Rouben Rostamian

MaplePrimes Activity


These are replies submitted by Rouben Rostamian

@verdin OK, I will do the calculations and post it as an Answer to close this thread.

@verdin Have a look at this modified worksheet where I have picked arbitrary parameter values and attempted to find the system's equilibria.  No equilibria are found.  That's because the parameter values have been picked blindly.  With your insight into the origins of the problem you should be able to come up with a meaningful set of parameters which might yield an equilibrium.

mw.mw

@tomleslie The OP did not ask for a path integral.  He wants to integrate the given expression over (p,q,w) ∈ R3×R3×R3, where p=⟨p1,p2,p2⟩, etc., are independent variables. Thus, we have a nine-fold integral over R9.  I haven't attempted doing that but just from the looks of it I expect it to be complicated.

 

@tdavid I have fixed a few errors in your worksheet.  Here is what we get now.

restart; rho := proc (phi) options operator, arrow; chi/(1-e*cos(2*phi)) end proc

e := .29

chi := .5

de := diff(L(phi), phi) = sqrt(rho(phi)^2+(D(rho))(phi)^2)

diff(L(phi), phi) = (.25/(1-.29*cos(2*phi))^2+0.84100e-1*sin(2*phi)^2/(1-.29*cos(2*phi))^4)^(1/2)

(1)

ic := L(0) = 0

L(0) = 0

(2)

dsol := dsolve({de, ic}, numeric, range = 0 .. 2*Pi)

proc (x_rkf45) local _res, _dat, _vars, _solnproc, _xout, _ndsol, _pars, _n, _i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; if 1 < nargs then error "invalid input: too many arguments" end if; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then _xout := evalf[_EnvDSNumericSaveDigits](x_rkf45) else _xout := evalf(x_rkf45) end if; _dat := Array(1..4, {(1) = proc (_xin) local _xout, _dtbl, _dat, _vmap, _x0, _y0, _val, _dig, _n, _ne, _nd, _nv, _pars, _ini, _par, _i, _j, _k, _src; option `Copyright (c) 2002 by Waterloo Maple Inc. All rights reserved.`; table( [( "right" ) = 6.28318530717958, ( "left" ) = 0., ( "complex" ) = false ] ) _xout := _xin; _pars := []; _dtbl := array( 1 .. 4, [( 1 ) = (array( 1 .. 26, [( 1 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 2 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 3 ) = ([0, 0, 0, Array(1..0, 1..2, {}, datatype = float[8], order = C_order)]), ( 4 ) = (Array(1..63, {(1) = 1, (2) = 1, (3) = 0, (4) = 0, (5) = 0, (6) = 0, (7) = 1, (8) = 0, (9) = 0, (10) = 1, (11) = 0, (12) = 0, (13) = 0, (14) = 0, (15) = 0, (16) = 0, (17) = 0, (18) = 1, (19) = 30000, (20) = 0, (21) = 0, (22) = 1, (23) = 4, (24) = 0, (25) = 1, (26) = 15, (27) = 1, (28) = 0, (29) = 1, (30) = 3, (31) = 3, (32) = 0, (33) = 1, (34) = 0, (35) = 0, (36) = 0, (37) = 0, (38) = 0, (39) = 0, (40) = 0, (41) = 0, (42) = 0, (43) = 1, (44) = 0, (45) = 0, (46) = 0, (47) = 0, (48) = 0, (49) = 0, (50) = 50, (51) = 1, (52) = 0, (53) = 0, (54) = 0, (55) = 0, (56) = 0, (57) = 0, (58) = 0, (59) = 10000, (60) = 0, (61) = 1000, (62) = 0, (63) = 0}, datatype = integer[8])), ( 5 ) = (Array(1..28, {(1) = 6.28318530717958, (2) = 0.10e-5, (3) = .0, (4) = 0.500001e-14, (5) = .0, (6) = 0.7167675433294995e-2, (7) = .0, (8) = 0.10e-5, (9) = .0, (10) = .0, (11) = .0, (12) = .0, (13) = 1.0, (14) = .0, (15) = .49999999999999, (16) = .0, (17) = 1.0, (18) = 1.0, (19) = .0, (20) = .0, (21) = 1.0, (22) = 1.0, (23) = .0, (24) = .0, (25) = 0.10e-14, (26) = .0, (27) = .0, (28) = .0}, datatype = float[8], order = C_order)), ( 6 ) = (Array(1..1, {(1) = .0}, datatype = float[8], order = C_order)), ( 7 ) = ([Array(1..4, 1..7, {(1, 1) = .0, (1, 2) = .203125, (1, 3) = .3046875, (1, 4) = .75, (1, 5) = .8125, (1, 6) = .40625, (1, 7) = .8125, (2, 1) = 0.6378173828125e-1, (2, 2) = .0, (2, 3) = .279296875, (2, 4) = .27237892150878906, (2, 5) = -0.9686851501464844e-1, (2, 6) = 0.1956939697265625e-1, (2, 7) = .5381584167480469, (3, 1) = 0.31890869140625e-1, (3, 2) = .0, (3, 3) = -.34375, (3, 4) = -.335235595703125, (3, 5) = .2296142578125, (3, 6) = .41748046875, (3, 7) = 11.480712890625, (4, 1) = 0.9710520505905151e-1, (4, 2) = .0, (4, 3) = .40350341796875, (4, 4) = 0.20297467708587646e-1, (4, 5) = -0.6054282188415527e-2, (4, 6) = -0.4770040512084961e-1, (4, 7) = .77858567237854}, datatype = float[8], order = C_order), Array(1..6, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = 1.0, (2, 1) = .25, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = 1.0, (3, 1) = .1875, (3, 2) = .5625, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = 2.0, (4, 1) = .23583984375, (4, 2) = -.87890625, (4, 3) = .890625, (4, 4) = .0, (4, 5) = .0, (4, 6) = .2681884765625, (5, 1) = .1272735595703125, (5, 2) = -.5009765625, (5, 3) = .44921875, (5, 4) = -0.128936767578125e-1, (5, 5) = .0, (5, 6) = 0.626220703125e-1, (6, 1) = -0.927734375e-1, (6, 2) = .626220703125, (6, 3) = -.4326171875, (6, 4) = .1418304443359375, (6, 5) = -0.861053466796875e-1, (6, 6) = .3131103515625}, datatype = float[8], order = C_order), Array(1..6, {(1) = .0, (2) = .386, (3) = .21, (4) = .63, (5) = 1.0, (6) = 1.0}, datatype = float[8], order = C_order), Array(1..6, {(1) = .25, (2) = -.1043, (3) = .1035, (4) = -0.362e-1, (5) = .0, (6) = .0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 1.544, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = .9466785280815533, (3, 2) = .25570116989825814, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = 3.3148251870684886, (4, 2) = 2.896124015972123, (4, 3) = .9986419139977808, (4, 4) = .0, (4, 5) = .0, (5, 1) = 1.2212245092262748, (5, 2) = 6.019134481287752, (5, 3) = 12.537083329320874, (5, 4) = -.687886036105895, (5, 5) = .0, (6, 1) = 1.2212245092262748, (6, 2) = 6.019134481287752, (6, 3) = 12.537083329320874, (6, 4) = -.687886036105895, (6, 5) = 1.0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = -5.6688, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = -2.4300933568337584, (3, 2) = -.20635991570891224, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = -.10735290581452621, (4, 2) = -9.594562251021896, (4, 3) = -20.470286148096154, (4, 4) = .0, (4, 5) = .0, (5, 1) = 7.496443313968615, (5, 2) = -10.246804314641219, (5, 3) = -33.99990352819906, (5, 4) = 11.708908932061595, (5, 5) = .0, (6, 1) = 8.083246795922411, (6, 2) = -7.981132988062785, (6, 3) = -31.52159432874373, (6, 4) = 16.319305431231363, (6, 5) = -6.0588182388340535}, datatype = float[8], order = C_order), Array(1..3, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 10.126235083446911, (2, 2) = -7.487995877607633, (2, 3) = -34.800918615557414, (2, 4) = -7.9927717075687275, (2, 5) = 1.0251377232956207, (3, 1) = -.6762803392806898, (3, 2) = 6.087714651678606, (3, 3) = 16.43084320892463, (3, 4) = 24.767225114183653, (3, 5) = -6.5943891257167815}, datatype = float[8], order = C_order)]), ( 9 ) = ([Array(1..1, {(1) = .1}, datatype = float[8], order = C_order), Array(1..1, {(1) = 3.615400797110011}, datatype = float[8], order = C_order), Array(1..1, {(1) = .0}, datatype = float[8], order = C_order), Array(1..1, {(1) = .7098385115080822}, datatype = float[8], order = C_order), Array(1..1, {(1) = .0}, datatype = float[8], order = C_order), Array(1..1, 1..1, {(1, 1) = .0}, datatype = float[8], order = C_order), Array(1..1, 1..1, {(1, 1) = .0}, datatype = float[8], order = C_order), Array(1..1, 1..6, {(1, 1) = .7098385115080822, (1, 2) = .7042821826761728, (1, 3) = .7046200317368113, (1, 4) = .708997841928018, (1, 5) = .7098385115080822, (1, 6) = .7052461897764069}, datatype = float[8], order = C_order), Array(1..1, {(1) = 0}, datatype = integer[8]), Array(1..1, {(1) = 3.565978698997918}, datatype = float[8], order = C_order), Array(1..1, {(1) = 3.6620152268172546}, datatype = float[8], order = C_order), Array(1..1, {(1) = 0.14382618571673333e-5}, datatype = float[8], order = C_order), Array(1..1, {(1) = .0}, datatype = float[8], order = C_order), Array(1..1, {(1) = .706129929097878}, datatype = float[8], order = C_order), Array(1..2, {(1) = .0, (2) = .0}, datatype = float[8], order = C_order)]), ( 8 ) = ([Array(1..1, {(1) = .0}, datatype = float[8], order = C_order), Array(1..1, {(1) = .0}, datatype = float[8], order = C_order), Array(1..1, {(1) = .7042253521126761}, datatype = float[8], order = C_order), 0, 0]), ( 11 ) = (Array(1..6, 0..1, {(1, 1) = .0, (2, 0) = .0, (2, 1) = .0, (3, 0) = .0, (3, 1) = .0, (4, 0) = .0, (4, 1) = .0, (5, 0) = .0, (5, 1) = .0, (6, 0) = .0, (6, 1) = .0}, datatype = float[8], order = C_order)), ( 10 ) = ([proc (N, X, Y, YP) option `[Y[1] = L(phi)]`; if .25/(1-.29*cos(2*X))^2+0.84100e-1*sin(2*X)^2/(1-.29*cos(2*X))^4 < 0 then YP[1] := undefined; return 0 end if; YP[1] := evalf((.25/(1-.29*cos(2*X))^2+0.84100e-1*sin(2*X)^2/(1-.29*cos(2*X))^4)^(1/2)); 0 end proc, -1, 0, 0, 0, 0, 0, 0]), ( 13 ) = (), ( 12 ) = (), ( 15 ) = ("rkf45"), ( 14 ) = ([0, 0]), ( 18 ) = ([]), ( 19 ) = (0), ( 16 ) = ([0, 0, 0, []]), ( 17 ) = ([proc (N, X, Y, YP) option `[Y[1] = L(phi)]`; if .25/(1-.29*cos(2*X))^2+0.84100e-1*sin(2*X)^2/(1-.29*cos(2*X))^4 < 0 then YP[1] := undefined; return 0 end if; YP[1] := evalf((.25/(1-.29*cos(2*X))^2+0.84100e-1*sin(2*X)^2/(1-.29*cos(2*X))^4)^(1/2)); 0 end proc, -1, 0, 0, 0, 0, 0, 0]), ( 22 ) = (0), ( 23 ) = (0), ( 20 ) = ([]), ( 21 ) = (0), ( 26 ) = (Array(1..0, {})), ( 25 ) = (Array(1..0, {})), ( 24 ) = (0)  ] )), ( 3 ) = (array( 1 .. 26, [( 1 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 2 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 3 ) = ([0, 0, 0, Array(1..0, 1..2, {}, datatype = float[8], order = C_order)]), ( 4 ) = (Array(1..63, {(1) = 1, (2) = 1, (3) = 0, (4) = 0, (5) = 0, (6) = 0, (7) = 1, (8) = 1, (9) = 0, (10) = 1, (11) = 149, (12) = 149, (13) = 0, (14) = 0, (15) = 0, (16) = 0, (17) = 0, (18) = 288, (19) = 30000, (20) = 5, (21) = 0, (22) = 1, (23) = 4, (24) = 0, (25) = 1, (26) = 15, (27) = 1, (28) = 0, (29) = 1, (30) = 3, (31) = 3, (32) = 0, (33) = 1, (34) = 0, (35) = 0, (36) = 0, (37) = 0, (38) = 0, (39) = 0, (40) = 0, (41) = 0, (42) = 0, (43) = 1, (44) = 0, (45) = 0, (46) = 0, (47) = 0, (48) = 0, (49) = 0, (50) = 50, (51) = 1, (52) = 0, (53) = 0, (54) = 0, (55) = 0, (56) = 0, (57) = 0, (58) = 0, (59) = 10000, (60) = 0, (61) = 1000, (62) = 0, (63) = 0}, datatype = integer[8])), ( 5 ) = (Array(1..28, {(1) = 6.28318530717958, (2) = 0.10e-5, (3) = .15585861275759516, (4) = 0.500001e-14, (5) = .0, (6) = 0.7167675433294995e-2, (7) = .0, (8) = 0.10e-5, (9) = .0, (10) = .0, (11) = .0, (12) = .0, (13) = 1.0, (14) = .0, (15) = .49999999999999, (16) = .0, (17) = 1.0, (18) = 1.0, (19) = .0, (20) = .0, (21) = 1.0, (22) = 1.0, (23) = .0, (24) = .0, (25) = 0.10e-14, (26) = .0, (27) = .0, (28) = .0}, datatype = float[8], order = C_order)), ( 6 ) = (Array(1..1, {(1) = .0}, datatype = float[8], order = C_order)), ( 7 ) = ([Array(1..4, 1..7, {(1, 1) = .0, (1, 2) = .203125, (1, 3) = .3046875, (1, 4) = .75, (1, 5) = .8125, (1, 6) = .40625, (1, 7) = .8125, (2, 1) = 0.6378173828125e-1, (2, 2) = .0, (2, 3) = .279296875, (2, 4) = .27237892150878906, (2, 5) = -0.9686851501464844e-1, (2, 6) = 0.1956939697265625e-1, (2, 7) = .5381584167480469, (3, 1) = 0.31890869140625e-1, (3, 2) = .0, (3, 3) = -.34375, (3, 4) = -.335235595703125, (3, 5) = .2296142578125, (3, 6) = .41748046875, (3, 7) = 11.480712890625, (4, 1) = 0.9710520505905151e-1, (4, 2) = .0, (4, 3) = .40350341796875, (4, 4) = 0.20297467708587646e-1, (4, 5) = -0.6054282188415527e-2, (4, 6) = -0.4770040512084961e-1, (4, 7) = .77858567237854}, datatype = float[8], order = C_order), Array(1..6, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = 1.0, (2, 1) = .25, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = 1.0, (3, 1) = .1875, (3, 2) = .5625, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = 2.0, (4, 1) = .23583984375, (4, 2) = -.87890625, (4, 3) = .890625, (4, 4) = .0, (4, 5) = .0, (4, 6) = .2681884765625, (5, 1) = .1272735595703125, (5, 2) = -.5009765625, (5, 3) = .44921875, (5, 4) = -0.128936767578125e-1, (5, 5) = .0, (5, 6) = 0.626220703125e-1, (6, 1) = -0.927734375e-1, (6, 2) = .626220703125, (6, 3) = -.4326171875, (6, 4) = .1418304443359375, (6, 5) = -0.861053466796875e-1, (6, 6) = .3131103515625}, datatype = float[8], order = C_order), Array(1..6, {(1) = .0, (2) = .386, (3) = .21, (4) = .63, (5) = 1.0, (6) = 1.0}, datatype = float[8], order = C_order), Array(1..6, {(1) = .25, (2) = -.1043, (3) = .1035, (4) = -0.362e-1, (5) = .0, (6) = .0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 1.544, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = .9466785280815533, (3, 2) = .25570116989825814, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = 3.3148251870684886, (4, 2) = 2.896124015972123, (4, 3) = .9986419139977808, (4, 4) = .0, (4, 5) = .0, (5, 1) = 1.2212245092262748, (5, 2) = 6.019134481287752, (5, 3) = 12.537083329320874, (5, 4) = -.687886036105895, (5, 5) = .0, (6, 1) = 1.2212245092262748, (6, 2) = 6.019134481287752, (6, 3) = 12.537083329320874, (6, 4) = -.687886036105895, (6, 5) = 1.0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = -5.6688, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = -2.4300933568337584, (3, 2) = -.20635991570891224, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = -.10735290581452621, (4, 2) = -9.594562251021896, (4, 3) = -20.470286148096154, (4, 4) = .0, (4, 5) = .0, (5, 1) = 7.496443313968615, (5, 2) = -10.246804314641219, (5, 3) = -33.99990352819906, (5, 4) = 11.708908932061595, (5, 5) = .0, (6, 1) = 8.083246795922411, (6, 2) = -7.981132988062785, (6, 3) = -31.52159432874373, (6, 4) = 16.319305431231363, (6, 5) = -6.0588182388340535}, datatype = float[8], order = C_order), Array(1..3, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 10.126235083446911, (2, 2) = -7.487995877607633, (2, 3) = -34.800918615557414, (2, 4) = -7.9927717075687275, (2, 5) = 1.0251377232956207, (3, 1) = -.6762803392806898, (3, 2) = 6.087714651678606, (3, 3) = 16.43084320892463, (3, 4) = 24.767225114183653, (3, 5) = -6.5943891257167815}, datatype = float[8], order = C_order)]), ( 9 ) = ([Array(1..1, {(1) = .1}, datatype = float[8], order = C_order), Array(1..1, {(1) = 3.615400797110011}, datatype = float[8], order = C_order), Array(1..1, {(1) = .0}, datatype = float[8], order = C_order), Array(1..1, {(1) = .7098385115080822}, datatype = float[8], order = C_order), Array(1..1, {(1) = .0}, datatype = float[8], order = C_order), Array(1..1, 1..1, {(1, 1) = .0}, datatype = float[8], order = C_order), Array(1..1, 1..1, {(1, 1) = .0}, datatype = float[8], order = C_order), Array(1..1, 1..6, {(1, 1) = .7098385115080822, (1, 2) = .7042821826761728, (1, 3) = .7046200317368113, (1, 4) = .708997841928018, (1, 5) = .7098385115080822, (1, 6) = .7052461897764069}, datatype = float[8], order = C_order), Array(1..1, {(1) = 0}, datatype = integer[8]), Array(1..1, {(1) = 3.565978698997918}, datatype = float[8], order = C_order), Array(1..1, {(1) = 3.6620152268172546}, datatype = float[8], order = C_order), Array(1..1, {(1) = 0.14382618571673333e-5}, datatype = float[8], order = C_order), Array(1..1, {(1) = .0}, datatype = float[8], order = C_order), Array(1..1, {(1) = .706129929097878}, datatype = float[8], order = C_order), Array(1..2, {(1) = .0, (2) = .0}, datatype = float[8], order = C_order)]), ( 8 ) = ([Array(1..1, {(1) = .0}, datatype = float[8], order = C_order), Array(1..1, {(1) = .0}, datatype = float[8], order = C_order), Array(1..1, {(1) = .7098385115080822}, datatype = float[8], order = C_order), 0, 0]), ( 11 ) = (Array(1..6, 0..1, {(1, 1) = 6.254516841243197, (2, 0) = 6.254516841243197, (2, 1) = 3.5457876846501035, (3, 0) = 3.5457876846501035, (3, 1) = 6.295679285466243, (4, 0) = 6.295679285466243, (4, 1) = 3.5747770839010773, (5, 0) = 3.5747770839010773, (5, 1) = 6.33684172968929, (6, 0) = 6.33684172968929, (6, 1) = 3.603783018620303}, datatype = float[8], order = C_order)), ( 10 ) = ([proc (N, X, Y, YP) option `[Y[1] = L(phi)]`; if .25/(1-.29*cos(2*X))^2+0.84100e-1*sin(2*X)^2/(1-.29*cos(2*X))^4 < 0 then YP[1] := undefined; return 0 end if; YP[1] := evalf((.25/(1-.29*cos(2*X))^2+0.84100e-1*sin(2*X)^2/(1-.29*cos(2*X))^4)^(1/2)); 0 end proc, -1, 0, 0, 0, 0, 0, 0]), ( 13 ) = (), ( 12 ) = (Array(1..149, 0..1, {(1, 1) = .0, (2, 0) = .0, (2, 1) = .0, (3, 0) = .0, (3, 1) = 0.17919188583237486e-2, (4, 0) = 0.17919188583237486e-2, (4, 1) = 0.1261915388010641e-2, (5, 0) = 0.1261915388010641e-2, (5, 1) = 0.35838377166474973e-2, (6, 0) = 0.35838377166474973e-2, (6, 1) = 0.25238349717486798e-2, (7, 0) = 0.25238349717486798e-2, (7, 1) = 0.5375756574971246e-2, (8, 0) = 0.5375756574971246e-2, (8, 1) = 0.3785762945054912e-2, (9, 0) = 0.3785762945054912e-2, (9, 1) = 0.7167675433294995e-2, (10, 0) = 0.7167675433294995e-2, (10, 1) = 0.5047703498304082e-2, (11, 0) = 0.5047703498304082e-2, (11, 1) = 0.2510997698305082e-1, (12, 0) = 0.2510997698305082e-1, (12, 1) = 0.17684977182963853e-1, (13, 0) = 0.17684977182963853e-1, (13, 1) = 0.43052278532806645e-1, (14, 0) = 0.43052278532806645e-1, (14, 1) = 0.303280797936866e-1, (15, 0) = 0.303280797936866e-1, (15, 1) = 0.6099458008256247e-1, (16, 0) = 0.6099458008256247e-1, (16, 1) = 0.42980918175561496e-1, (17, 0) = 0.42980918175561496e-1, (17, 1) = 0.789368816323183e-1, (18, 0) = 0.789368816323183e-1, (18, 1) = 0.5564700694222825e-1, (19, 0) = 0.5564700694222825e-1, (19, 1) = 0.9829355951318804e-1, (20, 0) = 0.9829355951318804e-1, (20, 1) = 0.6932991573550168e-1, (21, 0) = 0.6932991573550168e-1, (21, 1) = .11765023739405778, (22, 0) = .11765023739405778, (22, 1) = 0.8303485184119341e-1, (23, 0) = 0.8303485184119341e-1, (23, 1) = .13700691527492753, (24, 0) = .13700691527492753, (24, 1) = 0.9676386040071333e-1, (25, 0) = 0.9676386040071333e-1, (25, 1) = .1563635931557973, (26, 0) = .1563635931557973, (26, 1) = .11051788877692886, (27, 0) = .11051788877692886, (27, 1) = .18144834219022418, (28, 0) = .18144834219022418, (28, 1) = .12837886329175235, (29, 0) = .12837886329175235, (29, 1) = .20653309122465108, (30, 0) = .20653309122465108, (30, 1) = .14627803554919377, (31, 0) = .14627803554919377, (31, 1) = .231617840259078, (32, 0) = .231617840259078, (32, 1) = .16420871647465346, (33, 0) = .16420871647465346, (33, 1) = .25670258929350487, (34, 0) = .25670258929350487, (34, 1) = .1821611348906259, (35, 0) = .1821611348906259, (35, 1) = .2833990491017713, (36, 0) = .2833990491017713, (36, 1) = .20127666105030256, (37, 0) = .20127666105030256, (37, 1) = .3100955089100378, (38, 0) = .3100955089100378, (38, 1) = .22038387747241667, (39, 0) = .22038387747241667, (39, 1) = .3367919687183042, (40, 0) = .3367919687183042, (40, 1) = .23946189461790265, (41, 0) = .23946189461790265, (41, 1) = .36348842852657065, (42, 0) = .36348842852657065, (42, 1) = .2584880815129111, (43, 0) = .2584880815129111, (43, 1) = .3885460856631372, (44, 0) = .3885460856631372, (44, 1) = .2762777439730961, (45, 0) = .2762777439730961, (45, 1) = .4136037427997038, (46, 0) = .4136037427997038, (46, 1) = .29398010459096496, (47, 0) = .29398010459096496, (47, 1) = .43866139993627035, (48, 0) = .43866139993627035, (48, 1) = .3115748394851139, (49, 0) = .3115748394851139, (49, 1) = .4637190570728369, (50, 0) = .4637190570728369, (50, 1) = .32904209155170816, (51, 0) = .32904209155170816, (51, 1) = .49162905516102373, (52, 0) = .49162905516102373, (52, 1) = .3483241289109127, (53, 0) = .3483241289109127, (53, 1) = .5195390532492106, (54, 0) = .5195390532492106, (54, 1) = .36739906352171653, (55, 0) = .36739906352171653, (55, 1) = .5474490513373974, (56, 0) = .5474490513373974, (56, 1) = .3862438435822327, (57, 0) = .3862438435822327, (57, 1) = .5753590494255842, (58, 0) = .5753590494255842, (58, 1) = .4048377200987912, (59, 0) = .4048377200987912, (59, 1) = .6109479480837657, (60, 0) = .6109479480837657, (60, 1) = .4281545521555197, (61, 0) = .4281545521555197, (61, 1) = .6465368467419472, (62, 0) = .6465368467419472, (62, 1) = .451001856555099, (63, 0) = .451001856555099, (63, 1) = .6821257454001288, (64, 0) = .6821257454001288, (64, 1) = .4733545835508299, (65, 0) = .4733545835508299, (65, 1) = .7177146440583103, (66, 0) = .7177146440583103, (66, 1) = .49519437768567, (67, 0) = .49519437768567, (67, 1) = .7616352788990067, (68, 0) = .7616352788990067, (68, 1) = .5214227216894736, (69, 0) = .5214227216894736, (69, 1) = .8055559137397033, (70, 0) = .8055559137397033, (70, 1) = .5468428175292931, (71, 0) = .5468428175292931, (71, 1) = .8494765485803997, (72, 0) = .8494765485803997, (72, 1) = .5714572478306521, (73, 0) = .5714572478306521, (73, 1) = .8933971834210961, (74, 0) = .8933971834210961, (74, 1) = .5952790045305293, (75, 0) = .5952790045305293, (75, 1) = .9330981434373031, (76, 0) = .9330981434373031, (76, 1) = .6161486815022182, (77, 0) = .6161486815022182, (77, 1) = .9727991034535102, (78, 0) = .9727991034535102, (78, 1) = .6364113694268018, (79, 0) = .6364113694268018, (79, 1) = 1.0125000634697172, (80, 0) = 1.0125000634697172, (80, 1) = .6560933102021922, (81, 0) = .6560933102021922, (81, 1) = 1.0522010234859245, (82, 0) = 1.0522010234859245, (82, 1) = .675224062264651, (83, 0) = .675224062264651, (83, 1) = 1.096130720114795, (84, 0) = 1.096130720114795, (84, 1) = .6957894851969014, (85, 0) = .6957894851969014, (85, 1) = 1.1400604167436654, (86, 0) = 1.1400604167436654, (86, 1) = .7157673530832585, (87, 0) = .7157673530832585, (87, 1) = 1.1839901133725357, (88, 0) = 1.1839901133725357, (88, 1) = .7352074091785712, (89, 0) = .7352074091785712, (89, 1) = 1.2279198100014062, (90, 0) = 1.2279198100014062, (90, 1) = .7541612058266236, (91, 0) = .7541612058266236, (91, 1) = 1.2801574484661535, (92, 0) = 1.2801574484661535, (92, 1) = .776140192672645, (93, 0) = .776140192672645, (93, 1) = 1.3323950869309007, (94, 0) = 1.3323950869309007, (94, 1) = .7975980152789942, (95, 0) = .7975980152789942, (95, 1) = 1.384632725395648, (96, 0) = 1.384632725395648, (96, 1) = .818627104504992, (97, 0) = .818627104504992, (97, 1) = 1.4368703638603955, (98, 0) = 1.4368703638603955, (98, 1) = .8393206803738085, (99, 0) = .8393206803738085, (99, 1) = 1.5053848523744444, (100, 0) = 1.5053848523744444, (100, 1) = .8661106836887517, (101, 0) = .8661106836887517, (101, 1) = 1.5738993408884934, (102, 0) = 1.5738993408884934, (102, 1) = .8926975691491561, (103, 0) = .8926975691491561, (103, 1) = 1.642413829402542, (104, 0) = 1.642413829402542, (104, 1) = .9192941432606554, (105, 0) = .9192941432606554, (105, 1) = 1.710928317916591, (106, 0) = 1.710928317916591, (106, 1) = .9461131141135576, (107, 0) = .9461131141135576, (107, 1) = 1.770416795424343, (108, 0) = 1.770416795424343, (108, 1) = .9697439915929793, (109, 0) = .9697439915929793, (109, 1) = 1.8299052729320948, (110, 0) = 1.8299052729320948, (110, 1) = .9938413132187462, (111, 0) = .9938413132187462, (111, 1) = 1.8893937504398468, (112, 0) = 1.8893937504398468, (112, 1) = 1.0185425037951046, (113, 0) = 1.0185425037951046, (113, 1) = 1.9488822279475988, (114, 0) = 1.9488822279475988, (114, 1) = 1.0439829871871116, (115, 0) = 1.0439829871871116, (115, 1) = 2.008370705455351, (116, 0) = 2.008370705455351, (116, 1) = 1.0702951560701477, (117, 0) = 1.0702951560701477, (117, 1) = 2.067859182963103, (118, 0) = 2.067859182963103, (118, 1) = 1.0976084950292055, (119, 0) = 1.0976084950292055, (119, 1) = 2.1273476604708548, (120, 0) = 2.1273476604708548, (120, 1) = 1.1260444092586759, (121, 0) = 1.1260444092586759, (121, 1) = 2.1868361379786068, (122, 0) = 2.1868361379786068, (122, 1) = 1.1557134295120322, (123, 0) = 1.1557134295120322, (123, 1) = 2.2378830745870273, (124, 0) = 2.2378830745870273, (124, 1) = 1.1822297775720965, (125, 0) = 1.1822297775720965, (125, 1) = 2.2889300111954483, (126, 0) = 2.2889300111954483, (126, 1) = 1.2097776909314513, (127, 0) = 1.2097776909314513, (127, 1) = 2.3399769478038692, (128, 0) = 2.3399769478038692, (128, 1) = 1.2383943456326099, (129, 0) = 1.2383943456326099, (129, 1) = 2.3910238844122897, (130, 0) = 2.3910238844122897, (130, 1) = 1.2680996719340796, (131, 0) = 1.2680996719340796, (131, 1) = 2.436897845827173, (132, 0) = 2.436897845827173, (132, 1) = 1.2957249105920197, (133, 0) = 1.2957249105920197, (133, 1) = 2.482771807242056, (134, 0) = 2.482771807242056, (134, 1) = 1.3242156028383298, (135, 0) = 1.3242156028383298, (135, 1) = 2.5286457686569395, (136, 0) = 2.5286457686569395, (136, 1) = 1.3535393207216249, (137, 0) = 1.3535393207216249, (137, 1) = 2.5745197300718226, (138, 0) = 2.5745197300718226, (138, 1) = 1.3836451308024564, (139, 0) = 1.3836451308024564, (139, 1) = 2.6118432972988703, (140, 0) = 2.6118432972988703, (140, 1) = 1.4086692443958522, (141, 0) = 1.4086692443958522, (141, 1) = 2.649166864525918, (142, 0) = 2.649166864525918, (142, 1) = 1.43411848443778, (143, 0) = 1.43411848443778, (143, 1) = 2.686490431752966, (144, 0) = 2.686490431752966, (144, 1) = 1.4599388011357382, (145, 0) = 1.4599388011357382, (145, 1) = 2.7238139989800136, (146, 0) = 2.7238139989800136, (146, 1) = 1.486070258569666, (147, 0) = 1.486070258569666, (147, 1) = 2.7611375662070614, (148, 0) = 2.7611375662070614, (148, 1) = 1.5124483134989704, (149, 0) = 1.5124483134989704, (149, 1) = 2.798461133434109}, datatype = float[8], order = C_order)), ( 15 ) = ("rkf45"), ( 14 ) = ([0, 0]), ( 19 ) = (0), ( 16 ) = ([0, 0, 0, []]), ( 17 ) = ([proc (N, X, Y, YP) option `[Y[1] = L(phi)]`; if .25/(1-.29*cos(2*X))^2+0.84100e-1*sin(2*X)^2/(1-.29*cos(2*X))^4 < 0 then YP[1] := undefined; return 0 end if; YP[1] := evalf((.25/(1-.29*cos(2*X))^2+0.84100e-1*sin(2*X)^2/(1-.29*cos(2*X))^4)^(1/2)); 0 end proc, -1, 0, 0, 0, 0, 0, 0]), ( 22 ) = (0), ( 23 ) = (0), ( 20 ) = ([]), ( 21 ) = (0), ( 26 ) = (Array(1..0, {})), ( 25 ) = (Array(1..0, {})), ( 24 ) = (0)  ] )), ( 4 ) = (3)  ] ); _y0 := Array(0..1, {(1) = 0.}); _vmap := array( 1 .. 1, [( 1 ) = (1)  ] ); _x0 := _dtbl[1][5][5]; _n := _dtbl[1][4][1]; _ne := _dtbl[1][4][3]; _nd := _dtbl[1][4][4]; _nv := _dtbl[1][4][16]; if not type(_xout, 'numeric') then if member(_xout, ["start", "left", "right"]) then if _Env_smart_dsolve_numeric = true or _dtbl[1][4][10] = 1 then if _xout = "left" then if type(_dtbl[2], 'table') then return _dtbl[2][5][1] end if elif _xout = "right" then if type(_dtbl[3], 'table') then return _dtbl[3][5][1] end if end if end if; return _dtbl[1][5][5] elif _xout = "method" then return _dtbl[1][15] elif _xout = "storage" then return evalb(_dtbl[1][4][10] = 1) elif _xout = "leftdata" then if not type(_dtbl[2], 'array') then return NULL else return eval(_dtbl[2]) end if elif _xout = "rightdata" then if not type(_dtbl[3], 'array') then return NULL else return eval(_dtbl[3]) end if elif _xout = "enginedata" then return eval(_dtbl[1]) elif _xout = "enginereset" then _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); return NULL elif _xout = "initial" then return procname(_y0[0]) elif _xout = "laxtol" then return _dtbl[`if`(member(_dtbl[4], {2, 3}), _dtbl[4], 1)][5][18] elif _xout = "numfun" then return `if`(member(_dtbl[4], {2, 3}), _dtbl[_dtbl[4]][4][18], 0) elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "initial_and_parameters" then return procname(_y0[0]), [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "last" then if _dtbl[4] <> 2 and _dtbl[4] <> 3 or _x0-_dtbl[_dtbl[4]][5][1] = 0. then error "no information is available on last computed point" else _xout := _dtbl[_dtbl[4]][5][1] end if elif _xout = "function" then if _dtbl[1][4][33]-2. = 0 then return eval(_dtbl[1][10], 1) else return eval(_dtbl[1][10][1], 1) end if elif _xout = "map" then return copy(_vmap) elif type(_xin, `=`) and type(rhs(_xin), 'list') and member(lhs(_xin), {"initial", "parameters", "initial_and_parameters"}) then _ini, _par := [], []; if lhs(_xin) = "initial" then _ini := rhs(_xin) elif lhs(_xin) = "parameters" then _par := rhs(_xin) elif select(type, rhs(_xin), `=`) <> [] then _par, _ini := selectremove(type, rhs(_xin), `=`) elif nops(rhs(_xin)) < nops(_pars)+1 then error "insufficient data for specification of initial and parameters" else _par := rhs(_xin)[-nops(_pars) .. -1]; _ini := rhs(_xin)[1 .. -nops(_pars)-1] end if; _xout := lhs(_xout); if _par <> [] then `dsolve/numeric/process_parameters`(_n, _pars, _par, _y0) end if; if _ini <> [] then `dsolve/numeric/process_initial`(_n-_ne, _ini, _y0, _pars, _vmap) end if; `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars); if _Env_smart_dsolve_numeric = true and type(_y0[0], 'numeric') and _dtbl[1][4][10] <> 1 then procname("right") := _y0[0]; procname("left") := _y0[0] end if; if _xout = "initial" then return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)] elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] else return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)], [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] end if elif _xin = "eventstop" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then return 0 end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 100 and 100 <= _dtbl[5-_i][4][9] then _i := 5-_i; _dtbl[4] := _i; _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) elif 100 <= _dtbl[_i][4][9] then _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) else return 0 end if elif _xin = "eventstatus" then if _nv = 0 then error "this solution has no events" end if; _i := [selectremove(proc (a) options operator, arrow; _dtbl[1][3][1][a, 7] = 1 end proc, {seq(_j, _j = 1 .. round(_dtbl[1][3][1][_nv+1, 1]))})]; return ':-enabled' = _i[1], ':-disabled' = _i[2] elif _xin = "eventclear" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then error "no events to clear" end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 100 and 100 < _dtbl[5-_i][4][9] then _dtbl[4] := 5-_i; _i := 5-_i end if; if _dtbl[_i][4][9] < 100 then error "no events to clear" elif _nv < _dtbl[_i][4][9]-100 then error "event error condition cannot be cleared" else _j := _dtbl[_i][4][9]-100; if irem(round(_dtbl[_i][3][1][_j, 4]), 2) = 1 then error "retriggerable events cannot be cleared" end if; _j := round(_dtbl[_i][3][1][_j, 1]); for _k to _nv do if _dtbl[_i][3][1][_k, 1] = _j then if _dtbl[_i][3][1][_k, 2] = 3 then error "range events cannot be cleared" end if; _dtbl[_i][3][1][_k, 8] := _dtbl[_i][3][1][_nv+1, 8] end if end do; _dtbl[_i][4][17] := 0; _dtbl[_i][4][9] := 0; if _dtbl[1][4][10] = 1 then if _i = 2 then try procname(procname("left")) catch:  end try else try procname(procname("right")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and member(lhs(_xin), {"eventdisable", "eventenable"}) then if _nv = 0 then error "this solution has no events" end if; if type(rhs(_xin), {('list')('posint'), ('set')('posint')}) then _i := {op(rhs(_xin))} elif type(rhs(_xin), 'posint') then _i := {rhs(_xin)} else error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; if select(proc (a) options operator, arrow; _nv < a end proc, _i) <> {} then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _k := {}; for _j to _nv do if member(round(_dtbl[1][3][1][_j, 1]), _i) then _k := `union`(_k, {_j}) end if end do; _i := _k; if lhs(_xin) = "eventdisable" then _dtbl[4] := 0; _j := [evalb(assigned(_dtbl[2]) and member(_dtbl[2][4][17], _i)), evalb(assigned(_dtbl[3]) and member(_dtbl[3][4][17], _i))]; for _k in _i do _dtbl[1][3][1][_k, 7] := 0; if assigned(_dtbl[2]) then _dtbl[2][3][1][_k, 7] := 0 end if; if assigned(_dtbl[3]) then _dtbl[3][3][1][_k, 7] := 0 end if end do; if _j[1] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[2][3][4][_k, 1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to defined init `, _dtbl[2][3][4][_k, 1]); _dtbl[2][3][1][_k, 8] := _dtbl[2][3][4][_k, 1] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to rate hysteresis init `, _dtbl[2][5][24]); _dtbl[2][3][1][_k, 8] := _dtbl[2][5][24] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to initial init `, _x0); _dtbl[2][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to fireinitial init `, _x0-1); _dtbl[2][3][1][_k, 8] := _x0-1 end if end do; _dtbl[2][4][17] := 0; _dtbl[2][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("left")) end if end if; if _j[2] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[3][3][4][_k, 2], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to defined init `, _dtbl[3][3][4][_k, 2]); _dtbl[3][3][1][_k, 8] := _dtbl[3][3][4][_k, 2] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to rate hysteresis init `, _dtbl[3][5][24]); _dtbl[3][3][1][_k, 8] := _dtbl[3][5][24] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to initial init `, _x0); _dtbl[3][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to fireinitial init `, _x0+1); _dtbl[3][3][1][_k, 8] := _x0+1 end if end do; _dtbl[3][4][17] := 0; _dtbl[3][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("right")) end if end if else for _k in _i do _dtbl[1][3][1][_k, 7] := 1 end do; _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); _dtbl[4] := 0; if _dtbl[1][4][10] = 1 then if _x0 <= procname("right") then try procname(procname("right")) catch:  end try end if; if procname("left") <= _x0 then try procname(procname("left")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and lhs(_xin) = "eventfired" then if not type(rhs(_xin), 'list') then error "'eventfired' must be specified as a list" end if; if _nv = 0 then error "this solution has no events" end if; if _dtbl[4] <> 2 and _dtbl[4] <> 3 then error "'direction' must be set prior to calling/setting 'eventfired'" end if; _i := _dtbl[4]; _val := NULL; if not assigned(_EnvEventRetriggerWarned) then _EnvEventRetriggerWarned := false end if; for _k in rhs(_xin) do if type(_k, 'integer') then _src := _k elif type(_k, 'integer' = 'anything') and type(evalf(rhs(_k)), 'numeric') then _k := lhs(_k) = evalf[max(Digits, 18)](rhs(_k)); _src := lhs(_k) else error "'eventfired' entry is not valid: %1", _k end if; if _src < 1 or round(_dtbl[1][3][1][_nv+1, 1]) < _src then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _src := {seq(`if`(_dtbl[1][3][1][_j, 1]-_src = 0., _j, NULL), _j = 1 .. _nv)}; if nops(_src) <> 1 then error "'eventfired' can only be set/queried for root-finding events and time/interval events" end if; _src := _src[1]; if _dtbl[1][3][1][_src, 2] <> 0. and _dtbl[1][3][1][_src, 2]-2. <> 0. then error "'eventfired' can only be set/queried for root-finding events and time/interval events" elif irem(round(_dtbl[1][3][1][_src, 4]), 2) = 1 then if _EnvEventRetriggerWarned = false then WARNING(`'eventfired' has no effect on events that retrigger`) end if; _EnvEventRetriggerWarned := true end if; if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then _val := _val, undefined elif type(_dtbl[_i][3][4][_src, _i-1], 'undefined') or _i = 2 and _dtbl[2][3][1][_src, 8] < _dtbl[2][3][4][_src, 1] or _i = 3 and _dtbl[3][3][4][_src, 2] < _dtbl[3][3][1][_src, 8] then _val := _val, _dtbl[_i][3][1][_src, 8] else _val := _val, _dtbl[_i][3][4][_src, _i-1] end if; if type(_k, `=`) then if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then error "cannot set event code for a rate hysteresis event" end if; userinfo(3, {'events', 'eventreset'}, `manual set event code `, _src, ` to value `, rhs(_k)); _dtbl[_i][3][1][_src, 8] := rhs(_k); _dtbl[_i][3][4][_src, _i-1] := rhs(_k) end if end do; return [_val] elif type(_xin, `=`) and lhs(_xin) = "direction" then if not member(rhs(_xin), {-1, 1, ':-left', ':-right'}) then error "'direction' must be specified as either '1' or 'right' (positive) or '-1' or 'left' (negative)" end if; _src := `if`(_dtbl[4] = 2, -1, `if`(_dtbl[4] = 3, 1, undefined)); _i := `if`(member(rhs(_xin), {1, ':-right'}), 3, 2); _dtbl[4] := _i; _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if; return _src elif _xin = "eventcount" then if _dtbl[1][3][1] = 0 or _dtbl[4] <> 2 and _dtbl[4] <> 3 then return 0 else return round(_dtbl[_dtbl[4]][3][1][_nv+1, 12]) end if else return "procname" end if end if; if _xout = _x0 then return [_x0, seq(evalf(_dtbl[1][6][_vmap[_i]]), _i = 1 .. _n-_ne)] end if; _i := `if`(_x0 <= _xout, 3, 2); if _xin = "last" and 0 < _dtbl[_i][4][9] and _dtbl[_i][4][9] < 100 then _dat := eval(_dtbl[_i], 2); _j := _dat[4][20]; return [_dat[11][_j, 0], seq(_dat[11][_j, _vmap[_i]], _i = 1 .. _n-_ne-_nd), seq(_dat[8][1][_vmap[_i]], _i = _n-_ne-_nd+1 .. _n-_ne)] end if; if not type(_dtbl[_i], 'array') then _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if end if; if _xin <> "last" then if 0 < 0 then if `dsolve/numeric/checkglobals`(op(_dtbl[1][14]), _pars, _n, _y0) then `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars, _i) end if end if; if _dtbl[1][4][7] = 0 then error "parameters must be initialized before solution can be computed" end if end if; _dat := eval(_dtbl[_i], 2); _dtbl[4] := _i; try _src := `dsolve/numeric/SC/IVPrun`(_dat, _xout) catch: userinfo(2, `dsolve/debug`, print(`Exception in solnproc:`, [lastexception][2 .. -1])); error  end try; if _dat[17] <> _dtbl[1][17] then _dtbl[1][17] := _dat[17]; _dtbl[1][10] := _dat[10] end if; if _src = 0 and 100 < _dat[4][9] then _val := _dat[3][1][_nv+1, 8] else _val := _dat[11][_dat[4][20], 0] end if; if _src <> 0 or _dat[4][9] <= 0 then _dtbl[1][5][1] := _xout else _dtbl[1][5][1] := _val end if; if _i = 3 and _val < _xout then Rounding := -infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further right of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further right of %1, maxfun limit exceeded (see ?dsolve,maxfun for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further right of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further right of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif _dat[4][9] = 6 then error "cannot evaluate the solution further right of %1, cannot downgrade delay storage for problems with delay derivative order > 1, try increasing delaypts", evalf[8](_val) elif _dat[4][9] = 10 then error "cannot evaluate the solution further right of %1, interrupt requested", evalf[8](_val) elif 100 < _dat[4][9] then if _dat[4][9]-100 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-100 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-100 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further right of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-100, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further right of %1", evalf[8](_val) end if elif _i = 2 and _xout < _val then Rounding := infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further left of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further left of %1, maxfun limit exceeded (see ?dsolve,maxfun for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further left of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further left of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif _dat[4][9] = 6 then error "cannot evaluate the solution further left of %1, cannot downgrade delay storage for problems with delay derivative order > 1, try increasing delaypts", evalf[8](_val) elif _dat[4][9] = 10 then error "cannot evaluate the solution further right of %1, interrupt requested", evalf[8](_val) elif 100 < _dat[4][9] then if _dat[4][9]-100 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-100 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-100 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further left of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-100, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further left of %1", evalf[8](_val) end if end if; if _EnvInFsolve = true then _dig := _dat[4][26]; _dat[4][26] := _EnvDSNumericSaveDigits; _Env_dsolve_SC_native := true; if _dat[4][25] = 1 then _i := 1; _dat[4][25] := 2 else _i := _dat[4][25] end if; _val := `dsolve/numeric/SC/IVPval`(_dat, _xout, _src); _dat[4][25] := _i; _dat[4][26] := _dig; [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] else Digits := _dat[4][26]; _val := `dsolve/numeric/SC/IVPval`(eval(_dat, 2), _xout, _src); [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] end if end proc, (2) = Array(0..0, {}), (3) = [phi, L(phi)], (4) = []}); _vars := _dat[3]; _pars := map(rhs, _dat[4]); _n := nops(_vars)-1; _solnproc := _dat[1]; if not type(_xout, 'numeric') then if member(x_rkf45, ["start", 'start', "method", 'method', "left", 'left', "right", 'right', "leftdata", "rightdata", "enginedata", "eventstop", 'eventstop', "eventclear", 'eventclear', "eventstatus", 'eventstatus', "eventcount", 'eventcount', "laxtol", 'laxtol', "numfun", 'numfun', NULL]) then _res := _solnproc(convert(x_rkf45, 'string')); if 1 < nops([_res]) then return _res elif type(_res, 'array') then return eval(_res, 1) elif _res <> "procname" then return _res end if elif member(x_rkf45, ["last", 'last', "initial", 'initial', "parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(x_rkf45, 'string'); _res := _solnproc(_xout); if _xout = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] elif _xout = "initial_and_parameters" then return [seq(_vars[_i+1] = [_res][1][_i+1], _i = 0 .. _n), seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] else return [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] end if elif type(_xout, `=`) and member(lhs(_xout), ["initial", 'initial', "parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(lhs(x_rkf45), 'string') = rhs(x_rkf45); if type(rhs(_xout), 'list') then _res := _solnproc(_xout) else error "initial and/or parameter values must be specified in a list" end if; if lhs(_xout) = "initial" then return [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] elif lhs(_xout) = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] else return [seq(_vars[_i+1] = [_res][1][_i+1], _i = 0 .. _n), seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] end if elif type(_xout, `=`) and member(lhs(_xout), ["eventdisable", 'eventdisable', "eventenable", 'eventenable', "eventfired", 'eventfired', "direction", 'direction', NULL]) then return _solnproc(convert(lhs(x_rkf45), 'string') = rhs(x_rkf45)) elif _xout = "solnprocedure" then return eval(_solnproc) elif _xout = "sysvars" then return _vars end if; if procname <> unknown then return ('procname')(x_rkf45) else _ndsol := 1; _ndsol := _ndsol; _ndsol := pointto(_dat[2][0]); return ('_ndsol')(x_rkf45) end if end if; try _res := _solnproc(_xout); [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] catch: error  end try end proc

(3)

dsol(4)

[phi = 4., L(phi) = HFloat(2.35935387314392)]

(4)

plots:-odeplot(dsol, phi = 0 .. 2*Pi) 

Download mw.mw

@verdin It appears that the steady-states of your system are expressed through the roots of a complicated transcendental equation.  I am afraid that there are no analytic expressions for the roots.  You may have to analyze stability for specific numerical choices of the problem's parameters.

 

@tdavid It's difficult to diagnose a problem without seeing the worksheet.  Upload it here.

To do that, in the window where you reply to this post click on the big fat green arrow.

It's not clear to me what you are asking.

Let's look at the first term.  The exponent of the cosine is 2*beta. The coefficient is a*lambda^2/2.  If we equate these we get

2*beta = a*lambda^2/2.

Is that really what you are asking?  If not, then say clearly what you want.

 

@vv You are quite right.  I didn't look closely enough.  Thanks for pointing this out.

@verdin The original eq[2] was undefined at (0,0,0).  The modified one is well-defined at (0,0,0), however it is not differentiable there, and therefore the equation cannot be linearized.  Here are the details.

restart;

Let's focus on eq[2]:

eq[2]:=diff(x2(t), t)+((N1*N2*N3+(x3(t)+V1)*(x2(t)+N1*N2*N3))*(x1(t)+N1*N2*N3)-2*N3*N1*N2*(x2(t)+N1*N2*N3))*x1(t)*(x2(t)+N1*N2*N3)^2/(N2*N1*(((-N1*N2-x2(t)-N1*N2*N3)*(x1(t)+N1*N2*N3)+N3*N1*N2*(x2(t)+N1*N2*N3))*ln(((N1*N2+x2(t)+N1*N2*N3)*(x1(t)+N1*N2*N3)-N3*N1*N2*(x2(t)+N1*N2*N3))/(N1*N2*(x1(t)+N1*N2*N3)))+(x2(t)+N1*N2*N3)*x1(t))*(x1(t)+N1*N2*N3)):

Rearrange eq[2] so that the term with derivative is on the left-hand side:

de2 := isolate(eq[2], diff);

diff(x2(t), t) = -((N1*N2*N3+(x3(t)+V1)*(x2(t)+N1*N2*N3))*(x1(t)+N1*N2*N3)-2*N3*N1*N2*(x2(t)+N1*N2*N3))*x1(t)*(x2(t)+N1*N2*N3)^2/(N2*N1*(((-N1*N2-x2(t)-N1*N2*N3)*(x1(t)+N1*N2*N3)+N3*N1*N2*(x2(t)+N1*N2*N3))*ln(((N1*N2+x2(t)+N1*N2*N3)*(x1(t)+N1*N2*N3)-N3*N1*N2*(x2(t)+N1*N2*N3))/(N1*N2*(x1(t)+N1*N2*N3)))+(x2(t)+N1*N2*N3)*x1(t))*(x1(t)+N1*N2*N3))

On the right-hand side of de2, replace x1(t) by x1, etc.;

F := subs(x1(t)=x1, x2(t)=x2, x3(t)=x3, rhs(de2));

-((N1*N2*N3+(x3+V1)*(N1*N2*N3+x2))*(N1*N2*N3+x1)-2*N3*N1*N2*(N1*N2*N3+x2))*x1*(N1*N2*N3+x2)^2/(N2*N1*(((-N1*N2*N3-N1*N2-x2)*(N1*N2*N3+x1)+N3*N1*N2*(N1*N2*N3+x2))*ln(((N1*N2*N3+N1*N2+x2)*(N1*N2*N3+x1)-N3*N1*N2*(N1*N2*N3+x2))/(N1*N2*(N1*N2*N3+x1)))+(N1*N2*N3+x2)*x1)*(N1*N2*N3+x1))

The expression F is well-defined at (0,0,0):

eval(F, [x1=0,x2=0,x3=0]);

0

However, F is not differentiable at (0,0,0) as expanding it in Taylor series about (x1,x2,x3)=(0,0,0) fails:

mtaylor(F, [x1,x2,x3]);

Error, (in mtaylor) does not have a Taylor expansion

To investigate the source of the problem, we look at the numerator and denominator of F separately:

n := numer(F);

(N1^2*N2^2*N3^2*V1+N1^2*N2^2*N3^2*x3-N1^2*N2^2*N3^2+N1*N2*N3*V1*x1+N1*N2*N3*V1*x2+N1*N2*N3*x1*x3+N1*N2*N3*x2*x3+N1*N2*N3*x1-2*N1*N2*N3*x2+V1*x1*x2+x1*x2*x3)*x1*(N1*N2*N3+x2)^2

d := denom(F);

N2*N1*(N1^2*N2^2*N3*ln(((N1*N2*N3+N1*N2+x2)*(N1*N2*N3+x1)-N3*N1*N2*(N1*N2*N3+x2))/(N1*N2*(N1*N2*N3+x1)))+N1*N2*N3*ln(((N1*N2*N3+N1*N2+x2)*(N1*N2*N3+x1)-N3*N1*N2*(N1*N2*N3+x2))/(N1*N2*(N1*N2*N3+x1)))*x1-x1*N1*N2*N3+N1*N2*ln(((N1*N2*N3+N1*N2+x2)*(N1*N2*N3+x1)-N3*N1*N2*(N1*N2*N3+x2))/(N1*N2*(N1*N2*N3+x1)))*x1+ln(((N1*N2*N3+N1*N2+x2)*(N1*N2*N3+x1)-N3*N1*N2*(N1*N2*N3+x2))/(N1*N2*(N1*N2*N3+x1)))*x1*x2-x2*x1)*(N1*N2*N3+x1)

Expand the numerator and the denominator separately in Taylor series:

n_expanded := mtaylor(n, [x1,x2,x3], 3);

N1^4*N2^4*N3^4*(V1-1)*x1+N1^3*N2^3*N3^3*(V1+1)*x1^2+N1^3*N2^3*N3^3*(3*V1-4)*x2*x1+N1^4*N2^4*N3^4*x3*x1

d_expanded := mtaylor(d, [x1,x2,x3], 3);

(1/2)*N1^2*N2^2*N3^2*x1^2

The right-hand side of the the differential equation is the ratio of those two:

simplify(n_expanded/d_expanded);

2*N1*(N2*N3*(V1+x3-1)*N1+(x1+3*x2)*V1+x1-4*x2)*N2*N3/x1

The x1 in the denominator indicates that eq[2] cannot be linearized about (x1,x2,x3)=(0,0,0).

 

Download mw.mw

In your worksheet you have eq[1], eq[3], eq[3].  I assume that the middle one is meant to be eq[2].

Let's evaluate your eq[2] at (x1,x2,x3)=(0,0,0):
eval(eq[2], [x1(t)=0, x2(t)=0, x3(t)=0]);

We see that Maple complains with:
Error, numeric exception: division by zero

This says that your eq[2] is undefined at (x1,x2,x3)=(0,0,0), therefore linearizing about (x1,x2,x3)=(0,0,0) is not meaningful. You need to think that over.

 

@Carl Love As the parameter y changes, the graph of the function makes a transition from having two extrema (the blue curve below), to having a flat plateau (red curve) to monotone decreasing (green curve).  At the plateau both the first and second derivatives are zero.

restart;

F := (x,y) -> x^2+y*(1-x)^(3/4);

proc (x, y) options operator, arrow; x^2+y*(1-x)^(3/4) end proc

solve({diff(F(x,y),x) = 0, diff(F(x,y),x,x) = 0}); evalf(%);

{x = 4/5, y = (32/75)*5^(3/4)}

{x = .8000000000, y = 1.426645984}

plot([F(x,1.3),  F(x,1.4266), F(x,1.6)], x=0..1, color=[blue,red,"Green"]);

@jan123 The labels (x and y in this case) are taken from the names of the variables in the equations in sys, but you may override them by specifying labels explicitly.  For instance,

 

DEtools:-DEplot(sys, [x(t),y(t)], t=-2..2, [ic], x=-1..1, y=-1..1,
    linecolor=blue, color=red, thickness=1, tickmarks=[0,0],
    labels=[e__1, e__2]);

There is no direct way of specifying label positions; they are placed automatically by Maple. For full control, you may disable the labels altogether, as in:
p1 := DEtools:-DEplot(sys, [x(t),y(t)], t=-2..2, [ic], x=-1..1, y=-1..1,
    linecolor=blue, color=red, thickness=1, tickmarks=[0,0],
    labels=["",""]);

and then design your own labels with the help of plots:-textplot(), as in

p2 := plots:-textplot([[0.9,-0.1,e__1], [0.1,0.9,e__2]]);

and then display p1 and p2 together:

plots:-display([p1,p2]);

 

@Carl Love I also see the behavior described by the OP.  Perhaps that's specific to Linux.  Here's what I see:

restart;

kernelopts(version);

`Maple 2018.1, X86 64 LINUX, Jun 8 2018, Build ID 1321769`

interface(version);

`Standard Worksheet Interface, Maple 2018.1, Linux, June 8 2018 Build ID 1321769`

prettyprint=3 is the default:

interface(prettyprint);

3

solve(x^2-1,x);

1, -1

Let prettyprint=1:

interface(prettyprint=1);

                                   3, [3]

solve(x^2-1,x);

                                    1, -1

Download mw.mw

@Alger

restart;

Let

C := (n,x) -> cos(n*Pi*ln(x/a)/b);

proc (n, x) options operator, arrow; cos(n*Pi*ln(x/a)/b) end proc

where

params := a = x1, b = ln(x2/x1)/2;

a = x1, b = (1/2)*ln(x2/x1)

Let's verify that "{C(n,x): n=0.. infinity}" is an orthogonal family on the interval x1, x2

in the L^2 norm with the weight 1/x.  Maple has some difficulty in calculating the definite

integral (I don't know why), therefore I will calculate the indefinite integral first,

and then plug in the end points.

z1 := int(C(n,x)*C(m,x)/x, x);

(1/2)*b*sin(Pi*ln(x/a)*(m-n)/b)/(Pi*(m-n))+(1/2)*b*sin(Pi*ln(x/a)*(m+n)/b)/(Pi*(m+n))

z2 := eval(z1, {params});

(1/4)*ln(x2/x1)*sin(2*Pi*ln(x/x1)*(m-n)/ln(x2/x1))/(Pi*(m-n))+(1/4)*ln(x2/x1)*sin(2*Pi*ln(x/x1)*(m+n)/ln(x2/x1))/(Pi*(m+n))

Plug in the lower limit:

eval(z2, x=x1);

0

Plug in the upper limit:

eval(z2, x=x2) assuming m::integer, n::integer;

0

This shows the orthogonality of the C(n, x) functions.

 

I expect that the remaining orthogonality conditions may be verified in the same

way but I haven't actually done it.

 

 

 

 

Download orthogonality.mw

@Kitonum That's a nice animation—the red segments stand out and nicely demonstrate their equal lengths and orthogonality.

It is interesting that when one of the sides of the quadrilateral degenerates to zero length, that is, when the quadrilateral turns into a triangle (even a right triangle!), the theorem's assertion still remains valid and nontrivial.  I don't recall having seen that special case stated anywhere.  One would think that Euclid would have noticed that.

 

First 48 49 50 51 52 53 54 Last Page 50 of 91