   \ dx                 /

                             /infinity                             
                             | -----                               
     /  2                 \  |  \                                  
     | d                  |  |   )    /    1   /                   
   + |---- eta[u](x, t, u)|, |  /     |- ----- |binomial(alpha, n)
     |   2                |  | -----  \  n + 1 \                   
     \ dx                 /  \ n = 3                               

  /   (alpha - n)              (n + 1)                       
  |D[t           ](u(x, t)) D[t       ](xi[t](x, t, u)) alpha
  \                                                          

        (alpha - n)              (n + 1)                   
   - D[t           ](u(x, t)) D[t       ](xi[t](x, t, u)) n

        (alpha - n) / d         \    n                   
   + D[t           ]|--- u(x, t)| D[t ](xi[x](x, t, u)) n
                    \ dx        /                        

                                                          \   /Sum(
                                                          |   |    
                                                          |   |    
        (alpha - n) / d         \    n                 \\\|   |    
   + D[t           ]|--- u(x, t)| D[t ](xi[x](x, t, u))|||| + |    
                    \ dx        /                      ///|   |    
                                                          /   \    

                     /    / d                        \\
  binomial(alpha, n) |Diff|--- eta[u](x, t, u), t $ n||
                     \    \ du                       //

     (alpha - n) (u(x, t)), n = 3 .. infinity)\]  
  D[t           ]                             |]  
                                              |]  
                                              |]  
                                              |],
                                              |]  
                                              /]  

                                                              ]
                                                              ]
                                                              ]
                                                              ]
  [xi[x](x, t, u), xi[t](x, t, u), eta[u](x, t, u)], [x, t, u]]
                                                              ]
                                                              ]


sol1 := pdesolv(expand(deteqs[1]), deteqs[3], deteqs[4]);
Error, (in desolv/lderivx) cannot determine if this expression is true or false: 1 < x |C:/Program Files/Maple 2020/lib/ASP v4.6.3.txt:4312|

 

  1. I use both Maple and Matlab
  2. I also install (a stripped down version of) Maple as the "symbolic toolbox" for Matlab using the executable MapleToolbox2022.0WindowsX64Installer.exe, which lives in C:\Program Files\Maple 2022. This gives me acces to (some) symbolic computation capability from within Matlab.
  3. This installation process has been working for as long as I remember, certainly more than 10 years
  4. With Maple 2022 and Matlab R2022a, this installation process ran with no problems and I can perform symbolic computation within Matlab
  5. However, although the Matlab help lists the Maple toolbox as supplemental software (as in all previous releases), I can no longer acces help for Maple from within Matlab - I just get a "Page not found" message
  6. The relevant Maple "help" is at the same place within the Matlab folder structure which is C:\Program Files\MATLAB\R2022a\toolbox\maple\html
  7. I have just spoken to support at Matlab and they claim tha this must be a Maple (or Maple toolbox installer issue) - so nothing to do with them!
  8. Has anyone else had a similar problem andd found a workaround?

Switching font to Arial apparently makes the sign disappear in MathContainers.

Vorzeichen.mw

If i want to do mathematical modelling for planetary motion, how can maple help me with it?

Anyone experience a delay in typing as the screen fills with text/math etc.?

I'm using Maple 2021 and as the space is filled typing slows. I can finish typing and watch the last 4 keys enter on the screen.

First 36 37 38 39 40 41 42 Last Page 38 of 334