Unanswered Questions

This page lists MaplePrimes questions that have not yet received an answer

The uploaded worksheet begins to uniformly tile the Poincare disk with pentagons using hyperbolic reflection .

Although relatively easy to create the central pentagon and the first adjacent pentagon, it becomes increasingly difficult to determine which lines to reflect to create the remaining pentagons in the first tier adjacent to the central pentagon and more so to create the pentagons of the second tier adjacent to those in the first tier and so on.

Is there a better technique for accomplishing this?

In particular can Mobius tranformations be employed to do this? If so, please replay with or point to a working example of this for me to follow.

 Tile_Poincare_disk.mw

Sorry, I forgot that respondents to this question must establich their own link to the DirectSearch package.

I was trying to fill a Submit Software Change Request form a couple of times (with an interval of a couple of days) to report a small issue in Maple2023, which happens when I try to open an empty mpl-file. However, each time I received an error message. It looks like it is just broken.

Does anyone know if there is any reliable mechanism to provide feedback on MapleSoft products?

Why does _EnvLinalg95 only affect  (and ) and not and ? 
 

restart;

m := <3 , 4 | 4 , 3>;

m := Matrix(2, 2, {(1, 1) = 3, (1, 2) = 4, (2, 1) = 4, (2, 2) = 3})

(1)

LinearAlgebra:-Eigenvalues(m);

Vector(2, {(1) = 7, (2) = -1})

(2)

LinearAlgebra:-Eigenvectors(m);

Vector(2, {(1) = -1, (2) = 7}), Matrix(2, 2, {(1, 1) = -1, (1, 2) = 1, (2, 1) = 1, (2, 2) = 1})

(3)

LinearAlgebra:-EigenConditionNumbers(m);

Vector(2, {(1) = 1.00000000000000, (2) = 1.00000000000000}), Vector(2, {(1) = 8., (2) = 8.})

(4)

_EnvLinalg95 := true:

whattype(m);

Matrix

(5)

LinearAlgebra:-Eigenvalues(m);

Vector(2, {(1) = 7, (2) = -1})

(6)

LinearAlgebra:-Eigenvectors(m):

Error, (in Matrix) invalid input: `Matrix/MakeInit` expects its 1st argument, initializer, to be of type list(list), but received [proc (i, j) options operator, arrow; `if`(j = 1 and i <= 2, (Vector(2, {(1) = 1, (2) = 1}))[i], rhs(fill_opt)) end proc]

 

LinearAlgebra:-EigenConditionNumbers(m);

Vector(2, {(1) = 1.00000000000000, (2) = 1.00000000000000}), Vector(2, {(1) = 8., (2) = 8.})

(7)

_EnvLinalg95 := false:

LinearAlgebra:-Eigenvectors(m);

Vector(2, {(1) = -1, (2) = 7}), Matrix(2, 2, {(1, 1) = -1, (1, 2) = 1, (2, 1) = 1, (2, 2) = 1})

(8)


 

Download _EnvLinalg95.mw

I have read the help page of Eigenvectors but couldn't find anything related.

how to find CharacteristicPolynomiall of matrix with vector entries? 

restart

with(LinearAlgebra)

with(ArrayTools)

M := Matrix([[-(I*2)*lambda+I*(lambda+m0), c], [-Transpose(c), I*a+I*(lambda+m0)]])

Matrix(%id = 36893490099698106484)

(1)

P := CharacteristicPolynomial(M, eta)

eta^2+(-I*a-(2*I)*m0)*eta+a*lambda-a*m0+c^2+lambda^2-m0^2

(2)

NULL

NULL

NULL

NULL

Download characpol.mw

Hello,

I want to use the spline options in the SavitzkyGolayFilter, but I don't understand the description in the Maple help. Can someone give me Sytax examples? I would also like to specify the 1st and 2nd derivatives of the endpoints.

I am grateful for any help!

This looks like a bug I have not seen before. Any one seen this before?

Error, (in Handlers:-TrigExpOnly) cannot determine if this expression is true or false: tr_is_cos

Can others reproduce it? I am using Maple 2023.2 on windows 10

btw, I found that by doing int(evala(integrand),t) instead of int(integrand,t) then the error goes away but not all the time. Below are two examples. The first where evala() fixes it, but the second it does not fix it. 

Physics:-Version()

`The "Physics Updates" version in the MapleCloud is 1585 and is the same as the version installed in this computer, created 2023, October 29, 6:31 hours Pacific Time.`

interface(version);

`Standard Worksheet Interface, Maple 2023.2, Windows 10, October 25 2023 Build ID 1753458`

restart;

15332

integrand:=-(((sqrt(3)*sqrt(27983)*I + 276)*(-594 + 6*I*sqrt(3)*sqrt(27983))^(1/3) + 15*I*sqrt(3)*sqrt(27983) + (25*(-594 + 6*I*sqrt(3)*sqrt(27983))^(2/3))/2 + 2265)*(-150 + (-150 + (-594 + 6*I*sqrt(3)*sqrt(27983))^(2/3))*sqrt(3)*I - (-594 + 6*I*sqrt(3)*sqrt(27983))^(2/3) + 24*(-594 + 6*I*sqrt(3)*sqrt(27983))^(1/3))*(150 + (-150 + (-594 + 6*I*sqrt(3)*sqrt(27983))^(2/3))*sqrt(3)*I + (-594 + 6*I*sqrt(3)*sqrt(27983))^(2/3) - 24*(-594 + 6*I*sqrt(3)*sqrt(27983))^(1/3))*((sqrt(3)*sqrt(27983)*I + 276)*(-594 + 6*I*sqrt(3)*sqrt(27983))^(1/3) - 15*I*sqrt(3)*sqrt(27983) - 2265)*exp(-t*((-594 + 6*I*sqrt(83949))^(2/3)/3 + (-594 + 6*I*sqrt(83949))^(1/3) + 50)/(-594 + 6*I*sqrt(83949))^(1/3))*(-594 + 6*I*sqrt(3)*sqrt(27983))^(2/3)*((-594 + 6*I*sqrt(3)*sqrt(27983))^(2/3) + 12*(-594 + 6*I*sqrt(3)*sqrt(27983))^(1/3) + 150)*sin(t)*cos(t))/(10101630528*(sqrt(3)*sqrt(27983)*I - 99)^2*(sqrt(3)*sqrt(27983)*I + 27983/33)*exp(t)) - ((-594 + 6*I*sqrt(83949))^(2/3) + 12*(-594 + 6*I*sqrt(83949))^(1/3) + 150)*(2*I*sqrt(83949)*(-594 + 6*I*sqrt(83949))^(1/3) + 30*I*sqrt(83949) + 25*(-594 + 6*I*sqrt(83949))^(2/3) + 552*(-594 + 6*I*sqrt(83949))^(1/3) + 4530)*(-594 + 6*I*sqrt(83949))^(1/3)*(sqrt(83949)*(-594 + 6*I*sqrt(83949))^(1/3)*I - 15*I*sqrt(83949) + 276*(-594 + 6*I*sqrt(83949))^(1/3) - 2265)*exp(-t*((-594 + 6*I*sqrt(83949))^(2/3)/3 + (-594 + 6*I*sqrt(83949))^(1/3) + 50)/(-594 + 6*I*sqrt(83949))^(1/3))*(8*cos(t)^2/exp(t) - 4/exp(t))/(5196312*(sqrt(83949)*I + 27983/33)*(sqrt(83949)*I - 99)) + ((-594 + 6*I*sqrt(83949))^(2/3) + 12*(-594 + 6*I*sqrt(83949))^(1/3) + 150)*(2*I*sqrt(83949)*(-594 + 6*I*sqrt(83949))^(1/3) + 30*I*sqrt(83949) + 25*(-594 + 6*I*sqrt(83949))^(2/3) + 552*(-594 + 6*I*sqrt(83949))^(1/3) + 4530)*(-150 + (-594 + 6*I*sqrt(83949))^(2/3))*(-594 + 6*I*sqrt(83949))^(2/3)*exp(-t*((-594 + 6*I*sqrt(83949))^(2/3)/3 + (-594 + 6*I*sqrt(83949))^(1/3) + 50)/(-594 + 6*I*sqrt(83949))^(1/3))/(1154736*(sqrt(83949)*I + 27983/33)*(sqrt(83949)*I - 99)*exp(t)):

int(integrand,t)

Error, (in Handlers:-TrigExpOnly) cannot determine if this expression is true or false: tr_is_cos

 

Download handler_trig_exp_only_nov_18_2023.mw

But the trick of using evala() to avoid this error does not always work. Here is an example below. So need to find another workaround for this.

restart;

18704

interface(version);

`Standard Worksheet Interface, Maple 2023.2, Windows 10, October 25 2023 Build ID 1753458`

integrand2:=1/40406522112*I*(-594+6*I*3^(1/2)*27983^(1/2))^(2/3)*exp(t*(5/3*3^(1/2)*2^(1/2)
*sin(1/3*arctan(1/99*83949^(1/2))+1/6*Pi)-5*cos(1/3*arctan(1/99*83949^(1/2))+1/
6*Pi)*2^(1/2)-1))*(150+I*(-150+(-594+6*I*3^(1/2)*27983^(1/2))^(2/3))*3^(1/2)+(-\
594+6*I*3^(1/2)*27983^(1/2))^(2/3)-24*(-594+6*I*3^(1/2)*27983^(1/2))^(1/3))*(
2265+(276+I*(27983^(1/2)+92)*3^(1/2)-27983^(1/2))*(-594+6*I*3^(1/2)*27983^(1/2)
)^(1/3)+5*I*(-151+3*27983^(1/2))*3^(1/2)+15*27983^(1/2))*(2265-25*(-594+6*I*3^(
1/2)*27983^(1/2))^(2/3)+(276+I*(-276+27983^(1/2))*3^(1/2)+3*27983^(1/2))*(-594+
6*I*3^(1/2)*27983^(1/2))^(1/3)+15*I*(151+27983^(1/2))*3^(1/2)-45*27983^(1/2))*(
(-594+6*I*3^(1/2)*27983^(1/2))^(2/3)+12*(-594+6*I*3^(1/2)*27983^(1/2))^(1/3)+
150)*3^(1/2)*(-150+I*(-150+(-594+6*I*3^(1/2)*27983^(1/2))^(2/3))*3^(1/2)-(-594+
6*I*3^(1/2)*27983^(1/2))^(2/3)+24*(-594+6*I*3^(1/2)*27983^(1/2))^(1/3))/(I*3^(1
/2)*27983^(1/2)+27983/33)/(I*3^(1/2)*27983^(1/2)-99)^2/exp(t)*sin(t)*cos(t)-1/
20785248*I*(I*(-594+6*I*3^(1/2)*27983^(1/2))^(2/3)*3^(1/2)+(-594+6*I*3^(1/2)*
27983^(1/2))^(2/3)-150*I*3^(1/2)-24*(-594+6*I*3^(1/2)*27983^(1/2))^(1/3)+150)*
exp(5/3*3^(1/2)*sin(1/3*arctan(1/99*83949^(1/2))+1/6*Pi)*2^(1/2)*t-5*cos(1/3*
arctan(1/99*83949^(1/2))+1/6*Pi)*2^(1/2)*t-t)*(2265-25*(-594+6*I*3^(1/2)*27983^
(1/2))^(2/3)+(276+I*(-276+27983^(1/2))*3^(1/2)+3*27983^(1/2))*(-594+6*I*3^(1/2)
*27983^(1/2))^(1/3)+15*I*(151+27983^(1/2))*3^(1/2)-45*27983^(1/2))*(2265+(276+I
*(27983^(1/2)+92)*3^(1/2)-27983^(1/2))*(-594+6*I*3^(1/2)*27983^(1/2))^(1/3)+5*I
*(-151+3*27983^(1/2))*3^(1/2)+15*27983^(1/2))*(-594+6*I*3^(1/2)*27983^(1/2))^(1
/3)*3^(1/2)/(I*3^(1/2)*27983^(1/2)+27983/33)/(I*3^(1/2)*27983^(1/2)-99)*(8/exp(
t)*cos(t)^2-4/exp(t))+1/13856832*I*(-594+6*I*3^(1/2)*27983^(1/2))^(2/3)*(-450+I
*(-150+(-594+6*I*3^(1/2)*27983^(1/2))^(2/3))*3^(1/2)-3*(-594+6*I*3^(1/2)*27983^
(1/2))^(2/3))*exp(t*(5/3*3^(1/2)*2^(1/2)*sin(1/3*arctan(1/99*83949^(1/2))+1/6*
Pi)-5*cos(1/3*arctan(1/99*83949^(1/2))+1/6*Pi)*2^(1/2)-1))*(150+I*(-150+(-594+6
*I*3^(1/2)*27983^(1/2))^(2/3))*3^(1/2)+(-594+6*I*3^(1/2)*27983^(1/2))^(2/3)-24*
(-594+6*I*3^(1/2)*27983^(1/2))^(1/3))*(2265-25*(-594+6*I*3^(1/2)*27983^(1/2))^(
2/3)+(276+I*(-276+27983^(1/2))*3^(1/2)+3*27983^(1/2))*(-594+6*I*3^(1/2)*27983^(
1/2))^(1/3)+15*I*(151+27983^(1/2))*3^(1/2)-45*27983^(1/2))*3^(1/2)/(I*3^(1/2)*
27983^(1/2)+27983/33)/(I*3^(1/2)*27983^(1/2)-99)/exp(t):

int(integrand2,t);

Error, (in Handlers:-TrigExpOnly) cannot determine if this expression is true or false: tr_is_cos

int(evala(integrand2),t);

Error, (in Handlers:-TrigExpOnly) cannot determine if this expression is true or false: tr_is_cos

 

Download handler_trig_exp_version_2.mw

ps. send to Maplesoft support.

Since C2=D1.D1inv should be equal to I. But return is just an expression (see attached). Further, how to obtain residue for a function C2?

residue.mw

There seems to be a consensus about using ListTools:-SearchAll to locate an item in a list. However, this subroutine does not work on other expressions; A simple instance is that “ListTools:-SearchAll(1, [[1], 1]);” only outputs  while what I need is  (because both “op([1, 1], [[1], 1])” and “op([2], [[1], 1])” are ). And actually, I hope that there is a more general version in Maple.
For example, I intend to do something like 

restart;
expr, elem := ToInert(eval(`print/Diff`)), '_Inert_NAME'("_syslib"):
SearchAll(elem, expr);

and 

List:=[[[[cS,[[[cS,cS],cS],[[[cS,cS],[[cK,cK],cS]],cS]]],cS],cS],[[[cS,[[cK,cS],cK]],cK],cS]]: 
items:=Or([[[identical(cS),anything],anything],anything],[[identical(cK),anything],anything]): 
SearchAll(items,List); 

In other words, I need all positions of an operand of an expression (cf. op).

It may be manually checked that the "indices" of  in  include [5,1,1,2,1,1,1,2,1,2,1,2], [5,1,2,2,1,1,1,1,2,1,2], and [5,2,2,1,1,3,1,2], since 

patmatch(op([5, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2], expr), elem);
 = 
                              true

patmatch(op([5, 1, 2, 2, 1, 1, 1, 1, 2, 1, 2], expr), elem);
 = 
                              true

patmatch(op([5, 2, 2, 1, 1, 3, 1, 2], expr), elem);
 = 
                              true

Similarly, after some manual searchs, 

[[1], [1, 1, 1, 2], [1, 1, 1, 2, 2], [1, 1, 1, 2, 2, 1, 2], [2], [2, 1, 1, 2]]:
convert(typematch~(map2(`?[]`, List, `%`), items), `and`);
 = 
                              true

It turns out that all "indices" in  of  are [1][1,1,1,2][1,1,1,2,2][1,1,1,2,2,1,2][2], and [2,1,1,2].
But isn't there such a  command that can eliminate the need to manually retrieve them?

When the original poster receives or finds the answer to the question he/she posed, should he/she

  1. Reply to it
  2. Answer to it?

I have seen "true answers" that were converted to a reply, despite addressing the initial answer correctly. In case there are no other answers, the question will still be listed under unanswered question which is incorrect.

What practice should be applied in MaplePrimes for "true answers"?

In an old question, @nm asked how to . While the answer in that question was almost up to the mark, there remains a regret. 

As the instance listed below shows, Maple, by default, draws arrows on a rectangular grid (rather than on a hexagonal mesh): 

  # Example of a three-dimensional vector field: 
vf__2d := VectorCalculus:-VectorField([sin(x)*(cos(x) + cos(y)), 
                                       sin(y)*(cos(x) - cos(y))], 'cartesian'[x, y]):
  # Example of a two-dimensional vector field: 
vf__3d := VectorCalculus:-VectorField([1 - (sin(u - v) + sin(u - w)), 
                                       1 - (sin(v - w) + sin(v - u)), 
                                       1 - (sin(w - u) + sin(w - v))], 'cartesian'[u, v, w]):
  # Phase portrait. 
Student:-VectorCalculus:-PlotVector(vf__2d, (x, y) =~ -Pi .. Pi, 
                                            'grid' = [`$`](25, 2), 
                                          'arrows' = 'THICK', 
                                   'fieldstrength' = log[63], 
                                           'color' = ColorTools:-Color("#0072BD"), 
                                            'axes' = "box"(*, …omitted…*));
= 

Note that I have changed some of the options in order to make the layout of arrows more prominent.
However, according to the help page of Mma's VectorPoints, among the following methods of location generation, Mma by default uses Hexagonal for 2D field vectors and FaceCenteredCubic for 3D field vector: 

Here is a collection of different settings available in Mma:

So if the requirement is to get the Maple's output looking like Mathematica's (see the beginning), the number and placement of vectors to plot should be thought of as well. In Maple, “the number of vectors” can be controlled by the plot (or plot3d) opinion , but how do I specify “the placement of vectors” (e.g., Mma's "Hexagonal" and "Mesh")?

Although there exists an  chapter in the documentation, randomly positioned arrows do not fit the bill. Is there any workaround?

This is linear ode, third order, Euler type and inhomogeneous ode.

If I solve the homogeneous ode only, then ask Maple to give me a particular solution, then add these, I get much much smaller solution which Maple verifies is correct.

Now when asking Maple to solve the original inhomogeneous ode as is, the solution is much more complicated and much longer with unresolved integrals.

Why does not Maple give the simpler solution? Both are verified to be correct.

This is my theory: When asking maple to find only the particular solution, it seems to have used a different and advanced method to find yp. Which is new to me and trying to learn it. It is based on paper "D'Alembertian Solutions of Inhomogeneous Equations (differential, difference, and some other).

Undetermined coefficients method can't really be used on ode's such as this because its coefficients are not constant.

Now, when asking Maple to solve the inhomogeneous ode, it seems to have used variation of parameters method, which results in integrals, which can be hard to solve.

My question is: Why does not Maple give the same much shorter answer when asked to solve the ode as is? Should it not have done so? Any thoughts on why such large difference in answer? Why it did not use the same method to find yp when asked to solve the whole ode as that leads to much smaller and more elegant solution.

ps. debugging this, it uses LinearOperators:-dAsolver:-dAlembertianSolver which is called from ODEtools/particularsol/linear to find yp when calling DETools:-particularsol(ode); but for some reason, it does not do this when asking it to solve the whole ode directly (if it did, then one will expect same answer to result, right?)

Maple 2023.2 on windows 10.
 

restart;

189900

(1)

#the ode
ode:=x^3*diff(y(x), x, x, x) + x^2*diff(y(x), x, x) + 2*x*diff(y(x), x) - y(x) = 2*x^3 - ln(x);

x^3*(diff(diff(diff(y(x), x), x), x))+x^2*(diff(diff(y(x), x), x))+2*x*(diff(y(x), x))-y(x) = 2*x^3-ln(x)

(2)

# find y_h
yh:=dsolve(lhs(ode)=0);

y(x) = c__1*x^(-(1/6)*((44+12*69^(1/2))^(2/3)-4*(44+12*69^(1/2))^(1/3)-20)/(44+12*69^(1/2))^(1/3))+c__2*x^((1/12)*(-20+(44+12*69^(1/2))^(2/3)+8*(44+12*69^(1/2))^(1/3))/(44+12*69^(1/2))^(1/3))*sin((1/12)*(3^(1/2)*(44+12*69^(1/2))^(2/3)+20*3^(1/2))*ln(x)/(44+12*69^(1/2))^(1/3))+c__3*x^((1/12)*(-20+(44+12*69^(1/2))^(2/3)+8*(44+12*69^(1/2))^(1/3))/(44+12*69^(1/2))^(1/3))*cos((1/12)*(3^(1/2)*(44+12*69^(1/2))^(2/3)+20*3^(1/2))*ln(x)/(44+12*69^(1/2))^(1/3))

(3)

#find particular solution
yp:=DETools:-particularsol(ode);

y(x) = (2/17)*x^3+ln(x)+3

(4)

#test particular solution is correct
odetest(yp,ode);

0

(5)

#find general solution = yh+ yp
y_general:=y(x)=rhs(yh)+rhs(yp);

y(x) = c__1*x^(-(1/6)*((44+12*69^(1/2))^(2/3)-4*(44+12*69^(1/2))^(1/3)-20)/(44+12*69^(1/2))^(1/3))+c__2*x^((1/12)*(-20+(44+12*69^(1/2))^(2/3)+8*(44+12*69^(1/2))^(1/3))/(44+12*69^(1/2))^(1/3))*sin((1/12)*(3^(1/2)*(44+12*69^(1/2))^(2/3)+20*3^(1/2))*ln(x)/(44+12*69^(1/2))^(1/3))+c__3*x^((1/12)*(-20+(44+12*69^(1/2))^(2/3)+8*(44+12*69^(1/2))^(1/3))/(44+12*69^(1/2))^(1/3))*cos((1/12)*(3^(1/2)*(44+12*69^(1/2))^(2/3)+20*3^(1/2))*ln(x)/(44+12*69^(1/2))^(1/3))+(2/17)*x^3+ln(x)+3

(6)

#test general solution is correct
odetest(y_general,ode);

0

(7)

#now solve the ode directly using Maple. Why this solution is much more complicated?
y_general_direct_method:=dsolve(ode);

y(x) = -(Int(-(5/2)*(x^(-(1/400)*69^(1/2)*(44+12*69^(1/2))^(2/3)+(11/1200)*(44+12*69^(1/2))^(2/3)+(1/12)*(44+12*69^(1/2))^(1/3)+2/3))^2*(44+12*69^(1/2))^(1/3)*(3*(44+12*69^(1/2))^(1/3)*69^(1/2)*cos((1/1200)*(44+12*69^(1/2))^(1/3)*3^(1/2)*(3*(44+12*69^(1/2))^(1/3)*69^(1/2)-11*(44+12*69^(1/2))^(1/3)+100)*ln(x))^2+3*(44+12*69^(1/2))^(1/3)*69^(1/2)*sin((1/1200)*(44+12*69^(1/2))^(1/3)*3^(1/2)*(3*(44+12*69^(1/2))^(1/3)*69^(1/2)-11*(44+12*69^(1/2))^(1/3)+100)*ln(x))^2-11*(44+12*69^(1/2))^(1/3)*cos((1/1200)*(44+12*69^(1/2))^(1/3)*3^(1/2)*(3*(44+12*69^(1/2))^(1/3)*69^(1/2)-11*(44+12*69^(1/2))^(1/3)+100)*ln(x))^2-11*(44+12*69^(1/2))^(1/3)*sin((1/1200)*(44+12*69^(1/2))^(1/3)*3^(1/2)*(3*(44+12*69^(1/2))^(1/3)*69^(1/2)-11*(44+12*69^(1/2))^(1/3)+100)*ln(x))^2+100*cos((1/1200)*(44+12*69^(1/2))^(1/3)*3^(1/2)*(3*(44+12*69^(1/2))^(1/3)*69^(1/2)-11*(44+12*69^(1/2))^(1/3)+100)*ln(x))^2+100*sin((1/1200)*(44+12*69^(1/2))^(1/3)*3^(1/2)*(3*(44+12*69^(1/2))^(1/3)*69^(1/2)-11*(44+12*69^(1/2))^(1/3)+100)*ln(x))^2)*(-2*x^3+ln(x))/(x^3*(3*3^(1/2)*23^(1/2)+11)*(11*3^(1/2)*23^(1/2)-207)), x))*x^((1/200)*69^(1/2)*(44+12*69^(1/2))^(2/3)-(11/600)*(44+12*69^(1/2))^(2/3)-(1/6)*(44+12*69^(1/2))^(1/3)+2/3)+(Int(-(5/6)*x^((1/200)*69^(1/2)*(44+12*69^(1/2))^(2/3)-(11/600)*(44+12*69^(1/2))^(2/3)-(1/6)*(44+12*69^(1/2))^(1/3)+2/3)*x^(-(1/400)*69^(1/2)*(44+12*69^(1/2))^(2/3)+(11/1200)*(44+12*69^(1/2))^(2/3)+(1/12)*(44+12*69^(1/2))^(1/3)+2/3)*(44+12*69^(1/2))^(1/3)*(3*(44+12*69^(1/2))^(1/3)*69^(1/2)*3^(1/2)*cos((1/1200)*(44+12*69^(1/2))^(1/3)*3^(1/2)*(3*(44+12*69^(1/2))^(1/3)*69^(1/2)-11*(44+12*69^(1/2))^(1/3)+100)*ln(x))-9*(44+12*69^(1/2))^(1/3)*69^(1/2)*sin((1/1200)*(44+12*69^(1/2))^(1/3)*3^(1/2)*(3*(44+12*69^(1/2))^(1/3)*69^(1/2)-11*(44+12*69^(1/2))^(1/3)+100)*ln(x))-11*(44+12*69^(1/2))^(1/3)*3^(1/2)*cos((1/1200)*(44+12*69^(1/2))^(1/3)*3^(1/2)*(3*(44+12*69^(1/2))^(1/3)*69^(1/2)-11*(44+12*69^(1/2))^(1/3)+100)*ln(x))+33*(44+12*69^(1/2))^(1/3)*sin((1/1200)*(44+12*69^(1/2))^(1/3)*3^(1/2)*(3*(44+12*69^(1/2))^(1/3)*69^(1/2)-11*(44+12*69^(1/2))^(1/3)+100)*ln(x))+100*3^(1/2)*cos((1/1200)*(44+12*69^(1/2))^(1/3)*3^(1/2)*(3*(44+12*69^(1/2))^(1/3)*69^(1/2)-11*(44+12*69^(1/2))^(1/3)+100)*ln(x))+300*sin((1/1200)*(44+12*69^(1/2))^(1/3)*3^(1/2)*(3*(44+12*69^(1/2))^(1/3)*69^(1/2)-11*(44+12*69^(1/2))^(1/3)+100)*ln(x)))*(-2*x^3+ln(x))*3^(1/2)/(x^3*(3*3^(1/2)*23^(1/2)+11)*(11*3^(1/2)*23^(1/2)-207)), x))*x^(-(1/400)*69^(1/2)*(44+12*69^(1/2))^(2/3)+(11/1200)*(44+12*69^(1/2))^(2/3)+(1/12)*(44+12*69^(1/2))^(1/3)+2/3)*cos((1/1200)*(44+12*69^(1/2))^(1/3)*3^(1/2)*(3*(44+12*69^(1/2))^(1/3)*69^(1/2)-11*(44+12*69^(1/2))^(1/3)+100)*ln(x))+(Int(-(5/6)*x^((1/200)*69^(1/2)*(44+12*69^(1/2))^(2/3)-(11/600)*(44+12*69^(1/2))^(2/3)-(1/6)*(44+12*69^(1/2))^(1/3)+2/3)*x^(-(1/400)*69^(1/2)*(44+12*69^(1/2))^(2/3)+(11/1200)*(44+12*69^(1/2))^(2/3)+(1/12)*(44+12*69^(1/2))^(1/3)+2/3)*(44+12*69^(1/2))^(1/3)*(3*(44+12*69^(1/2))^(1/3)*69^(1/2)*3^(1/2)*sin((1/1200)*(44+12*69^(1/2))^(1/3)*3^(1/2)*(3*(44+12*69^(1/2))^(1/3)*69^(1/2)-11*(44+12*69^(1/2))^(1/3)+100)*ln(x))+9*(44+12*69^(1/2))^(1/3)*69^(1/2)*cos((1/1200)*(44+12*69^(1/2))^(1/3)*3^(1/2)*(3*(44+12*69^(1/2))^(1/3)*69^(1/2)-11*(44+12*69^(1/2))^(1/3)+100)*ln(x))-11*(44+12*69^(1/2))^(1/3)*3^(1/2)*sin((1/1200)*(44+12*69^(1/2))^(1/3)*3^(1/2)*(3*(44+12*69^(1/2))^(1/3)*69^(1/2)-11*(44+12*69^(1/2))^(1/3)+100)*ln(x))-33*(44+12*69^(1/2))^(1/3)*cos((1/1200)*(44+12*69^(1/2))^(1/3)*3^(1/2)*(3*(44+12*69^(1/2))^(1/3)*69^(1/2)-11*(44+12*69^(1/2))^(1/3)+100)*ln(x))+100*3^(1/2)*sin((1/1200)*(44+12*69^(1/2))^(1/3)*3^(1/2)*(3*(44+12*69^(1/2))^(1/3)*69^(1/2)-11*(44+12*69^(1/2))^(1/3)+100)*ln(x))-300*cos((1/1200)*(44+12*69^(1/2))^(1/3)*3^(1/2)*(3*(44+12*69^(1/2))^(1/3)*69^(1/2)-11*(44+12*69^(1/2))^(1/3)+100)*ln(x)))*(-2*x^3+ln(x))*3^(1/2)/(x^3*(3*3^(1/2)*23^(1/2)+11)*(11*3^(1/2)*23^(1/2)-207)), x))*x^(-(1/400)*69^(1/2)*(44+12*69^(1/2))^(2/3)+(11/1200)*(44+12*69^(1/2))^(2/3)+(1/12)*(44+12*69^(1/2))^(1/3)+2/3)*sin((1/1200)*(44+12*69^(1/2))^(1/3)*3^(1/2)*(3*(44+12*69^(1/2))^(1/3)*69^(1/2)-11*(44+12*69^(1/2))^(1/3)+100)*ln(x))+c__1*x^((1/200)*69^(1/2)*(44+12*69^(1/2))^(2/3)-(11/600)*(44+12*69^(1/2))^(2/3)-(1/6)*(44+12*69^(1/2))^(1/3)+2/3)+c__2*x^(-(1/400)*69^(1/2)*(44+12*69^(1/2))^(2/3)+(11/1200)*(44+12*69^(1/2))^(2/3)+(1/12)*(44+12*69^(1/2))^(1/3)+2/3)*cos((1/1200)*(44+12*69^(1/2))^(1/3)*3^(1/2)*(3*(44+12*69^(1/2))^(1/3)*69^(1/2)-11*(44+12*69^(1/2))^(1/3)+100)*ln(x))+c__3*x^(-(1/400)*69^(1/2)*(44+12*69^(1/2))^(2/3)+(11/1200)*(44+12*69^(1/2))^(2/3)+(1/12)*(44+12*69^(1/2))^(1/3)+2/3)*sin((1/1200)*(44+12*69^(1/2))^(1/3)*3^(1/2)*(3*(44+12*69^(1/2))^(1/3)*69^(1/2)-11*(44+12*69^(1/2))^(1/3)+100)*ln(x))

(8)

#test the above
odetest(y_general_direct_method,ode);

0

(9)

 


 

Download why_such_difference_in_dsolve_answer.mw

Hi i study as an marine engenieer and use phasors alot.

I came across Acers startup code to use. 

At the moment i have been been using the gym package for my calculations. Is there a way to setup this startup code to function every time when i load maple? Also how does it go about using units in general? 

I currently have an issue where it outputs some strange format i can not understand 

I do not know why there is added so many decimals. I work on a macOS computer and have thought about using mathCAD for the ease of use instead of all of this. I am hoping for a helping hand to stay with maple because this is what i know and have used the last 3 years. 

Hi,

I would like to calculate Laplacian(1/r) in spherical coordinates

Considering that 1/r in spherical coordinates defines a distribution function (understood in Laurent Schwartz meaning) , the result has to be -4πDirac(r)

I tried to establish this result on Maple but that doesn't work. The result given is -Dirac(r)/r²  (see below)

What is the mistake I made?

Thanks

with(Physics[Vectors]);

SetCoordinates(spherical[r, phi, theta]);

F := Laplacian(1/r);
                               Dirac(r)
                        F := - --------
                                    r²  

Perhaps a stupid question but I fail to convert 21/4a1/4/pi1/4 (a result of a calculation performed by maple) into (2a/pi)1/4.

I tried simplify, combine, collect, ... with options. None of them work.

Thank you. 

Could you please help me to solve this error.

my code is here.

CR-C.mw

First 7 8 9 10 11 12 13 Last Page 9 of 334