666 jvbasha

javid basha jv

130 Reputation

8 Badges

7 years, 256 days

MaplePrimes Activity


These are replies submitted by 666 jvbasha

Dear @Kitonum 

Greetings.

How to change x and y coordinate labels.
η and r instead of x and y.

 

A3 := .25*y*(-6*x^2+6*x-2.477250468*x*(x-1)^2-2.477250468*x^2*(x-1)-1.476663599*x*(x-1)^3-2.214995399*x^2*(x-1)^2+.3837076420*x*(x-1)^4+.7674152840*x^2*(x-1)^3+1.049305257*x*(x-1)^5+2.623263142*x^2*(x-1)^4+1.470504325*x*(x-1)^6+4.411512974*x^2*(x-1)^5+2.062933702*x*(x-1)^7+7.220267957*x^2*(x-1)^6+1.610136961*x*(x-1)^8+6.440547843*x^2*(x-1)^7+.6577852166*x*(x-1)^9+2.960033475*x^2*(x-1)^8);

 

ContoursWithLabels(A3, 0 .. 1, 0 .. 10, {seq(0.1..5,0.2)}, [color = black,thickness = 2, axes = box, size=[450,450]], Coloring = [colorstyle = HUE, style = surface],[labels = ["eta", "r"],labeldirections = [horizontal, vertical], labelfont = ['TIMES', 'BOLDOBLIQUE', 16]]);
 

Dear @Carl Love 

The plot has come.

Thanks for your reply.

Dear @Kitonum 

Thanks for your reply.

And thanks for your support.

Dear @Carl Love 

 

This stream function has obtained from an analytical solution of blood flow velocity.

This contour should show that the blood flow in a tube.

So, the graph shown above does not give a sense of blood flow in a tube.

Therefore, we need to provide proper blood flow coloring for this contour.

like below mentioned:

Dear @Carl Love 

How to provide a coloring as a blood flow color and label.

A3 := 0.1098129220e-1*x-0.1864590943e-1*x^4-0.3780537764e-1+0.5300456762e-1*x^2-0.2252843255e-4*x^7*sin(6.280000000*y-.2083809520)-0.9011373022e-5*x^7*sin(6.280000000*y-1.256000000)-0.1569010873e-4*x^6*sin(6.280000000*y-.2083809520)-0.6276043495e-5*x^6*sin(6.280000000*y-1.256000000)-0.1462906959e-2*x^5*sin(6.280000000*y-1.256000000)-0.3657267398e-2*x^5*sin(6.280000000*y-.2083809520)-0.7271311325e-3*x^4*sin(6.280000000*y-1.256000000)-0.1817827831e-2*x^4*sin(6.280000000*y-.2083809520)-0.8684412118e-1*x^3*sin(6.280000000*y-1.256000000)-.2171103030*x^3*sin(6.280000000*y-.2083809520)-0.2589262297e-1*x^2*sin(6.280000000*y-1.256000000)-0.6473155744e-1*x^2*sin(6.280000000*y-.2083809520)+.3752380081*x*sin(6.280000000*y-1.256000000)+.9380950203*x*sin(6.280000000*y-.2083809520)+0.3750477138e-1*sin(6.280000000*y-1.256000000)+0.9376192845e-1*sin(6.280000000*y-.2083809520)-0.3550918239e-3*x^6-0.760666870e-4*x^5+0.1713654921e-5*x^7-0.7811069699e-2*x^3-3.822344860*10^(-8)*x^8;


plots:-contourplot(A3, x = -2.0 .. 2.0, y = -1 .. 2, axes = boxed, filledregions = true, contours = [seq(-2 .. 2, .2)], grid = [80, 80], coloring = ["Niagara Azure", "red"]);

 

Waiting for a response.

Dear @dharr 

Thanking you.

Dear @tomleslie 

Here you have plotted h curve.

Where the curves are a straight line(-2..2), that value (eg. h=(-1) in hh) we can take for velocity plot.

My question was, how to find a residual error.

In Mathematica code, they compute solution interval and integral interval to find a residual error.

Is this possible in maple?

Waiting for your response.

Thanks for the support.

Dear maple users @Preben Alsholm @acer @Carl Love @Kitonum
greeting.

For my new project, I need this residual error tolerance to validate my obtained result.

waiting for your reply.

Dear maple users  @Preben Alsholm  @acer @Carl Love @Kitonum
Good morning.

Here I solved some set equations in the homotopy method.
How to fix a residual error and absolute error.
How to plot residual error vs order of iteration(N is the order of interaction in our code)
How to plot residual error vs "h" curve

Have a good day

code:BAHAM.mw

"h"-curve

some examples figures to help the maple user for finding error:

residual error vs "h-curve"

Dear @Preben Alsholm 

Is there any possibility to plot residual error vs iterations.

instead of residual error vs eta.

Have a good day.

Dear maple users, @Preben Alsholm @acer @Carl Love @Kitonum

Is there any possibility to plot residual error vs iterations.

Dear @Preben Alsholm 
I have tried the same way for another problem,
But I have got this.


 

restart; with(plots)

fcns := {T(eta), f(eta), g(eta)}:

bet := 0.:

eq1 := (diff(f(eta), `$`(eta, 3)))*pr/(A1*B1)+m*(1+pr)^(4*na)-m*(diff(f(eta), `$`(eta, 1)))^2+((m+1)*(1/2))*(diff(f(eta), `$`(eta, 2)))*f(eta)+be*(m*(diff(g(eta), `$`(eta, 1)))^2-((m+1)*(1/2))*(diff(g(eta), `$`(eta, 2)))*g(eta)-m*(1+pr)^(4*na)) = 0:

eq2 := pr*lam*(diff(g(eta), `$`(eta, 3)))+((m+1)*(1/2))*((diff(g(eta), `$`(eta, 2)))*f(eta)-(diff(f(eta), `$`(eta, 2)))*g(eta)) = 0:

eq3 := (C1/D1+rd*(T(eta)*(tw-1)+1)^3/D1)*(diff(T(eta), `$`(eta, 2)))+((m+1)*(1/2))*(diff(T(eta), `$`(eta, 1)))*f(eta)+3*rd*(T(eta)*(tw-1)+1)^2*(diff(T(eta), `$`(eta, 1)))^2/D1 = 0:

bc := f(0) = 0, (D(f))(0) = 0, (D(f))(N) = (1+pr)^(2*na), g(0) = 0, ((D@@2)(g))(0) = 0, (D(g))(N) = (1+pr)^(2*na), (D(T))(0) = -bi*(1-T(0))*(1+pr)^na/sqrt(pr), T(N) = 0;

f(0) = 0, (D(f))(0) = 0, (D(f))(8) = 2.841804712, g(0) = 0, ((D@@2)(g))(0) = 0, (D(g))(8) = 2.841804712, (D(T))(0) = -.3598154874+.3598154874*T(0), T(8) = 0

(1)

``

Digits := 15:

[eta = proc (eta) local _res, _dat, _solnproc; option `Copyright (c) 1993 by the University of Waterloo. All rights reserved.`; _dat := Array(1..4, {(1) = proc (outpoint) local X, Y, YP, yout, errproc, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; X := Vector(35, {(1) = .0, (2) = .20472410284384834, (3) = .4211863305043777, (4) = .6516720600363566, (5) = .8993212463695047, (6) = 1.1685298486145983, (7) = 1.4468423487039677, (8) = 1.7229359537348594, (9) = 1.9968629039389574, (10) = 2.268673421313649, (11) = 2.5378029414464036, (12) = 2.8035694406371796, (13) = 3.066093306207618, (14) = 3.325490409787653, (15) = 3.581658551212711, (16) = 3.8338699831956804, (17) = 4.08221409418108, (18) = 4.32686351028502, (19) = 4.567978384890087, (20) = 4.805327686982952, (21) = 5.038694055040347, (22) = 5.268271439374476, (23) = 5.494238613721016, (24) = 5.716760727626145, (25) = 5.936046030245326, (26) = 6.152283284474133, (27) = 6.365596166650127, (28) = 6.576100208955955, (29) = 6.783903531026379, (30) = 6.9894017136482445, (31) = 7.1936893054340665, (32) = 7.3968755375272774, (33) = 7.5989780331822505, (34) = 7.80001395061423, (35) = 8.0}, datatype = float[8], order = C_order); Y := Matrix(35, 8, {(1, 1) = .6800687881055213, (1, 2) = -.11511620494228465, (1, 3) = .0, (1, 4) = .0, (1, 5) = .37811799244920324, (1, 6) = .0, (1, 7) = 1.4117113181447536, (1, 8) = .0, (2, 1) = .6560325255507624, (2, 2) = -.11975318257035834, (2, 3) = 0.7923823323670406e-2, (2, 4) = 0.77409636920803e-1, (2, 5) = .37811352171842283, (2, 6) = .2890131130048752, (2, 7) = 1.411746095030339, (2, 8) = 0.5096115493465316e-3, (3, 1) = .6295510504863806, (3, 2) = -.12496974762969729, (3, 3) = 0.335383312275963e-1, (3, 4) = .15925409044318592, (3, 5) = .37807999460677805, (3, 6) = .5946253962700148, (3, 7) = 1.4120141336647931, (3, 8) = 0.21567165797040048e-2, (4, 1) = .6000810786889832, (4, 2) = -.13078648524102396, (4, 3) = 0.8028592391087024e-1, (4, 4) = .24638626301264996, (4, 5) = .3779809429150307, (4, 6) = .9201555386630824, (4, 7) = 1.4128327072652163, (4, 8) = 0.51609615183282375e-2, (5, 1) = .5669002581395786, (5, 2) = -.1371916401125017, (5, 3) = .1528922356920777, (5, 4) = .33996920774229683, (5, 5) = .37776827912336824, (5, 6) = 1.27024451829135, (5, 7) = 1.4146572486865054, (5, 8) = 0.9820223828374587e-2, (6, 1) = .5290327802230002, (6, 2) = -.14409851939129248, (6, 3) = .25809973947558784, (6, 4) = .44161902578753254, (6, 5) = .37737598360935093, (6, 6) = 1.651514368911508, (6, 7) = 1.4181683376757317, (6, 8) = 0.16551767115543403e-1, (7, 1) = .48797776231069934, (7, 2) = -.15082401972104326, (7, 3) = .3956159784223351, (7, 4) = .546566995361021, (7, 5) = .3767592394353197, (7, 6) = 2.046956560700791, (7, 7) = 1.423951238924928, (7, 8) = 0.2530574188627694e-1, (8, 1) = .4455097689486867, (8, 2) = -.15662271721966162, (8, 3) = .560869343108844, (8, 4) = .650475986042538, (8, 5) = .3759074764267706, (8, 6) = 2.441192046655901, (8, 7) = 1.432339477818811, (8, 8) = 0.3574403196512969e-1, (9, 1) = .4019714737781167, (9, 2) = -.16097976785337778, (9, 3) = .7531425930170065, (9, 4) = .7533024381136638, (9, 5) = .37480724717639446, (9, 6) = 2.835034683009538, (9, 7) = 1.4437395006677125, (9, 8) = 0.4775839761612408e-1, (10, 1) = .3578432116772004, (10, 2) = -.16334348080313163, (10, 3) = .9717278248653037, (10, 4) = .8550010473136669, (10, 5) = .3734541277931229, (10, 6) = 3.229383694258226, (10, 7) = 1.458517002768622, (10, 8) = 0.61223001646425766e-1, (11, 1) = .3138427499613885, (11, 2) = -.16317816891693035, (11, 3) = 1.2153400964446428, (11, 4) = .9552992408083281, (11, 5) = .3718558392388385, (11, 6) = 3.6243047360166147, (11, 7) = 1.4769469365488954, (11, 8) = 0.7595912211689054e-1, (12, 1) = .2708197137303571, (12, 2) = -.1600634554218884, (12, 3) = 1.4823382823352556, (12, 4) = 1.0538888365598136, (12, 5) = .37003049775688535, (12, 6) = 4.019692806711686, (12, 7) = 1.499207309863791, (12, 8) = 0.9175293789636808e-1, (13, 1) = .22955356513321082, (13, 2) = -.15376655017624774, (13, 3) = 1.771737568613686, (13, 4) = 1.1507687254222438, (13, 5) = .3679982116567567, (13, 6) = 4.4166208604325305, (13, 7) = 1.5254608253960227, (13, 8) = .1084188111357934, (14, 1) = .19082533490993417, (14, 2) = -.14430646057430674, (14, 3) = 2.0826000767466843, (14, 4) = 1.245943366242156, (14, 5) = .36578343902893384, (14, 6) = 4.816160855718664, (14, 7) = 1.555816989411266, (14, 8) = .12576396753467523, (15, 1) = .1553751277762106, (15, 2) = -.13201176794608704, (15, 3) = 2.4137473802608245, (15, 4) = 1.339345748340381, (15, 5) = .36341579280951025, (15, 6) = 5.219031239689751, (15, 7) = 1.590302627188974, (15, 8) = .14357624150955856, (16, 1) = .12386204102729283, (16, 2) = -.11755024367601966, (16, 3) = 2.7630782885466254, (16, 4) = 1.4306932234947345, (16, 5) = .36093354758169927, (16, 6) = 5.624880231600311, (16, 7) = 1.628778496660186, (16, 8) = .16159615167866462, (17, 1) = 0.9660535822960543e-1, (17, 2) = -.1017757389941151, (17, 3) = 3.129486686134902, (17, 4) = 1.5200126345068938, (17, 5) = .35836839869593895, (17, 6) = 6.034545798261897, (17, 7) = 1.6711446595363155, (17, 8) = .17962464210679904, (18, 1) = 0.7367857489109031e-1, (18, 2) = -0.8562488366373487e-1, (18, 3) = 3.512055738361352, (18, 4) = 1.6073685521372294, (18, 5) = .3557501139971933, (18, 6) = 6.448944019154785, (18, 7) = 1.7172737332675954, (18, 8) = .19747921374137573, (19, 1) = 0.54932297215312065e-1, (19, 2) = -0.6998673195550159e-1, (19, 3) = 3.909931726386895, (19, 4) = 1.692827501352813, (19, 5) = .3531065609803749, (19, 6) = 6.868914696313914, (19, 7) = 1.7670034201936595, (19, 8) = .21498974802357024, (20, 1) = 0.4005339598008939e-1, (20, 2) = -0.55610136299587054e-1, (20, 3) = 4.32164450688784, (20, 4) = 1.77632437502917, (20, 5) = .35046725376876914, (20, 6) = 7.294527651516823, (20, 7) = 1.8200532646404195, (20, 8) = .23197376211102866, (21, 1) = 0.28580538470935495e-1, (21, 2) = -0.43000484038105184e-1, (21, 3) = 4.745698402930282, (21, 4) = 1.8578072943415187, (21, 5) = .34785831678559404, (21, 6) = 7.725732483059856, (21, 7) = 1.8760988685224456, (21, 8) = .24826982947943302, (22, 1) = 0.1996278053815402e-1, (22, 2) = -0.3238521326136785e-1, (22, 3) = 5.181353487043006, (22, 4) = 1.9373734562831926, (22, 5) = .34529737977456776, (22, 6) = 8.163122417826008, (22, 7) = 1.9348863621148453, (22, 8) = .26376703841962096, (23, 1) = 0.1365169808933715e-1, (23, 2) = -0.23777175833410786e-1, (23, 3) = 5.6279306071831305, (23, 4) = 2.015116420764514, (23, 5) = .34279810538335065, (23, 6) = 8.60720314062156, (23, 7) = 1.996152613508324, (23, 8) = .2783739405626572, (24, 1) = 0.9141837377667494e-2, (24, 2) = -0.17032577718097307e-1, (24, 3) = 6.084805468966238, (24, 4) = 2.0911257386418485, (24, 5) = .340370194206626, (24, 6) = 9.058397452645558, (24, 7) = 2.059629639205023, (24, 8) = .29201833127085214, (25, 1) = 0.5994108163660374e-2, (25, 2) = -0.11912234609982005e-1, (25, 3) = 6.551523204740028, (25, 4) = 2.165505306248221, (25, 5) = .33801891240256376, (25, 6) = 9.517167898738702, (25, 7) = 2.1250654794952815, (25, 8) = .3046497396204352, (26, 1) = 0.38470588985903055e-2, (26, 2) = -0.8138240294430613e-2, (26, 3) = 7.027670958837816, (26, 4) = 2.238350997284669, (26, 5) = .3357460261587689, (26, 6) = 9.983900741341126, (26, 7) = 2.1922108137474403, (26, 8) = .3162340733370819, (27, 1) = 0.2415525316376395e-2, (27, 2) = -0.5433887636433142e-2, (27, 3) = 7.51276194601149, (27, 4) = 2.3097349632638142, (27, 5) = .33355055765848207, (27, 6) = 10.458803767615885, (27, 7) = 2.2608058123457324, (27, 8) = .32675028982528975, (28, 1) = 0.1482134442049264e-2, (28, 2) = -0.35473836650395138e-2, (28, 3) = 8.006344879280913, (28, 4) = 2.3797246033167165, (28, 5) = .3314285083244437, (28, 6) = 10.942023485632674, (28, 7) = 2.3305985328398995, (28, 8) = .3361925680987284, (29, 1) = 0.8867798277494013e-3, (29, 2) = -0.22649595163979426e-2, (29, 3) = 8.508000609042815, (29, 4) = 2.4483823707573626, (29, 5) = .32937324890833686, (29, 6) = 11.433650368387816, (29, 7) = 2.4013472411799133, (29, 8) = .34456875648665847, (30, 1) = 0.5147830582056192e-3, (30, 2) = -0.14137540243798479e-2, (30, 3) = 9.018079243243903, (30, 4) = 2.515861978503066, (30, 5) = .3273730983678873, (30, 6) = 11.934451666568503, (30, 7) = 2.4729258238550673, (30, 8) = .3519085257409124, (31, 1) = 0.28659669973437794e-3, (31, 2) = -0.8605928820212513e-3, (31, 3) = 9.538856126749963, (31, 4) = 2.582539204272471, (31, 5) = .32540795861125427, (31, 6) = 12.44702875421768, (31, 7) = 2.545481761283621, (31, 8) = .3582667626570985, (32, 1) = 0.1500417202447516e-3, (32, 2) = -0.5106757568196689e-3, (32, 3) = 10.070296337466763, (32, 4) = 2.648460200960687, (32, 5) = .32346579035064904, (32, 6) = 12.971669786325668, (32, 7) = 2.618840629421426, (32, 8) = .36366514670687944, (33, 1) = 0.7037994109756306e-4, (33, 2) = -0.2953327633691435e-3, (33, 3) = 10.612149661123444, (33, 4) = 2.713638344636691, (33, 5) = .3215339926041049, (33, 6) = 13.508402962580126, (33, 7) = 2.692804574171342, (33, 8) = .3681309842732225, (34, 1) = 0.2508902470016854e-4, (34, 2) = -0.16641397198798735e-3, (34, 3) = 11.164172903455626, (34, 4) = 2.778084059250828, (34, 5) = .31959890842541655, (34, 6) = 14.057217972519599, (34, 7) = 2.767185195379349, (34, 8) = .3716992797163207, (35, 1) = .0, (35, 2) = -0.9134248027914396e-4, (35, 3) = 11.726129087316146, (35, 4) = 2.841804712, (35, 5) = .31764623058532726, (35, 6) = 14.618068801887034, (35, 7) = 2.841804712, (35, 8) = .3744112941998848}, datatype = float[8], order = C_order); YP := Matrix(35, 8, {(1, 1) = -.11511620494228465, (1, 2) = -0.21848192814805704e-1, (1, 3) = .0, (1, 4) = .37811799244920324, (1, 5) = .0, (1, 6) = 1.4117113181447536, (1, 7) = .0, (1, 8) = .0, (2, 1) = -.11975318257035834, (2, 2) = -0.2340744045683882e-1, (2, 3) = 0.77409636920803e-1, (2, 4) = .37811352171842283, (2, 5) = -0.6501906335844444e-4, (2, 6) = 1.411746095030339, (2, 7) = 0.5096115493465316e-3, (2, 8) = 0.4978393071034031e-2, (3, 1) = -.12496974762969729, (3, 2) = -0.2472737923936798e-1, (3, 3) = .15925409044318592, (3, 4) = .37807999460677805, (3, 5) = -0.26633217492876086e-3, (3, 6) = 1.4120141336647931, (3, 7) = 0.21567165797040048e-2, (3, 8) = 0.10238889928920546e-1, (4, 1) = -.13078648524102396, (4, 2) = -0.25653205134369778e-1, (4, 3) = .24638626301264996, (4, 4) = .3779809429150307, (4, 5) = -0.6148579022689942e-3, (4, 6) = 1.4128327072652163, (4, 7) = 0.51609615183282375e-2, (4, 8) = 0.15826282713831068e-1, (5, 1) = -.1371916401125017, (5, 2) = -0.25935739559925664e-1, (5, 3) = .33996920774229683, (5, 4) = .37776827912336824, (5, 5) = -0.1124149710447512e-2, (5, 6) = 1.4146572486865054, (5, 7) = 0.9820223828374587e-2, (5, 8) = 0.21793013656706044e-1, (6, 1) = -.14409851939129248, (6, 2) = -0.25166962349877944e-1, (6, 3) = .44161902578753254, (6, 4) = .37737598360935093, (6, 5) = -0.1811204871965437e-2, (6, 6) = 1.4181683376757317, (6, 7) = 0.16551767115543403e-1, (6, 8) = 0.2819908212449082e-1, (7, 1) = -.15082401972104326, (7, 2) = -0.22883345616240332e-1, (7, 3) = .546566995361021, (7, 4) = .3767592394353197, (7, 5) = -0.26379430409376966e-2, (7, 6) = 1.423951238924928, (7, 7) = 0.2530574188627694e-1, (7, 8) = 0.3467874447064803e-1, (8, 1) = -.15662271721966162, (8, 2) = -0.1879263785160887e-1, (8, 3) = .650475986042538, (8, 4) = .3759074764267706, (8, 5) = -0.3543732228642546e-2, (8, 6) = 1.432339477818811, (8, 7) = 0.3574403196512969e-1, (8, 8) = 0.40893604100372564e-1, (9, 1) = -.16097976785337778, (9, 2) = -0.12656020813637847e-1, (9, 3) = .7533024381136638, (9, 4) = .37480724717639446, (9, 5) = -0.4495519532277643e-2, (9, 6) = 1.4437395006677125, (9, 7) = 0.4775839761612408e-1, (9, 8) = 0.4677096408972486e-1, (10, 1) = -.16334348080313163, (10, 2) = -0.4369045779836154e-2, (10, 3) = .8550010473136669, (10, 4) = .3734541277931229, (10, 5) = -0.5462016466357188e-2, (10, 6) = 1.458517002768622, (10, 7) = 0.61223001646425766e-1, (10, 8) = 0.5223392148642055e-1, (11, 1) = -.16317816891693035, (11, 2) = 0.5922044795027756e-2, (11, 3) = .9552992408083281, (11, 4) = .3718558392388385, (11, 5) = -0.6411982626269342e-2, (11, 6) = 1.4769469365488954, (11, 7) = 0.7595912211689054e-1, (11, 8) = 0.57193745442795506e-1, (12, 1) = -.1600634554218884, (12, 2) = 0.17740826720045982e-1, (12, 3) = 1.0538888365598136, (12, 4) = .37003049775688535, (12, 5) = -0.7316860858898448e-2, (12, 6) = 1.499207309863791, (12, 7) = 0.9175293789636808e-1, (12, 8) = 0.6156719989689199e-1, (13, 1) = -.15376655017624774, (13, 2) = 0.30296704807712918e-1, (13, 3) = 1.1507687254222438, (13, 4) = .3679982116567567, (13, 5) = -0.8154721726663258e-2, (13, 6) = 1.5254608253960227, (13, 7) = .1084188111357934, (13, 8) = 0.6529471058639535e-1, (14, 1) = -.14430646057430674, (14, 2) = 0.4250806547922589e-1, (14, 3) = 1.245943366242156, (14, 4) = .36578343902893384, (14, 5) = -0.8907641852239972e-2, (14, 6) = 1.555816989411266, (14, 7) = .12576396753467523, (14, 8) = 0.6832600602649756e-1, (15, 1) = -.13201176794608704, (15, 2) = 0.53137961864251064e-1, (15, 3) = 1.339345748340381, (15, 4) = .36341579280951025, (15, 5) = -0.9561372713284904e-2, (15, 6) = 1.590302627188974, (15, 7) = .14357624150955856, (15, 8) = 0.7062057397986593e-1, (16, 1) = -.11755024367601966, (16, 2) = 0.6102495948240774e-1, (16, 3) = 1.4306932234947345, (16, 4) = .36093354758169927, (16, 5) = -0.10105088797683102e-1, (16, 6) = 1.628778496660186, (16, 7) = .16159615167866462, (16, 8) = 0.7215057669693223e-1, (17, 1) = -.1017757389941151, (17, 2) = 0.6540052175916726e-1, (17, 3) = 1.5200126345068938, (17, 4) = .35836839869593895, (17, 5) = -0.10534973995215179e-1, (17, 6) = 1.6711446595363155, (17, 7) = .17962464210679904, (17, 8) = 0.7291378535787908e-1, (18, 1) = -0.8562488366373487e-1, (18, 2) = 0.6601577799350121e-1, (18, 3) = 1.6073685521372294, (18, 4) = .3557501139971933, (18, 5) = -0.1085154690665931e-1, (18, 6) = 1.7172737332675954, (18, 7) = .19747921374137573, (18, 8) = 0.729227591867127e-1, (19, 1) = -0.6998673195550159e-1, (19, 2) = 0.6316514351336697e-1, (19, 3) = 1.692827501352813, (19, 4) = .3531065609803749, (19, 5) = -0.11059054704056444e-1, (19, 6) = 1.7670034201936595, (19, 7) = .21498974802357024, (19, 8) = 0.7220335350513343e-1, (20, 1) = -0.55610136299587054e-1, (20, 2) = 0.57585436563437925e-1, (20, 3) = 1.77632437502917, (20, 4) = .35046725376876914, (20, 5) = -0.11164970048420729e-1, (20, 6) = 1.8200532646404195, (20, 7) = .23197376211102866, (20, 8) = 0.7079658035527173e-1, (21, 1) = -0.43000484038105184e-1, (21, 2) = 0.50253823099175934e-1, (21, 3) = 1.8578072943415187, (21, 4) = .34785831678559404, (21, 5) = -0.111801623302582e-1, (21, 6) = 1.8760988685224456, (21, 7) = .24826982947943302, (21, 8) = 0.6875838561442682e-1, (22, 1) = -0.3238521326136785e-1, (22, 2) = 0.42146604914204154e-1, (22, 3) = 1.9373734562831926, (22, 4) = .34529737977456776, (22, 5) = -0.11117984320829395e-1, (22, 6) = 1.9348863621148453, (22, 7) = .26376703841962096, (22, 8) = 0.6615191423106347e-1, (23, 1) = -0.23777175833410786e-1, (23, 2) = 0.34085049240114594e-1, (23, 3) = 2.015116420764514, (23, 4) = .34279810538335065, (23, 5) = -0.10993236209989717e-1, (23, 6) = 1.996152613508324, (23, 7) = .2783739405626572, (23, 8) = 0.6304618263872158e-1, (24, 1) = -0.17032577718097307e-1, (24, 2) = 0.2665729331676524e-1, (24, 3) = 2.0911257386418485, (24, 4) = .340370194206626, (24, 5) = -0.10821600556493872e-1, (24, 6) = 2.059629639205023, (24, 7) = .29201833127085214, (24, 8) = 0.59514066560478224e-1, (25, 1) = -0.11912234609982005e-1, (25, 2) = 0.20207684956014358e-1, (25, 3) = 2.165505306248221, (25, 4) = .33801891240256376, (25, 5) = -0.10619047217973444e-1, (25, 6) = 2.1250654794952815, (25, 7) = .3046497396204352, (25, 8) = 0.55629289468927506e-1, (26, 1) = -0.8138240294430613e-2, (26, 2) = 0.14875114888345182e-1, (26, 3) = 2.238350997284669, (26, 4) = .3357460261587689, (26, 5) = -0.10401381660268688e-1, (26, 6) = 2.1922108137474403, (26, 7) = .3162340733370819, (26, 8) = 0.5146542077826284e-1, (27, 1) = -0.5433887636433142e-2, (27, 2) = 0.1064880363610196e-1, (27, 3) = 2.3097349632638142, (27, 4) = .33355055765848207, (27, 5) = -0.10183874373236527e-1, (27, 6) = 2.2608058123457324, (27, 7) = .32675028982528975, (27, 8) = 0.4709533876452156e-1, (28, 1) = -0.35473836650395138e-2, (28, 2) = 0.7422525245840296e-2, (28, 3) = 2.3797246033167165, (28, 4) = .3314285083244437, (28, 5) = -0.9980819151111209e-2, (28, 6) = 2.3305985328398995, (28, 7) = .3361925680987284, (28, 8) = 0.42588832612515365e-1, (29, 1) = -0.22649595163979426e-2, (29, 2) = 0.5042123940643825e-2, (29, 3) = 2.4483823707573626, (29, 4) = .32937324890833686, (29, 5) = -0.9805194239856069e-2, (29, 6) = 2.4013472411799133, (29, 7) = .34456875648665847, (29, 8) = 0.3801127009896496e-1, (30, 1) = -0.14137540243798479e-2, (30, 2) = 0.3338358133232503e-2, (30, 3) = 2.515861978503066, (30, 4) = .3273730983678873, (30, 5) = -0.9668229828749347e-2, (30, 6) = 2.4729258238550673, (30, 7) = .3519085257409124, (30, 8) = 0.33415920177751274e-1, (31, 1) = -0.8605928820212513e-3, (31, 2) = 0.21504697796892285e-2, (31, 3) = 2.582539204272471, (31, 4) = .32540795861125427, (31, 5) = -0.957946473248892e-2, (31, 6) = 2.545481761283621, (31, 7) = .3582667626570985, (31, 8) = 0.2883403707075255e-1, (32, 1) = -0.5106757568196689e-3, (32, 2) = 0.13475415217635602e-2, (32, 3) = 2.648460200960687, (32, 4) = .32346579035064904, (32, 5) = -0.9547805614663327e-2, (32, 6) = 2.618840629421426, (32, 7) = .36366514670687944, (32, 8) = 0.2431324030318291e-1, (33, 1) = -0.2953327633691435e-3, (33, 2) = 0.8213655825998622e-3, (33, 3) = 2.713638344636691, (33, 4) = .3215339926041049, (33, 5) = -0.9580452220455518e-2, (33, 6) = 2.692804574171342, (33, 7) = .3681309842732225, (33, 8) = 0.19897477825029125e-1, (34, 1) = -0.16641397198798735e-3, (34, 2) = 0.4869401833588519e-3, (34, 3) = 2.778084059250828, (34, 4) = .31959890842541655, (34, 5) = -0.9682706793193413e-2, (34, 6) = 2.767185195379349, (34, 7) = .3716992797163207, (34, 8) = 0.15624441579612264e-1, (35, 1) = -0.9134248027914396e-4, (35, 2) = 0.28074210501946773e-3, (35, 3) = 2.841804712, (35, 4) = .31764623058532726, (35, 5) = -0.9857922636655345e-2, (35, 6) = 2.841804712, (35, 7) = .3744112941998848, (35, 8) = 0.11525252201341013e-1}, datatype = float[8], order = C_order); errproc := proc (x_bvp) local outpoint, X, Y, yout, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; Digits := 15; outpoint := evalf(x_bvp); X := Vector(35, {(1) = .0, (2) = .20472410284384834, (3) = .4211863305043777, (4) = .6516720600363566, (5) = .8993212463695047, (6) = 1.1685298486145983, (7) = 1.4468423487039677, (8) = 1.7229359537348594, (9) = 1.9968629039389574, (10) = 2.268673421313649, (11) = 2.5378029414464036, (12) = 2.8035694406371796, (13) = 3.066093306207618, (14) = 3.325490409787653, (15) = 3.581658551212711, (16) = 3.8338699831956804, (17) = 4.08221409418108, (18) = 4.32686351028502, (19) = 4.567978384890087, (20) = 4.805327686982952, (21) = 5.038694055040347, (22) = 5.268271439374476, (23) = 5.494238613721016, (24) = 5.716760727626145, (25) = 5.936046030245326, (26) = 6.152283284474133, (27) = 6.365596166650127, (28) = 6.576100208955955, (29) = 6.783903531026379, (30) = 6.9894017136482445, (31) = 7.1936893054340665, (32) = 7.3968755375272774, (33) = 7.5989780331822505, (34) = 7.80001395061423, (35) = 8.0}, datatype = float[8], order = C_order); Y := Matrix(35, 8, {(1, 1) = 0.897448267109614e-15, (1, 2) = 0.5588167359031321e-15, (1, 3) = .0, (1, 4) = .0, (1, 5) = 0.13864249525943088e-15, (1, 6) = .0, (1, 7) = 0.12119642246901448e-14, (1, 8) = .0, (2, 1) = 0.17195345226360017e-14, (2, 2) = 0.6181167466331716e-15, (2, 3) = 0.20410981819182018e-16, (2, 4) = 0.10601766383125283e-15, (2, 5) = -0.10490636710626889e-15, (2, 6) = 0.5031667156796011e-15, (2, 7) = 0.11996548135741033e-14, (2, 8) = 0.2771969015070949e-19, (3, 1) = 0.1686737254582015e-14, (3, 2) = 0.9567626045906052e-15, (3, 3) = 0.5604460075778757e-16, (3, 4) = 0.10527680167976054e-15, (3, 5) = 0.20005622560643638e-15, (3, 6) = -0.9913001724420674e-16, (3, 7) = 0.1339416454645461e-14, (3, 8) = -0.1444766507242344e-17, (4, 1) = 0.4333011548848769e-14, (4, 2) = 0.17025161949432959e-14, (4, 3) = 0.10025344277919218e-16, (4, 4) = 0.11064429627289256e-15, (4, 5) = 0.2162077879904567e-15, (4, 6) = -0.4402054460277445e-15, (4, 7) = -0.689926374914955e-15, (4, 8) = -0.2826387029976454e-17, (5, 1) = 0.6633681086898639e-14, (5, 2) = 0.375032295134198e-14, (5, 3) = 0.1812909654403e-15, (5, 4) = -0.12070342909717134e-15, (5, 5) = -0.1596142149617371e-15, (5, 6) = -0.10825942697009252e-15, (5, 7) = 0.18103213104082225e-14, (5, 8) = -0.16764369656937747e-16, (6, 1) = 0.13129840358265059e-13, (6, 2) = 0.7277452916946674e-14, (6, 3) = 0.29179991421150325e-15, (6, 4) = 0.6399550172322422e-16, (6, 5) = -0.22594631239149157e-15, (6, 6) = -0.9174305403629006e-16, (6, 7) = 0.19951541475781265e-15, (6, 8) = -0.43537055740415584e-16, (7, 1) = 0.16558247533243953e-13, (7, 2) = 0.10179772597290096e-13, (7, 3) = 0.5878293642247217e-15, (7, 4) = -0.7410342523151938e-16, (7, 5) = -0.15996611253844913e-15, (7, 6) = 0.1692951814608457e-14, (7, 7) = 0.1740069789475928e-16, (7, 8) = -0.31275576634239585e-16, (8, 1) = 0.1212069312549711e-13, (8, 2) = 0.9543541214045693e-14, (8, 3) = 0.6704668328631497e-15, (8, 4) = -0.44521023708016503e-16, (8, 5) = 0.22199060125967257e-15, (8, 6) = -0.6750801329037803e-15, (8, 7) = 0.21656382445432134e-14, (8, 8) = -0.6435827646555829e-16, (9, 1) = -0.3772034753492132e-14, (9, 2) = 0.5759418721910007e-14, (9, 3) = 0.6527662555019791e-15, (9, 4) = 0.441738628379015e-16, (9, 5) = 0.5658548136938054e-15, (9, 6) = 0.3154847106536809e-14, (9, 7) = 0.7858154752173474e-15, (9, 8) = -0.10311351058385951e-15, (10, 1) = -0.2440608209204811e-13, (10, 2) = 0.28469235452884776e-14, (10, 3) = 0.3866914448702218e-15, (10, 4) = -0.9144516798022403e-16, (10, 5) = -0.10145948392816397e-15, (10, 6) = -0.24442421173399023e-14, (10, 7) = 0.6377245986878261e-16, (10, 8) = -0.17205372425145497e-15, (11, 1) = -0.4123657586548479e-13, (11, 2) = 0.47019634354738835e-14, (11, 3) = 0.7390229161834592e-15, (11, 4) = 0.33830363819193296e-15, (11, 5) = -0.49321754692558303e-16, (11, 6) = -0.7883634580987387e-16, (11, 7) = 0.9384901596020932e-15, (11, 8) = -0.252982075836778e-15, (12, 1) = -0.45482420467991964e-13, (12, 2) = 0.10203470081300767e-13, (12, 3) = 0.7534533806982218e-15, (12, 4) = -0.20573415143689883e-15, (12, 5) = 0.10308521674561246e-15, (12, 6) = -0.306193488603141e-14, (12, 7) = 0.11321549203383949e-14, (12, 8) = -0.3982374979919039e-15, (13, 1) = -0.3692752598727219e-13, (13, 2) = 0.13076295718742951e-13, (13, 3) = -0.42293951496931934e-15, (13, 4) = 0.5793784843910567e-15, (13, 5) = 0.1255527766044886e-15, (13, 6) = 0.14631798233506174e-14, (13, 7) = -0.537526963696651e-16, (13, 8) = -0.43906151981417637e-15, (14, 1) = -0.12180528075494553e-13, (14, 2) = 0.67927440842877486e-14, (14, 3) = -0.7751636018193131e-16, (14, 4) = 0.5989904770359435e-15, (14, 5) = -0.5359630097047029e-16, (14, 6) = -0.13487931939540982e-14, (14, 7) = 0.17179524507174635e-14, (14, 8) = -0.4135968388921909e-15, (15, 1) = 0.3685354836152949e-13, (15, 2) = -0.1664738219468053e-13, (15, 3) = -0.1573909843712974e-14, (15, 4) = 0.794295869180883e-15, (15, 5) = -0.35245821132597215e-17, (15, 6) = -0.11581448838991115e-14, (15, 7) = 0.4173536492488085e-15, (15, 8) = -0.5280874496874946e-15, (16, 1) = 0.10366564920219266e-12, (16, 2) = -0.641879285025774e-13, (16, 3) = 0.20566596972943627e-14, (16, 4) = 0.9266548671796218e-16, (16, 5) = 0.2353325946868509e-15, (16, 6) = 0.18284547948529757e-15, (16, 7) = 0.17622934571819217e-14, (16, 8) = -0.4976417588290511e-15, (17, 1) = 0.14484169648891652e-12, (17, 2) = -0.12297441716887176e-12, (17, 3) = -0.1068182350278374e-14, (17, 4) = -0.5854540915281354e-15, (17, 5) = 0.14535461070078002e-15, (17, 6) = 0.4266610794669015e-14, (17, 7) = 0.4607205530424001e-15, (17, 8) = -0.5886742340881105e-15, (18, 1) = 0.10566223147991009e-12, (18, 2) = -0.13820205741801644e-12, (18, 3) = -0.20123078614811413e-14, (18, 4) = -0.7561398183639445e-16, (18, 5) = 0.2140425035665995e-15, (18, 6) = -0.23561554941772816e-14, (18, 7) = 0.19085985864153077e-14, (18, 8) = -0.5917377444519284e-15, (19, 1) = -0.1679773165980789e-13, (19, 2) = -0.5657134915236689e-13, (19, 3) = 0.1360256674443056e-14, (19, 4) = 0.8707809795722639e-15, (19, 5) = 0.21528390503198728e-15, (19, 6) = -0.5127690553955357e-15, (19, 7) = -0.4826901389884211e-15, (19, 8) = -0.5868641866801674e-15, (20, 1) = -0.14894339690033946e-12, (20, 2) = 0.9602247884781634e-13, (20, 3) = 0.26294719195036576e-14, (20, 4) = -0.502638096454554e-15, (20, 5) = 0.32194304936576336e-16, (20, 6) = 0.25628117174786136e-14, (20, 7) = 0.8377380590237005e-15, (20, 8) = -0.7167682554400696e-15, (21, 1) = -0.20361898739374174e-12, (21, 2) = 0.2159454684255011e-12, (21, 3) = -0.18390456690678095e-14, (21, 4) = 0.16085741943765483e-14, (21, 5) = -0.3751395624658827e-15, (21, 6) = 0.68012918504538484e-14, (21, 7) = 0.25431273083692057e-15, (21, 8) = -0.32419369341927803e-15, (22, 1) = -0.15689971156050872e-12, (22, 2) = 0.21942355904154635e-12, (22, 3) = 0.24099783601109427e-14, (22, 4) = -0.9953957508184104e-15, (22, 5) = 0.8621846497603312e-16, (22, 6) = 0.5849807663571661e-14, (22, 7) = -0.11527500167921049e-14, (22, 8) = 0.5354827376431221e-17, (23, 1) = -0.5259760291556636e-13, (23, 2) = 0.11178856094650594e-12, (23, 3) = -0.8417911290913919e-15, (23, 4) = -0.2207954041887918e-14, (23, 5) = -0.2243044830543838e-15, (23, 6) = 0.15023300748706678e-13, (23, 7) = -0.973903527171104e-15, (23, 8) = -0.32331856502436973e-16, (24, 1) = 0.4443374116829714e-13, (24, 2) = -0.32070809165957353e-13, (24, 3) = -0.34880954720513526e-15, (24, 4) = 0.1231856080413119e-14, (24, 5) = 0.55827387662745e-17, (24, 6) = 0.54319152119881845e-14, (24, 7) = -0.36766647288947504e-15, (24, 8) = -0.3464894477365739e-15, (25, 1) = 0.933019806478322e-13, (25, 2) = -0.13384281309083258e-12, (25, 3) = 0.33197903067130842e-14, (25, 4) = -0.3132682814760555e-14, (25, 5) = -0.28711859306736457e-15, (25, 6) = -0.5470120367959728e-14, (25, 7) = -0.13432374782466947e-14, (25, 8) = 0.2039729831139547e-15, (26, 1) = 0.8977989989773004e-13, (26, 2) = -0.15869171973868484e-12, (26, 3) = 0.23278286029344056e-14, (26, 4) = -0.29354266305866873e-15, (26, 5) = 0.230020828715235e-16, (26, 6) = 0.32968730420794027e-14, (26, 7) = 0.12490842693534877e-14, (26, 8) = 0.3964694184561624e-15, (27, 1) = 0.5380760356273936e-13, (27, 2) = -0.11847870856872766e-12, (27, 3) = 0.2688345544666234e-15, (27, 4) = 0.10619582772389209e-14, (27, 5) = -0.12172639957600914e-15, (27, 6) = 0.3185441694869011e-14, (27, 7) = -0.1489879250602313e-14, (27, 8) = 0.6565146261655062e-15, (28, 1) = 0.10742518103279055e-13, (28, 2) = -0.495306438002946e-13, (28, 3) = 0.4310166135267635e-14, (28, 4) = 0.15683143667115227e-14, (28, 5) = 0.3453405106322541e-16, (28, 6) = 0.1018279419881744e-13, (28, 7) = -0.13632661970738383e-14, (28, 8) = 0.4729842715233933e-15, (29, 1) = -0.2151478390347912e-13, (29, 2) = 0.12771727815782967e-13, (29, 3) = 0.5629863069659428e-14, (29, 4) = -0.14434075930994008e-15, (29, 5) = -0.3455164788374167e-15, (29, 6) = 0.1345923386438848e-15, (29, 7) = 0.6628740317227967e-15, (29, 8) = 0.2370286262471212e-15, (30, 1) = -0.36756430829417473e-13, (30, 2) = 0.4915770478845277e-13, (30, 3) = 0.6364093247487674e-15, (30, 4) = 0.2644278305592894e-15, (30, 5) = 0.19990963262100253e-15, (30, 6) = -0.4147202106691808e-14, (30, 7) = -0.13135113472923236e-14, (30, 8) = 0.79220739160263215e-15, (31, 1) = -0.38142291891788485e-13, (31, 2) = 0.5919398917266647e-13, (31, 3) = 0.13925650940938171e-13, (31, 4) = 0.5542574200502359e-15, (31, 5) = -0.15301256420629026e-15, (31, 6) = 0.4509491169458926e-14, (31, 7) = 0.2495446814784076e-15, (31, 8) = 0.8083662326018128e-15, (32, 1) = -0.30039055413759246e-13, (32, 2) = 0.4722520516979542e-13, (32, 3) = 0.5948740452406517e-14, (32, 4) = 0.3314613919766506e-14, (32, 5) = -0.20036994088420754e-15, (32, 6) = 0.14649613744607957e-13, (32, 7) = -0.7728084332522093e-16, (32, 8) = 0.1933770820597525e-15, (33, 1) = -0.18092057280170896e-13, (33, 2) = 0.23205059829259787e-13, (33, 3) = 0.6050533016944145e-14, (33, 4) = 0.28168060491597395e-15, (33, 5) = 0.2339278829021382e-15, (33, 6) = 0.9701926801570967e-14, (33, 7) = 0.18835370879179478e-15, (33, 8) = 0.21984174087752556e-15, (34, 1) = -0.714859442764903e-14, (34, 2) = -0.19154332194589852e-14, (34, 3) = 0.1348765326796076e-13, (34, 4) = -0.9615633283396454e-15, (34, 5) = 0.8312623586890217e-16, (34, 6) = 0.29574319371284083e-14, (34, 7) = -0.30915701787131377e-14, (34, 8) = 0.27524560756785973e-15, (35, 1) = .0, (35, 2) = -0.20166673380620537e-13, (35, 3) = -0.1179663713625192e-14, (35, 4) = .0, (35, 5) = 0.54374029653237e-16, (35, 6) = -0.3047767633518586e-15, (35, 7) = .0, (35, 8) = -0.3103350258003601e-16}, datatype = float[8], order = C_order); if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "right" then return X[35] elif outpoint = "order" then return 8 elif outpoint = "error" then return HFloat(2.1942355904154635e-13) elif outpoint = "errorproc" then error "this is already the error procedure" elif outpoint = "rawdata" then return [8, 35, [T(eta), diff(T(eta), eta), f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), g(eta), diff(g(eta), eta), diff(diff(g(eta), eta), eta)], X, Y] else return ('procname')(x_bvp) end if end if; if outpoint < X[1] or X[35] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[35] end if; V := array([1 = 4, 2 = 0]); if Digits <= trunc(evalhf(Digits)) then L := Vector(4, 'datatype' = 'float'[8]); yout := Vector(8, 'datatype' = 'float'[8]); evalhf(`dsolve/numeric/lagrange`(35, 8, X, Y, outpoint, var(yout), var(L), var(V))) else L := Vector(4, 'datatype' = 'sfloat'); yout := Vector(8, 'datatype' = 'sfloat'); `dsolve/numeric/lagrange`(35, 8, X, Y, outpoint, yout, L, V) end if; [eta = outpoint, seq('[T(eta), diff(T(eta), eta), f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), g(eta), diff(g(eta), eta), diff(diff(g(eta), eta), eta)]'[i] = yout[i], i = 1 .. 8)] end proc; if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "method" then return "bvp" elif outpoint = "right" then return X[35] elif outpoint = "order" then return 8 elif outpoint = "error" then return HFloat(2.1942355904154635e-13) elif outpoint = "errorproc" then return eval(errproc) elif outpoint = "rawdata" then return [8, 35, "depnames", X, Y, YP] else error "non-numeric value" end if end if; if outpoint < X[1] or X[35] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[35] end if; if Digits <= trunc(evalhf(Digits)) and (_EnvInFsolve <> true or _EnvDSNumericSaveDigits <= trunc(evalhf(Digits))) then V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 5 ) = (false), ( 4 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = .0, (1, 2) = .0, (2, 1) = .0, (2, 2) = .0, (3, 1) = .0, (3, 2) = .0, (4, 1) = .0, (4, 2) = .0, (5, 1) = .0, (5, 2) = .0, (6, 1) = .0, (6, 2) = .0, (7, 1) = .0, (7, 2) = .0}, datatype = float[8], order = C_order); yout := Vector(8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8]); evalhf(`dsolve/numeric/hermite`(35, 8, X, Y, YP, outpoint, var(yout), var(L), var(V))) else if _EnvInFsolve = true then Digits := _EnvDSNumericSaveDigits end if; V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 5 ) = (false), ( 4 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = 0., (1, 2) = 0., (2, 1) = 0., (2, 2) = 0., (3, 1) = 0., (3, 2) = 0., (4, 1) = 0., (4, 2) = 0., (5, 1) = 0., (5, 2) = 0., (6, 1) = 0., (6, 2) = 0., (7, 1) = 0., (7, 2) = 0.}, order = C_order); yout := Vector(8, {(1) = 0., (2) = 0., (3) = 0., (4) = 0., (5) = 0., (6) = 0., (7) = 0., (8) = 0.}); `dsolve/numeric/hermite`(35, 8, X, Y, YP, outpoint, yout, L, V) end if; [outpoint, seq(yout[i], i = 1 .. 8)] end proc, (2) = Array(1..9, {(1) = 4365885730, (2) = 4365885922, (3) = 4365886066, (4) = 4365886162, (5) = 4365886258, (6) = 4365886354, (7) = 4365886450, (8) = 4365886546, (9) = 4365886642}), (3) = [eta, T(eta), diff(T(eta), eta), f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), g(eta), diff(g(eta), eta), diff(diff(g(eta), eta), eta)], (4) = 0}); _solnproc := _dat[1]; if member(eta, ["last", 'last']) then _res := _solnproc("last"); if type(_res, 'list') then return _res[1] end if elif type(eta, `=`) and member(lhs(eta), ["initial", 'initial']) then if type(rhs(eta), 'list') then _res := _solnproc("initial" = [0, op(rhs(eta))]) else _res := _solnproc("initial" = [1, rhs(eta)]) end if; if type(_res, 'list') then return _res[1] end if elif eta = "sysvars" then return _dat[3] end if; eta end proc, T = proc (eta) local res, data, solnproc, T, outpoint; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then outpoint := evalf[_EnvDSNumericSaveDigits](eta) else outpoint := evalf(eta) end if; data := Array(1..4, {(1) = proc (outpoint) local X, Y, YP, yout, errproc, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; X := Vector(35, {(1) = .0, (2) = .20472410284384834, (3) = .4211863305043777, (4) = .6516720600363566, (5) = .8993212463695047, (6) = 1.1685298486145983, (7) = 1.4468423487039677, (8) = 1.7229359537348594, (9) = 1.9968629039389574, (10) = 2.268673421313649, (11) = 2.5378029414464036, (12) = 2.8035694406371796, (13) = 3.066093306207618, (14) = 3.325490409787653, (15) = 3.581658551212711, (16) = 3.8338699831956804, (17) = 4.08221409418108, (18) = 4.32686351028502, (19) = 4.567978384890087, (20) = 4.805327686982952, (21) = 5.038694055040347, (22) = 5.268271439374476, (23) = 5.494238613721016, (24) = 5.716760727626145, (25) = 5.936046030245326, (26) = 6.152283284474133, (27) = 6.365596166650127, (28) = 6.576100208955955, (29) = 6.783903531026379, (30) = 6.9894017136482445, (31) = 7.1936893054340665, (32) = 7.3968755375272774, (33) = 7.5989780331822505, (34) = 7.80001395061423, (35) = 8.0}, datatype = float[8], order = C_order); Y := Matrix(35, 8, {(1, 1) = .6800687881055213, (1, 2) = -.11511620494228465, (1, 3) = .0, (1, 4) = .0, (1, 5) = .37811799244920324, (1, 6) = .0, (1, 7) = 1.4117113181447536, (1, 8) = .0, (2, 1) = .6560325255507624, (2, 2) = -.11975318257035834, (2, 3) = 0.7923823323670406e-2, (2, 4) = 0.77409636920803e-1, (2, 5) = .37811352171842283, (2, 6) = .2890131130048752, (2, 7) = 1.411746095030339, (2, 8) = 0.5096115493465316e-3, (3, 1) = .6295510504863806, (3, 2) = -.12496974762969729, (3, 3) = 0.335383312275963e-1, (3, 4) = .15925409044318592, (3, 5) = .37807999460677805, (3, 6) = .5946253962700148, (3, 7) = 1.4120141336647931, (3, 8) = 0.21567165797040048e-2, (4, 1) = .6000810786889832, (4, 2) = -.13078648524102396, (4, 3) = 0.8028592391087024e-1, (4, 4) = .24638626301264996, (4, 5) = .3779809429150307, (4, 6) = .9201555386630824, (4, 7) = 1.4128327072652163, (4, 8) = 0.51609615183282375e-2, (5, 1) = .5669002581395786, (5, 2) = -.1371916401125017, (5, 3) = .1528922356920777, (5, 4) = .33996920774229683, (5, 5) = .37776827912336824, (5, 6) = 1.27024451829135, (5, 7) = 1.4146572486865054, (5, 8) = 0.9820223828374587e-2, (6, 1) = .5290327802230002, (6, 2) = -.14409851939129248, (6, 3) = .25809973947558784, (6, 4) = .44161902578753254, (6, 5) = .37737598360935093, (6, 6) = 1.651514368911508, (6, 7) = 1.4181683376757317, (6, 8) = 0.16551767115543403e-1, (7, 1) = .48797776231069934, (7, 2) = -.15082401972104326, (7, 3) = .3956159784223351, (7, 4) = .546566995361021, (7, 5) = .3767592394353197, (7, 6) = 2.046956560700791, (7, 7) = 1.423951238924928, (7, 8) = 0.2530574188627694e-1, (8, 1) = .4455097689486867, (8, 2) = -.15662271721966162, (8, 3) = .560869343108844, (8, 4) = .650475986042538, (8, 5) = .3759074764267706, (8, 6) = 2.441192046655901, (8, 7) = 1.432339477818811, (8, 8) = 0.3574403196512969e-1, (9, 1) = .4019714737781167, (9, 2) = -.16097976785337778, (9, 3) = .7531425930170065, (9, 4) = .7533024381136638, (9, 5) = .37480724717639446, (9, 6) = 2.835034683009538, (9, 7) = 1.4437395006677125, (9, 8) = 0.4775839761612408e-1, (10, 1) = .3578432116772004, (10, 2) = -.16334348080313163, (10, 3) = .9717278248653037, (10, 4) = .8550010473136669, (10, 5) = .3734541277931229, (10, 6) = 3.229383694258226, (10, 7) = 1.458517002768622, (10, 8) = 0.61223001646425766e-1, (11, 1) = .3138427499613885, (11, 2) = -.16317816891693035, (11, 3) = 1.2153400964446428, (11, 4) = .9552992408083281, (11, 5) = .3718558392388385, (11, 6) = 3.6243047360166147, (11, 7) = 1.4769469365488954, (11, 8) = 0.7595912211689054e-1, (12, 1) = .2708197137303571, (12, 2) = -.1600634554218884, (12, 3) = 1.4823382823352556, (12, 4) = 1.0538888365598136, (12, 5) = .37003049775688535, (12, 6) = 4.019692806711686, (12, 7) = 1.499207309863791, (12, 8) = 0.9175293789636808e-1, (13, 1) = .22955356513321082, (13, 2) = -.15376655017624774, (13, 3) = 1.771737568613686, (13, 4) = 1.1507687254222438, (13, 5) = .3679982116567567, (13, 6) = 4.4166208604325305, (13, 7) = 1.5254608253960227, (13, 8) = .1084188111357934, (14, 1) = .19082533490993417, (14, 2) = -.14430646057430674, (14, 3) = 2.0826000767466843, (14, 4) = 1.245943366242156, (14, 5) = .36578343902893384, (14, 6) = 4.816160855718664, (14, 7) = 1.555816989411266, (14, 8) = .12576396753467523, (15, 1) = .1553751277762106, (15, 2) = -.13201176794608704, (15, 3) = 2.4137473802608245, (15, 4) = 1.339345748340381, (15, 5) = .36341579280951025, (15, 6) = 5.219031239689751, (15, 7) = 1.590302627188974, (15, 8) = .14357624150955856, (16, 1) = .12386204102729283, (16, 2) = -.11755024367601966, (16, 3) = 2.7630782885466254, (16, 4) = 1.4306932234947345, (16, 5) = .36093354758169927, (16, 6) = 5.624880231600311, (16, 7) = 1.628778496660186, (16, 8) = .16159615167866462, (17, 1) = 0.9660535822960543e-1, (17, 2) = -.1017757389941151, (17, 3) = 3.129486686134902, (17, 4) = 1.5200126345068938, (17, 5) = .35836839869593895, (17, 6) = 6.034545798261897, (17, 7) = 1.6711446595363155, (17, 8) = .17962464210679904, (18, 1) = 0.7367857489109031e-1, (18, 2) = -0.8562488366373487e-1, (18, 3) = 3.512055738361352, (18, 4) = 1.6073685521372294, (18, 5) = .3557501139971933, (18, 6) = 6.448944019154785, (18, 7) = 1.7172737332675954, (18, 8) = .19747921374137573, (19, 1) = 0.54932297215312065e-1, (19, 2) = -0.6998673195550159e-1, (19, 3) = 3.909931726386895, (19, 4) = 1.692827501352813, (19, 5) = .3531065609803749, (19, 6) = 6.868914696313914, (19, 7) = 1.7670034201936595, (19, 8) = .21498974802357024, (20, 1) = 0.4005339598008939e-1, (20, 2) = -0.55610136299587054e-1, (20, 3) = 4.32164450688784, (20, 4) = 1.77632437502917, (20, 5) = .35046725376876914, (20, 6) = 7.294527651516823, (20, 7) = 1.8200532646404195, (20, 8) = .23197376211102866, (21, 1) = 0.28580538470935495e-1, (21, 2) = -0.43000484038105184e-1, (21, 3) = 4.745698402930282, (21, 4) = 1.8578072943415187, (21, 5) = .34785831678559404, (21, 6) = 7.725732483059856, (21, 7) = 1.8760988685224456, (21, 8) = .24826982947943302, (22, 1) = 0.1996278053815402e-1, (22, 2) = -0.3238521326136785e-1, (22, 3) = 5.181353487043006, (22, 4) = 1.9373734562831926, (22, 5) = .34529737977456776, (22, 6) = 8.163122417826008, (22, 7) = 1.9348863621148453, (22, 8) = .26376703841962096, (23, 1) = 0.1365169808933715e-1, (23, 2) = -0.23777175833410786e-1, (23, 3) = 5.6279306071831305, (23, 4) = 2.015116420764514, (23, 5) = .34279810538335065, (23, 6) = 8.60720314062156, (23, 7) = 1.996152613508324, (23, 8) = .2783739405626572, (24, 1) = 0.9141837377667494e-2, (24, 2) = -0.17032577718097307e-1, (24, 3) = 6.084805468966238, (24, 4) = 2.0911257386418485, (24, 5) = .340370194206626, (24, 6) = 9.058397452645558, (24, 7) = 2.059629639205023, (24, 8) = .29201833127085214, (25, 1) = 0.5994108163660374e-2, (25, 2) = -0.11912234609982005e-1, (25, 3) = 6.551523204740028, (25, 4) = 2.165505306248221, (25, 5) = .33801891240256376, (25, 6) = 9.517167898738702, (25, 7) = 2.1250654794952815, (25, 8) = .3046497396204352, (26, 1) = 0.38470588985903055e-2, (26, 2) = -0.8138240294430613e-2, (26, 3) = 7.027670958837816, (26, 4) = 2.238350997284669, (26, 5) = .3357460261587689, (26, 6) = 9.983900741341126, (26, 7) = 2.1922108137474403, (26, 8) = .3162340733370819, (27, 1) = 0.2415525316376395e-2, (27, 2) = -0.5433887636433142e-2, (27, 3) = 7.51276194601149, (27, 4) = 2.3097349632638142, (27, 5) = .33355055765848207, (27, 6) = 10.458803767615885, (27, 7) = 2.2608058123457324, (27, 8) = .32675028982528975, (28, 1) = 0.1482134442049264e-2, (28, 2) = -0.35473836650395138e-2, (28, 3) = 8.006344879280913, (28, 4) = 2.3797246033167165, (28, 5) = .3314285083244437, (28, 6) = 10.942023485632674, (28, 7) = 2.3305985328398995, (28, 8) = .3361925680987284, (29, 1) = 0.8867798277494013e-3, (29, 2) = -0.22649595163979426e-2, (29, 3) = 8.508000609042815, (29, 4) = 2.4483823707573626, (29, 5) = .32937324890833686, (29, 6) = 11.433650368387816, (29, 7) = 2.4013472411799133, (29, 8) = .34456875648665847, (30, 1) = 0.5147830582056192e-3, (30, 2) = -0.14137540243798479e-2, (30, 3) = 9.018079243243903, (30, 4) = 2.515861978503066, (30, 5) = .3273730983678873, (30, 6) = 11.934451666568503, (30, 7) = 2.4729258238550673, (30, 8) = .3519085257409124, (31, 1) = 0.28659669973437794e-3, (31, 2) = -0.8605928820212513e-3, (31, 3) = 9.538856126749963, (31, 4) = 2.582539204272471, (31, 5) = .32540795861125427, (31, 6) = 12.44702875421768, (31, 7) = 2.545481761283621, (31, 8) = .3582667626570985, (32, 1) = 0.1500417202447516e-3, (32, 2) = -0.5106757568196689e-3, (32, 3) = 10.070296337466763, (32, 4) = 2.648460200960687, (32, 5) = .32346579035064904, (32, 6) = 12.971669786325668, (32, 7) = 2.618840629421426, (32, 8) = .36366514670687944, (33, 1) = 0.7037994109756306e-4, (33, 2) = -0.2953327633691435e-3, (33, 3) = 10.612149661123444, (33, 4) = 2.713638344636691, (33, 5) = .3215339926041049, (33, 6) = 13.508402962580126, (33, 7) = 2.692804574171342, (33, 8) = .3681309842732225, (34, 1) = 0.2508902470016854e-4, (34, 2) = -0.16641397198798735e-3, (34, 3) = 11.164172903455626, (34, 4) = 2.778084059250828, (34, 5) = .31959890842541655, (34, 6) = 14.057217972519599, (34, 7) = 2.767185195379349, (34, 8) = .3716992797163207, (35, 1) = .0, (35, 2) = -0.9134248027914396e-4, (35, 3) = 11.726129087316146, (35, 4) = 2.841804712, (35, 5) = .31764623058532726, (35, 6) = 14.618068801887034, (35, 7) = 2.841804712, (35, 8) = .3744112941998848}, datatype = float[8], order = C_order); YP := Matrix(35, 8, {(1, 1) = -.11511620494228465, (1, 2) = -0.21848192814805704e-1, (1, 3) = .0, (1, 4) = .37811799244920324, (1, 5) = .0, (1, 6) = 1.4117113181447536, (1, 7) = .0, (1, 8) = .0, (2, 1) = -.11975318257035834, (2, 2) = -0.2340744045683882e-1, (2, 3) = 0.77409636920803e-1, (2, 4) = .37811352171842283, (2, 5) = -0.6501906335844444e-4, (2, 6) = 1.411746095030339, (2, 7) = 0.5096115493465316e-3, (2, 8) = 0.4978393071034031e-2, (3, 1) = -.12496974762969729, (3, 2) = -0.2472737923936798e-1, (3, 3) = .15925409044318592, (3, 4) = .37807999460677805, (3, 5) = -0.26633217492876086e-3, (3, 6) = 1.4120141336647931, (3, 7) = 0.21567165797040048e-2, (3, 8) = 0.10238889928920546e-1, (4, 1) = -.13078648524102396, (4, 2) = -0.25653205134369778e-1, (4, 3) = .24638626301264996, (4, 4) = .3779809429150307, (4, 5) = -0.6148579022689942e-3, (4, 6) = 1.4128327072652163, (4, 7) = 0.51609615183282375e-2, (4, 8) = 0.15826282713831068e-1, (5, 1) = -.1371916401125017, (5, 2) = -0.25935739559925664e-1, (5, 3) = .33996920774229683, (5, 4) = .37776827912336824, (5, 5) = -0.1124149710447512e-2, (5, 6) = 1.4146572486865054, (5, 7) = 0.9820223828374587e-2, (5, 8) = 0.21793013656706044e-1, (6, 1) = -.14409851939129248, (6, 2) = -0.25166962349877944e-1, (6, 3) = .44161902578753254, (6, 4) = .37737598360935093, (6, 5) = -0.1811204871965437e-2, (6, 6) = 1.4181683376757317, (6, 7) = 0.16551767115543403e-1, (6, 8) = 0.2819908212449082e-1, (7, 1) = -.15082401972104326, (7, 2) = -0.22883345616240332e-1, (7, 3) = .546566995361021, (7, 4) = .3767592394353197, (7, 5) = -0.26379430409376966e-2, (7, 6) = 1.423951238924928, (7, 7) = 0.2530574188627694e-1, (7, 8) = 0.3467874447064803e-1, (8, 1) = -.15662271721966162, (8, 2) = -0.1879263785160887e-1, (8, 3) = .650475986042538, (8, 4) = .3759074764267706, (8, 5) = -0.3543732228642546e-2, (8, 6) = 1.432339477818811, (8, 7) = 0.3574403196512969e-1, (8, 8) = 0.40893604100372564e-1, (9, 1) = -.16097976785337778, (9, 2) = -0.12656020813637847e-1, (9, 3) = .7533024381136638, (9, 4) = .37480724717639446, (9, 5) = -0.4495519532277643e-2, (9, 6) = 1.4437395006677125, (9, 7) = 0.4775839761612408e-1, (9, 8) = 0.4677096408972486e-1, (10, 1) = -.16334348080313163, (10, 2) = -0.4369045779836154e-2, (10, 3) = .8550010473136669, (10, 4) = .3734541277931229, (10, 5) = -0.5462016466357188e-2, (10, 6) = 1.458517002768622, (10, 7) = 0.61223001646425766e-1, (10, 8) = 0.5223392148642055e-1, (11, 1) = -.16317816891693035, (11, 2) = 0.5922044795027756e-2, (11, 3) = .9552992408083281, (11, 4) = .3718558392388385, (11, 5) = -0.6411982626269342e-2, (11, 6) = 1.4769469365488954, (11, 7) = 0.7595912211689054e-1, (11, 8) = 0.57193745442795506e-1, (12, 1) = -.1600634554218884, (12, 2) = 0.17740826720045982e-1, (12, 3) = 1.0538888365598136, (12, 4) = .37003049775688535, (12, 5) = -0.7316860858898448e-2, (12, 6) = 1.499207309863791, (12, 7) = 0.9175293789636808e-1, (12, 8) = 0.6156719989689199e-1, (13, 1) = -.15376655017624774, (13, 2) = 0.30296704807712918e-1, (13, 3) = 1.1507687254222438, (13, 4) = .3679982116567567, (13, 5) = -0.8154721726663258e-2, (13, 6) = 1.5254608253960227, (13, 7) = .1084188111357934, (13, 8) = 0.6529471058639535e-1, (14, 1) = -.14430646057430674, (14, 2) = 0.4250806547922589e-1, (14, 3) = 1.245943366242156, (14, 4) = .36578343902893384, (14, 5) = -0.8907641852239972e-2, (14, 6) = 1.555816989411266, (14, 7) = .12576396753467523, (14, 8) = 0.6832600602649756e-1, (15, 1) = -.13201176794608704, (15, 2) = 0.53137961864251064e-1, (15, 3) = 1.339345748340381, (15, 4) = .36341579280951025, (15, 5) = -0.9561372713284904e-2, (15, 6) = 1.590302627188974, (15, 7) = .14357624150955856, (15, 8) = 0.7062057397986593e-1, (16, 1) = -.11755024367601966, (16, 2) = 0.6102495948240774e-1, (16, 3) = 1.4306932234947345, (16, 4) = .36093354758169927, (16, 5) = -0.10105088797683102e-1, (16, 6) = 1.628778496660186, (16, 7) = .16159615167866462, (16, 8) = 0.7215057669693223e-1, (17, 1) = -.1017757389941151, (17, 2) = 0.6540052175916726e-1, (17, 3) = 1.5200126345068938, (17, 4) = .35836839869593895, (17, 5) = -0.10534973995215179e-1, (17, 6) = 1.6711446595363155, (17, 7) = .17962464210679904, (17, 8) = 0.7291378535787908e-1, (18, 1) = -0.8562488366373487e-1, (18, 2) = 0.6601577799350121e-1, (18, 3) = 1.6073685521372294, (18, 4) = .3557501139971933, (18, 5) = -0.1085154690665931e-1, (18, 6) = 1.7172737332675954, (18, 7) = .19747921374137573, (18, 8) = 0.729227591867127e-1, (19, 1) = -0.6998673195550159e-1, (19, 2) = 0.6316514351336697e-1, (19, 3) = 1.692827501352813, (19, 4) = .3531065609803749, (19, 5) = -0.11059054704056444e-1, (19, 6) = 1.7670034201936595, (19, 7) = .21498974802357024, (19, 8) = 0.7220335350513343e-1, (20, 1) = -0.55610136299587054e-1, (20, 2) = 0.57585436563437925e-1, (20, 3) = 1.77632437502917, (20, 4) = .35046725376876914, (20, 5) = -0.11164970048420729e-1, (20, 6) = 1.8200532646404195, (20, 7) = .23197376211102866, (20, 8) = 0.7079658035527173e-1, (21, 1) = -0.43000484038105184e-1, (21, 2) = 0.50253823099175934e-1, (21, 3) = 1.8578072943415187, (21, 4) = .34785831678559404, (21, 5) = -0.111801623302582e-1, (21, 6) = 1.8760988685224456, (21, 7) = .24826982947943302, (21, 8) = 0.6875838561442682e-1, (22, 1) = -0.3238521326136785e-1, (22, 2) = 0.42146604914204154e-1, (22, 3) = 1.9373734562831926, (22, 4) = .34529737977456776, (22, 5) = -0.11117984320829395e-1, (22, 6) = 1.9348863621148453, (22, 7) = .26376703841962096, (22, 8) = 0.6615191423106347e-1, (23, 1) = -0.23777175833410786e-1, (23, 2) = 0.34085049240114594e-1, (23, 3) = 2.015116420764514, (23, 4) = .34279810538335065, (23, 5) = -0.10993236209989717e-1, (23, 6) = 1.996152613508324, (23, 7) = .2783739405626572, (23, 8) = 0.6304618263872158e-1, (24, 1) = -0.17032577718097307e-1, (24, 2) = 0.2665729331676524e-1, (24, 3) = 2.0911257386418485, (24, 4) = .340370194206626, (24, 5) = -0.10821600556493872e-1, (24, 6) = 2.059629639205023, (24, 7) = .29201833127085214, (24, 8) = 0.59514066560478224e-1, (25, 1) = -0.11912234609982005e-1, (25, 2) = 0.20207684956014358e-1, (25, 3) = 2.165505306248221, (25, 4) = .33801891240256376, (25, 5) = -0.10619047217973444e-1, (25, 6) = 2.1250654794952815, (25, 7) = .3046497396204352, (25, 8) = 0.55629289468927506e-1, (26, 1) = -0.8138240294430613e-2, (26, 2) = 0.14875114888345182e-1, (26, 3) = 2.238350997284669, (26, 4) = .3357460261587689, (26, 5) = -0.10401381660268688e-1, (26, 6) = 2.1922108137474403, (26, 7) = .3162340733370819, (26, 8) = 0.5146542077826284e-1, (27, 1) = -0.5433887636433142e-2, (27, 2) = 0.1064880363610196e-1, (27, 3) = 2.3097349632638142, (27, 4) = .33355055765848207, (27, 5) = -0.10183874373236527e-1, (27, 6) = 2.2608058123457324, (27, 7) = .32675028982528975, (27, 8) = 0.4709533876452156e-1, (28, 1) = -0.35473836650395138e-2, (28, 2) = 0.7422525245840296e-2, (28, 3) = 2.3797246033167165, (28, 4) = .3314285083244437, (28, 5) = -0.9980819151111209e-2, (28, 6) = 2.3305985328398995, (28, 7) = .3361925680987284, (28, 8) = 0.42588832612515365e-1, (29, 1) = -0.22649595163979426e-2, (29, 2) = 0.5042123940643825e-2, (29, 3) = 2.4483823707573626, (29, 4) = .32937324890833686, (29, 5) = -0.9805194239856069e-2, (29, 6) = 2.4013472411799133, (29, 7) = .34456875648665847, (29, 8) = 0.3801127009896496e-1, (30, 1) = -0.14137540243798479e-2, (30, 2) = 0.3338358133232503e-2, (30, 3) = 2.515861978503066, (30, 4) = .3273730983678873, (30, 5) = -0.9668229828749347e-2, (30, 6) = 2.4729258238550673, (30, 7) = .3519085257409124, (30, 8) = 0.33415920177751274e-1, (31, 1) = -0.8605928820212513e-3, (31, 2) = 0.21504697796892285e-2, (31, 3) = 2.582539204272471, (31, 4) = .32540795861125427, (31, 5) = -0.957946473248892e-2, (31, 6) = 2.545481761283621, (31, 7) = .3582667626570985, (31, 8) = 0.2883403707075255e-1, (32, 1) = -0.5106757568196689e-3, (32, 2) = 0.13475415217635602e-2, (32, 3) = 2.648460200960687, (32, 4) = .32346579035064904, (32, 5) = -0.9547805614663327e-2, (32, 6) = 2.618840629421426, (32, 7) = .36366514670687944, (32, 8) = 0.2431324030318291e-1, (33, 1) = -0.2953327633691435e-3, (33, 2) = 0.8213655825998622e-3, (33, 3) = 2.713638344636691, (33, 4) = .3215339926041049, (33, 5) = -0.9580452220455518e-2, (33, 6) = 2.692804574171342, (33, 7) = .3681309842732225, (33, 8) = 0.19897477825029125e-1, (34, 1) = -0.16641397198798735e-3, (34, 2) = 0.4869401833588519e-3, (34, 3) = 2.778084059250828, (34, 4) = .31959890842541655, (34, 5) = -0.9682706793193413e-2, (34, 6) = 2.767185195379349, (34, 7) = .3716992797163207, (34, 8) = 0.15624441579612264e-1, (35, 1) = -0.9134248027914396e-4, (35, 2) = 0.28074210501946773e-3, (35, 3) = 2.841804712, (35, 4) = .31764623058532726, (35, 5) = -0.9857922636655345e-2, (35, 6) = 2.841804712, (35, 7) = .3744112941998848, (35, 8) = 0.11525252201341013e-1}, datatype = float[8], order = C_order); errproc := proc (x_bvp) local outpoint, X, Y, yout, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; Digits := 15; outpoint := evalf(x_bvp); X := Vector(35, {(1) = .0, (2) = .20472410284384834, (3) = .4211863305043777, (4) = .6516720600363566, (5) = .8993212463695047, (6) = 1.1685298486145983, (7) = 1.4468423487039677, (8) = 1.7229359537348594, (9) = 1.9968629039389574, (10) = 2.268673421313649, (11) = 2.5378029414464036, (12) = 2.8035694406371796, (13) = 3.066093306207618, (14) = 3.325490409787653, (15) = 3.581658551212711, (16) = 3.8338699831956804, (17) = 4.08221409418108, (18) = 4.32686351028502, (19) = 4.567978384890087, (20) = 4.805327686982952, (21) = 5.038694055040347, (22) = 5.268271439374476, (23) = 5.494238613721016, (24) = 5.716760727626145, (25) = 5.936046030245326, (26) = 6.152283284474133, (27) = 6.365596166650127, (28) = 6.576100208955955, (29) = 6.783903531026379, (30) = 6.9894017136482445, (31) = 7.1936893054340665, (32) = 7.3968755375272774, (33) = 7.5989780331822505, (34) = 7.80001395061423, (35) = 8.0}, datatype = float[8], order = C_order); Y := Matrix(35, 8, {(1, 1) = 0.897448267109614e-15, (1, 2) = 0.5588167359031321e-15, (1, 3) = .0, (1, 4) = .0, (1, 5) = 0.13864249525943088e-15, (1, 6) = .0, (1, 7) = 0.12119642246901448e-14, (1, 8) = .0, (2, 1) = 0.17195345226360017e-14, (2, 2) = 0.6181167466331716e-15, (2, 3) = 0.20410981819182018e-16, (2, 4) = 0.10601766383125283e-15, (2, 5) = -0.10490636710626889e-15, (2, 6) = 0.5031667156796011e-15, (2, 7) = 0.11996548135741033e-14, (2, 8) = 0.2771969015070949e-19, (3, 1) = 0.1686737254582015e-14, (3, 2) = 0.9567626045906052e-15, (3, 3) = 0.5604460075778757e-16, (3, 4) = 0.10527680167976054e-15, (3, 5) = 0.20005622560643638e-15, (3, 6) = -0.9913001724420674e-16, (3, 7) = 0.1339416454645461e-14, (3, 8) = -0.1444766507242344e-17, (4, 1) = 0.4333011548848769e-14, (4, 2) = 0.17025161949432959e-14, (4, 3) = 0.10025344277919218e-16, (4, 4) = 0.11064429627289256e-15, (4, 5) = 0.2162077879904567e-15, (4, 6) = -0.4402054460277445e-15, (4, 7) = -0.689926374914955e-15, (4, 8) = -0.2826387029976454e-17, (5, 1) = 0.6633681086898639e-14, (5, 2) = 0.375032295134198e-14, (5, 3) = 0.1812909654403e-15, (5, 4) = -0.12070342909717134e-15, (5, 5) = -0.1596142149617371e-15, (5, 6) = -0.10825942697009252e-15, (5, 7) = 0.18103213104082225e-14, (5, 8) = -0.16764369656937747e-16, (6, 1) = 0.13129840358265059e-13, (6, 2) = 0.7277452916946674e-14, (6, 3) = 0.29179991421150325e-15, (6, 4) = 0.6399550172322422e-16, (6, 5) = -0.22594631239149157e-15, (6, 6) = -0.9174305403629006e-16, (6, 7) = 0.19951541475781265e-15, (6, 8) = -0.43537055740415584e-16, (7, 1) = 0.16558247533243953e-13, (7, 2) = 0.10179772597290096e-13, (7, 3) = 0.5878293642247217e-15, (7, 4) = -0.7410342523151938e-16, (7, 5) = -0.15996611253844913e-15, (7, 6) = 0.1692951814608457e-14, (7, 7) = 0.1740069789475928e-16, (7, 8) = -0.31275576634239585e-16, (8, 1) = 0.1212069312549711e-13, (8, 2) = 0.9543541214045693e-14, (8, 3) = 0.6704668328631497e-15, (8, 4) = -0.44521023708016503e-16, (8, 5) = 0.22199060125967257e-15, (8, 6) = -0.6750801329037803e-15, (8, 7) = 0.21656382445432134e-14, (8, 8) = -0.6435827646555829e-16, (9, 1) = -0.3772034753492132e-14, (9, 2) = 0.5759418721910007e-14, (9, 3) = 0.6527662555019791e-15, (9, 4) = 0.441738628379015e-16, (9, 5) = 0.5658548136938054e-15, (9, 6) = 0.3154847106536809e-14, (9, 7) = 0.7858154752173474e-15, (9, 8) = -0.10311351058385951e-15, (10, 1) = -0.2440608209204811e-13, (10, 2) = 0.28469235452884776e-14, (10, 3) = 0.3866914448702218e-15, (10, 4) = -0.9144516798022403e-16, (10, 5) = -0.10145948392816397e-15, (10, 6) = -0.24442421173399023e-14, (10, 7) = 0.6377245986878261e-16, (10, 8) = -0.17205372425145497e-15, (11, 1) = -0.4123657586548479e-13, (11, 2) = 0.47019634354738835e-14, (11, 3) = 0.7390229161834592e-15, (11, 4) = 0.33830363819193296e-15, (11, 5) = -0.49321754692558303e-16, (11, 6) = -0.7883634580987387e-16, (11, 7) = 0.9384901596020932e-15, (11, 8) = -0.252982075836778e-15, (12, 1) = -0.45482420467991964e-13, (12, 2) = 0.10203470081300767e-13, (12, 3) = 0.7534533806982218e-15, (12, 4) = -0.20573415143689883e-15, (12, 5) = 0.10308521674561246e-15, (12, 6) = -0.306193488603141e-14, (12, 7) = 0.11321549203383949e-14, (12, 8) = -0.3982374979919039e-15, (13, 1) = -0.3692752598727219e-13, (13, 2) = 0.13076295718742951e-13, (13, 3) = -0.42293951496931934e-15, (13, 4) = 0.5793784843910567e-15, (13, 5) = 0.1255527766044886e-15, (13, 6) = 0.14631798233506174e-14, (13, 7) = -0.537526963696651e-16, (13, 8) = -0.43906151981417637e-15, (14, 1) = -0.12180528075494553e-13, (14, 2) = 0.67927440842877486e-14, (14, 3) = -0.7751636018193131e-16, (14, 4) = 0.5989904770359435e-15, (14, 5) = -0.5359630097047029e-16, (14, 6) = -0.13487931939540982e-14, (14, 7) = 0.17179524507174635e-14, (14, 8) = -0.4135968388921909e-15, (15, 1) = 0.3685354836152949e-13, (15, 2) = -0.1664738219468053e-13, (15, 3) = -0.1573909843712974e-14, (15, 4) = 0.794295869180883e-15, (15, 5) = -0.35245821132597215e-17, (15, 6) = -0.11581448838991115e-14, (15, 7) = 0.4173536492488085e-15, (15, 8) = -0.5280874496874946e-15, (16, 1) = 0.10366564920219266e-12, (16, 2) = -0.641879285025774e-13, (16, 3) = 0.20566596972943627e-14, (16, 4) = 0.9266548671796218e-16, (16, 5) = 0.2353325946868509e-15, (16, 6) = 0.18284547948529757e-15, (16, 7) = 0.17622934571819217e-14, (16, 8) = -0.4976417588290511e-15, (17, 1) = 0.14484169648891652e-12, (17, 2) = -0.12297441716887176e-12, (17, 3) = -0.1068182350278374e-14, (17, 4) = -0.5854540915281354e-15, (17, 5) = 0.14535461070078002e-15, (17, 6) = 0.4266610794669015e-14, (17, 7) = 0.4607205530424001e-15, (17, 8) = -0.5886742340881105e-15, (18, 1) = 0.10566223147991009e-12, (18, 2) = -0.13820205741801644e-12, (18, 3) = -0.20123078614811413e-14, (18, 4) = -0.7561398183639445e-16, (18, 5) = 0.2140425035665995e-15, (18, 6) = -0.23561554941772816e-14, (18, 7) = 0.19085985864153077e-14, (18, 8) = -0.5917377444519284e-15, (19, 1) = -0.1679773165980789e-13, (19, 2) = -0.5657134915236689e-13, (19, 3) = 0.1360256674443056e-14, (19, 4) = 0.8707809795722639e-15, (19, 5) = 0.21528390503198728e-15, (19, 6) = -0.5127690553955357e-15, (19, 7) = -0.4826901389884211e-15, (19, 8) = -0.5868641866801674e-15, (20, 1) = -0.14894339690033946e-12, (20, 2) = 0.9602247884781634e-13, (20, 3) = 0.26294719195036576e-14, (20, 4) = -0.502638096454554e-15, (20, 5) = 0.32194304936576336e-16, (20, 6) = 0.25628117174786136e-14, (20, 7) = 0.8377380590237005e-15, (20, 8) = -0.7167682554400696e-15, (21, 1) = -0.20361898739374174e-12, (21, 2) = 0.2159454684255011e-12, (21, 3) = -0.18390456690678095e-14, (21, 4) = 0.16085741943765483e-14, (21, 5) = -0.3751395624658827e-15, (21, 6) = 0.68012918504538484e-14, (21, 7) = 0.25431273083692057e-15, (21, 8) = -0.32419369341927803e-15, (22, 1) = -0.15689971156050872e-12, (22, 2) = 0.21942355904154635e-12, (22, 3) = 0.24099783601109427e-14, (22, 4) = -0.9953957508184104e-15, (22, 5) = 0.8621846497603312e-16, (22, 6) = 0.5849807663571661e-14, (22, 7) = -0.11527500167921049e-14, (22, 8) = 0.5354827376431221e-17, (23, 1) = -0.5259760291556636e-13, (23, 2) = 0.11178856094650594e-12, (23, 3) = -0.8417911290913919e-15, (23, 4) = -0.2207954041887918e-14, (23, 5) = -0.2243044830543838e-15, (23, 6) = 0.15023300748706678e-13, (23, 7) = -0.973903527171104e-15, (23, 8) = -0.32331856502436973e-16, (24, 1) = 0.4443374116829714e-13, (24, 2) = -0.32070809165957353e-13, (24, 3) = -0.34880954720513526e-15, (24, 4) = 0.1231856080413119e-14, (24, 5) = 0.55827387662745e-17, (24, 6) = 0.54319152119881845e-14, (24, 7) = -0.36766647288947504e-15, (24, 8) = -0.3464894477365739e-15, (25, 1) = 0.933019806478322e-13, (25, 2) = -0.13384281309083258e-12, (25, 3) = 0.33197903067130842e-14, (25, 4) = -0.3132682814760555e-14, (25, 5) = -0.28711859306736457e-15, (25, 6) = -0.5470120367959728e-14, (25, 7) = -0.13432374782466947e-14, (25, 8) = 0.2039729831139547e-15, (26, 1) = 0.8977989989773004e-13, (26, 2) = -0.15869171973868484e-12, (26, 3) = 0.23278286029344056e-14, (26, 4) = -0.29354266305866873e-15, (26, 5) = 0.230020828715235e-16, (26, 6) = 0.32968730420794027e-14, (26, 7) = 0.12490842693534877e-14, (26, 8) = 0.3964694184561624e-15, (27, 1) = 0.5380760356273936e-13, (27, 2) = -0.11847870856872766e-12, (27, 3) = 0.2688345544666234e-15, (27, 4) = 0.10619582772389209e-14, (27, 5) = -0.12172639957600914e-15, (27, 6) = 0.3185441694869011e-14, (27, 7) = -0.1489879250602313e-14, (27, 8) = 0.6565146261655062e-15, (28, 1) = 0.10742518103279055e-13, (28, 2) = -0.495306438002946e-13, (28, 3) = 0.4310166135267635e-14, (28, 4) = 0.15683143667115227e-14, (28, 5) = 0.3453405106322541e-16, (28, 6) = 0.1018279419881744e-13, (28, 7) = -0.13632661970738383e-14, (28, 8) = 0.4729842715233933e-15, (29, 1) = -0.2151478390347912e-13, (29, 2) = 0.12771727815782967e-13, (29, 3) = 0.5629863069659428e-14, (29, 4) = -0.14434075930994008e-15, (29, 5) = -0.3455164788374167e-15, (29, 6) = 0.1345923386438848e-15, (29, 7) = 0.6628740317227967e-15, (29, 8) = 0.2370286262471212e-15, (30, 1) = -0.36756430829417473e-13, (30, 2) = 0.4915770478845277e-13, (30, 3) = 0.6364093247487674e-15, (30, 4) = 0.2644278305592894e-15, (30, 5) = 0.19990963262100253e-15, (30, 6) = -0.4147202106691808e-14, (30, 7) = -0.13135113472923236e-14, (30, 8) = 0.79220739160263215e-15, (31, 1) = -0.38142291891788485e-13, (31, 2) = 0.5919398917266647e-13, (31, 3) = 0.13925650940938171e-13, (31, 4) = 0.5542574200502359e-15, (31, 5) = -0.15301256420629026e-15, (31, 6) = 0.4509491169458926e-14, (31, 7) = 0.2495446814784076e-15, (31, 8) = 0.8083662326018128e-15, (32, 1) = -0.30039055413759246e-13, (32, 2) = 0.4722520516979542e-13, (32, 3) = 0.5948740452406517e-14, (32, 4) = 0.3314613919766506e-14, (32, 5) = -0.20036994088420754e-15, (32, 6) = 0.14649613744607957e-13, (32, 7) = -0.7728084332522093e-16, (32, 8) = 0.1933770820597525e-15, (33, 1) = -0.18092057280170896e-13, (33, 2) = 0.23205059829259787e-13, (33, 3) = 0.6050533016944145e-14, (33, 4) = 0.28168060491597395e-15, (33, 5) = 0.2339278829021382e-15, (33, 6) = 0.9701926801570967e-14, (33, 7) = 0.18835370879179478e-15, (33, 8) = 0.21984174087752556e-15, (34, 1) = -0.714859442764903e-14, (34, 2) = -0.19154332194589852e-14, (34, 3) = 0.1348765326796076e-13, (34, 4) = -0.9615633283396454e-15, (34, 5) = 0.8312623586890217e-16, (34, 6) = 0.29574319371284083e-14, (34, 7) = -0.30915701787131377e-14, (34, 8) = 0.27524560756785973e-15, (35, 1) = .0, (35, 2) = -0.20166673380620537e-13, (35, 3) = -0.1179663713625192e-14, (35, 4) = .0, (35, 5) = 0.54374029653237e-16, (35, 6) = -0.3047767633518586e-15, (35, 7) = .0, (35, 8) = -0.3103350258003601e-16}, datatype = float[8], order = C_order); if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "right" then return X[35] elif outpoint = "order" then return 8 elif outpoint = "error" then return HFloat(2.1942355904154635e-13) elif outpoint = "errorproc" then error "this is already the error procedure" elif outpoint = "rawdata" then return [8, 35, [T(eta), diff(T(eta), eta), f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), g(eta), diff(g(eta), eta), diff(diff(g(eta), eta), eta)], X, Y] else return ('procname')(x_bvp) end if end if; if outpoint < X[1] or X[35] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[35] end if; V := array([1 = 4, 2 = 0]); if Digits <= trunc(evalhf(Digits)) then L := Vector(4, 'datatype' = 'float'[8]); yout := Vector(8, 'datatype' = 'float'[8]); evalhf(`dsolve/numeric/lagrange`(35, 8, X, Y, outpoint, var(yout), var(L), var(V))) else L := Vector(4, 'datatype' = 'sfloat'); yout := Vector(8, 'datatype' = 'sfloat'); `dsolve/numeric/lagrange`(35, 8, X, Y, outpoint, yout, L, V) end if; [eta = outpoint, seq('[T(eta), diff(T(eta), eta), f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), g(eta), diff(g(eta), eta), diff(diff(g(eta), eta), eta)]'[i] = yout[i], i = 1 .. 8)] end proc; if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "method" then return "bvp" elif outpoint = "right" then return X[35] elif outpoint = "order" then return 8 elif outpoint = "error" then return HFloat(2.1942355904154635e-13) elif outpoint = "errorproc" then return eval(errproc) elif outpoint = "rawdata" then return [8, 35, "depnames", X, Y, YP] else error "non-numeric value" end if end if; if outpoint < X[1] or X[35] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[35] end if; if Digits <= trunc(evalhf(Digits)) and (_EnvInFsolve <> true or _EnvDSNumericSaveDigits <= trunc(evalhf(Digits))) then V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 5 ) = (false), ( 4 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = .0, (1, 2) = .0, (2, 1) = .0, (2, 2) = .0, (3, 1) = .0, (3, 2) = .0, (4, 1) = .0, (4, 2) = .0, (5, 1) = .0, (5, 2) = .0, (6, 1) = .0, (6, 2) = .0, (7, 1) = .0, (7, 2) = .0}, datatype = float[8], order = C_order); yout := Vector(8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8]); evalhf(`dsolve/numeric/hermite`(35, 8, X, Y, YP, outpoint, var(yout), var(L), var(V))) else if _EnvInFsolve = true then Digits := _EnvDSNumericSaveDigits end if; V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 5 ) = (false), ( 4 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = 0., (1, 2) = 0., (2, 1) = 0., (2, 2) = 0., (3, 1) = 0., (3, 2) = 0., (4, 1) = 0., (4, 2) = 0., (5, 1) = 0., (5, 2) = 0., (6, 1) = 0., (6, 2) = 0., (7, 1) = 0., (7, 2) = 0.}, order = C_order); yout := Vector(8, {(1) = 0., (2) = 0., (3) = 0., (4) = 0., (5) = 0., (6) = 0., (7) = 0., (8) = 0.}); `dsolve/numeric/hermite`(35, 8, X, Y, YP, outpoint, yout, L, V) end if; [outpoint, seq(yout[i], i = 1 .. 8)] end proc, (2) = Array(1..9, {(1) = 4365885730, (2) = 4365885922, (3) = 4365886066, (4) = 4365886162, (5) = 4365886258, (6) = 4365886354, (7) = 4365886450, (8) = 4365886546, (9) = 4365886642}), (3) = [eta, T(eta), diff(T(eta), eta), f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), g(eta), diff(g(eta), eta), diff(diff(g(eta), eta), eta)], (4) = 0}); solnproc := data[1]; if not type(outpoint, 'numeric') then if outpoint = "solnprocedure" then return eval(solnproc) elif member(outpoint, ["start", "left", "right", "errorproc", "rawdata", "order", "error"]) then return solnproc(eta) elif outpoint = "sysvars" then return data[3] elif procname <> unknown then return ('procname')(eta) else T := pointto(data[2][2]); return ('T')(eta) end if end if; try res := solnproc(outpoint); res[2] catch: error  end try end proc, D(T) = proc (eta) local res, data, solnproc, `D(T)`, outpoint; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then outpoint := evalf[_EnvDSNumericSaveDigits](eta) else outpoint := evalf(eta) end if; data := Array(1..4, {(1) = proc (outpoint) local X, Y, YP, yout, errproc, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; X := Vector(35, {(1) = .0, (2) = .20472410284384834, (3) = .4211863305043777, (4) = .6516720600363566, (5) = .8993212463695047, (6) = 1.1685298486145983, (7) = 1.4468423487039677, (8) = 1.7229359537348594, (9) = 1.9968629039389574, (10) = 2.268673421313649, (11) = 2.5378029414464036, (12) = 2.8035694406371796, (13) = 3.066093306207618, (14) = 3.325490409787653, (15) = 3.581658551212711, (16) = 3.8338699831956804, (17) = 4.08221409418108, (18) = 4.32686351028502, (19) = 4.567978384890087, (20) = 4.805327686982952, (21) = 5.038694055040347, (22) = 5.268271439374476, (23) = 5.494238613721016, (24) = 5.716760727626145, (25) = 5.936046030245326, (26) = 6.152283284474133, (27) = 6.365596166650127, (28) = 6.576100208955955, (29) = 6.783903531026379, (30) = 6.9894017136482445, (31) = 7.1936893054340665, (32) = 7.3968755375272774, (33) = 7.5989780331822505, (34) = 7.80001395061423, (35) = 8.0}, datatype = float[8], order = C_order); Y := Matrix(35, 8, {(1, 1) = .6800687881055213, (1, 2) = -.11511620494228465, (1, 3) = .0, (1, 4) = .0, (1, 5) = .37811799244920324, (1, 6) = .0, (1, 7) = 1.4117113181447536, (1, 8) = .0, (2, 1) = .6560325255507624, (2, 2) = -.11975318257035834, (2, 3) = 0.7923823323670406e-2, (2, 4) = 0.77409636920803e-1, (2, 5) = .37811352171842283, (2, 6) = .2890131130048752, (2, 7) = 1.411746095030339, (2, 8) = 0.5096115493465316e-3, (3, 1) = .6295510504863806, (3, 2) = -.12496974762969729, (3, 3) = 0.335383312275963e-1, (3, 4) = .15925409044318592, (3, 5) = .37807999460677805, (3, 6) = .5946253962700148, (3, 7) = 1.4120141336647931, (3, 8) = 0.21567165797040048e-2, (4, 1) = .6000810786889832, (4, 2) = -.13078648524102396, (4, 3) = 0.8028592391087024e-1, (4, 4) = .24638626301264996, (4, 5) = .3779809429150307, (4, 6) = .9201555386630824, (4, 7) = 1.4128327072652163, (4, 8) = 0.51609615183282375e-2, (5, 1) = .5669002581395786, (5, 2) = -.1371916401125017, (5, 3) = .1528922356920777, (5, 4) = .33996920774229683, (5, 5) = .37776827912336824, (5, 6) = 1.27024451829135, (5, 7) = 1.4146572486865054, (5, 8) = 0.9820223828374587e-2, (6, 1) = .5290327802230002, (6, 2) = -.14409851939129248, (6, 3) = .25809973947558784, (6, 4) = .44161902578753254, (6, 5) = .37737598360935093, (6, 6) = 1.651514368911508, (6, 7) = 1.4181683376757317, (6, 8) = 0.16551767115543403e-1, (7, 1) = .48797776231069934, (7, 2) = -.15082401972104326, (7, 3) = .3956159784223351, (7, 4) = .546566995361021, (7, 5) = .3767592394353197, (7, 6) = 2.046956560700791, (7, 7) = 1.423951238924928, (7, 8) = 0.2530574188627694e-1, (8, 1) = .4455097689486867, (8, 2) = -.15662271721966162, (8, 3) = .560869343108844, (8, 4) = .650475986042538, (8, 5) = .3759074764267706, (8, 6) = 2.441192046655901, (8, 7) = 1.432339477818811, (8, 8) = 0.3574403196512969e-1, (9, 1) = .4019714737781167, (9, 2) = -.16097976785337778, (9, 3) = .7531425930170065, (9, 4) = .7533024381136638, (9, 5) = .37480724717639446, (9, 6) = 2.835034683009538, (9, 7) = 1.4437395006677125, (9, 8) = 0.4775839761612408e-1, (10, 1) = .3578432116772004, (10, 2) = -.16334348080313163, (10, 3) = .9717278248653037, (10, 4) = .8550010473136669, (10, 5) = .3734541277931229, (10, 6) = 3.229383694258226, (10, 7) = 1.458517002768622, (10, 8) = 0.61223001646425766e-1, (11, 1) = .3138427499613885, (11, 2) = -.16317816891693035, (11, 3) = 1.2153400964446428, (11, 4) = .9552992408083281, (11, 5) = .3718558392388385, (11, 6) = 3.6243047360166147, (11, 7) = 1.4769469365488954, (11, 8) = 0.7595912211689054e-1, (12, 1) = .2708197137303571, (12, 2) = -.1600634554218884, (12, 3) = 1.4823382823352556, (12, 4) = 1.0538888365598136, (12, 5) = .37003049775688535, (12, 6) = 4.019692806711686, (12, 7) = 1.499207309863791, (12, 8) = 0.9175293789636808e-1, (13, 1) = .22955356513321082, (13, 2) = -.15376655017624774, (13, 3) = 1.771737568613686, (13, 4) = 1.1507687254222438, (13, 5) = .3679982116567567, (13, 6) = 4.4166208604325305, (13, 7) = 1.5254608253960227, (13, 8) = .1084188111357934, (14, 1) = .19082533490993417, (14, 2) = -.14430646057430674, (14, 3) = 2.0826000767466843, (14, 4) = 1.245943366242156, (14, 5) = .36578343902893384, (14, 6) = 4.816160855718664, (14, 7) = 1.555816989411266, (14, 8) = .12576396753467523, (15, 1) = .1553751277762106, (15, 2) = -.13201176794608704, (15, 3) = 2.4137473802608245, (15, 4) = 1.339345748340381, (15, 5) = .36341579280951025, (15, 6) = 5.219031239689751, (15, 7) = 1.590302627188974, (15, 8) = .14357624150955856, (16, 1) = .12386204102729283, (16, 2) = -.11755024367601966, (16, 3) = 2.7630782885466254, (16, 4) = 1.4306932234947345, (16, 5) = .36093354758169927, (16, 6) = 5.624880231600311, (16, 7) = 1.628778496660186, (16, 8) = .16159615167866462, (17, 1) = 0.9660535822960543e-1, (17, 2) = -.1017757389941151, (17, 3) = 3.129486686134902, (17, 4) = 1.5200126345068938, (17, 5) = .35836839869593895, (17, 6) = 6.034545798261897, (17, 7) = 1.6711446595363155, (17, 8) = .17962464210679904, (18, 1) = 0.7367857489109031e-1, (18, 2) = -0.8562488366373487e-1, (18, 3) = 3.512055738361352, (18, 4) = 1.6073685521372294, (18, 5) = .3557501139971933, (18, 6) = 6.448944019154785, (18, 7) = 1.7172737332675954, (18, 8) = .19747921374137573, (19, 1) = 0.54932297215312065e-1, (19, 2) = -0.6998673195550159e-1, (19, 3) = 3.909931726386895, (19, 4) = 1.692827501352813, (19, 5) = .3531065609803749, (19, 6) = 6.868914696313914, (19, 7) = 1.7670034201936595, (19, 8) = .21498974802357024, (20, 1) = 0.4005339598008939e-1, (20, 2) = -0.55610136299587054e-1, (20, 3) = 4.32164450688784, (20, 4) = 1.77632437502917, (20, 5) = .35046725376876914, (20, 6) = 7.294527651516823, (20, 7) = 1.8200532646404195, (20, 8) = .23197376211102866, (21, 1) = 0.28580538470935495e-1, (21, 2) = -0.43000484038105184e-1, (21, 3) = 4.745698402930282, (21, 4) = 1.8578072943415187, (21, 5) = .34785831678559404, (21, 6) = 7.725732483059856, (21, 7) = 1.8760988685224456, (21, 8) = .24826982947943302, (22, 1) = 0.1996278053815402e-1, (22, 2) = -0.3238521326136785e-1, (22, 3) = 5.181353487043006, (22, 4) = 1.9373734562831926, (22, 5) = .34529737977456776, (22, 6) = 8.163122417826008, (22, 7) = 1.9348863621148453, (22, 8) = .26376703841962096, (23, 1) = 0.1365169808933715e-1, (23, 2) = -0.23777175833410786e-1, (23, 3) = 5.6279306071831305, (23, 4) = 2.015116420764514, (23, 5) = .34279810538335065, (23, 6) = 8.60720314062156, (23, 7) = 1.996152613508324, (23, 8) = .2783739405626572, (24, 1) = 0.9141837377667494e-2, (24, 2) = -0.17032577718097307e-1, (24, 3) = 6.084805468966238, (24, 4) = 2.0911257386418485, (24, 5) = .340370194206626, (24, 6) = 9.058397452645558, (24, 7) = 2.059629639205023, (24, 8) = .29201833127085214, (25, 1) = 0.5994108163660374e-2, (25, 2) = -0.11912234609982005e-1, (25, 3) = 6.551523204740028, (25, 4) = 2.165505306248221, (25, 5) = .33801891240256376, (25, 6) = 9.517167898738702, (25, 7) = 2.1250654794952815, (25, 8) = .3046497396204352, (26, 1) = 0.38470588985903055e-2, (26, 2) = -0.8138240294430613e-2, (26, 3) = 7.027670958837816, (26, 4) = 2.238350997284669, (26, 5) = .3357460261587689, (26, 6) = 9.983900741341126, (26, 7) = 2.1922108137474403, (26, 8) = .3162340733370819, (27, 1) = 0.2415525316376395e-2, (27, 2) = -0.5433887636433142e-2, (27, 3) = 7.51276194601149, (27, 4) = 2.3097349632638142, (27, 5) = .33355055765848207, (27, 6) = 10.458803767615885, (27, 7) = 2.2608058123457324, (27, 8) = .32675028982528975, (28, 1) = 0.1482134442049264e-2, (28, 2) = -0.35473836650395138e-2, (28, 3) = 8.006344879280913, (28, 4) = 2.3797246033167165, (28, 5) = .3314285083244437, (28, 6) = 10.942023485632674, (28, 7) = 2.3305985328398995, (28, 8) = .3361925680987284, (29, 1) = 0.8867798277494013e-3, (29, 2) = -0.22649595163979426e-2, (29, 3) = 8.508000609042815, (29, 4) = 2.4483823707573626, (29, 5) = .32937324890833686, (29, 6) = 11.433650368387816, (29, 7) = 2.4013472411799133, (29, 8) = .34456875648665847, (30, 1) = 0.5147830582056192e-3, (30, 2) = -0.14137540243798479e-2, (30, 3) = 9.018079243243903, (30, 4) = 2.515861978503066, (30, 5) = .3273730983678873, (30, 6) = 11.934451666568503, (30, 7) = 2.4729258238550673, (30, 8) = .3519085257409124, (31, 1) = 0.28659669973437794e-3, (31, 2) = -0.8605928820212513e-3, (31, 3) = 9.538856126749963, (31, 4) = 2.582539204272471, (31, 5) = .32540795861125427, (31, 6) = 12.44702875421768, (31, 7) = 2.545481761283621, (31, 8) = .3582667626570985, (32, 1) = 0.1500417202447516e-3, (32, 2) = -0.5106757568196689e-3, (32, 3) = 10.070296337466763, (32, 4) = 2.648460200960687, (32, 5) = .32346579035064904, (32, 6) = 12.971669786325668, (32, 7) = 2.618840629421426, (32, 8) = .36366514670687944, (33, 1) = 0.7037994109756306e-4, (33, 2) = -0.2953327633691435e-3, (33, 3) = 10.612149661123444, (33, 4) = 2.713638344636691, (33, 5) = .3215339926041049, (33, 6) = 13.508402962580126, (33, 7) = 2.692804574171342, (33, 8) = .3681309842732225, (34, 1) = 0.2508902470016854e-4, (34, 2) = -0.16641397198798735e-3, (34, 3) = 11.164172903455626, (34, 4) = 2.778084059250828, (34, 5) = .31959890842541655, (34, 6) = 14.057217972519599, (34, 7) = 2.767185195379349, (34, 8) = .3716992797163207, (35, 1) = .0, (35, 2) = -0.9134248027914396e-4, (35, 3) = 11.726129087316146, (35, 4) = 2.841804712, (35, 5) = .31764623058532726, (35, 6) = 14.618068801887034, (35, 7) = 2.841804712, (35, 8) = .3744112941998848}, datatype = float[8], order = C_order); YP := Matrix(35, 8, {(1, 1) = -.11511620494228465, (1, 2) = -0.21848192814805704e-1, (1, 3) = .0, (1, 4) = .37811799244920324, (1, 5) = .0, (1, 6) = 1.4117113181447536, (1, 7) = .0, (1, 8) = .0, (2, 1) = -.11975318257035834, (2, 2) = -0.2340744045683882e-1, (2, 3) = 0.77409636920803e-1, (2, 4) = .37811352171842283, (2, 5) = -0.6501906335844444e-4, (2, 6) = 1.411746095030339, (2, 7) = 0.5096115493465316e-3, (2, 8) = 0.4978393071034031e-2, (3, 1) = -.12496974762969729, (3, 2) = -0.2472737923936798e-1, (3, 3) = .15925409044318592, (3, 4) = .37807999460677805, (3, 5) = -0.26633217492876086e-3, (3, 6) = 1.4120141336647931, (3, 7) = 0.21567165797040048e-2, (3, 8) = 0.10238889928920546e-1, (4, 1) = -.13078648524102396, (4, 2) = -0.25653205134369778e-1, (4, 3) = .24638626301264996, (4, 4) = .3779809429150307, (4, 5) = -0.6148579022689942e-3, (4, 6) = 1.4128327072652163, (4, 7) = 0.51609615183282375e-2, (4, 8) = 0.15826282713831068e-1, (5, 1) = -.1371916401125017, (5, 2) = -0.25935739559925664e-1, (5, 3) = .33996920774229683, (5, 4) = .37776827912336824, (5, 5) = -0.1124149710447512e-2, (5, 6) = 1.4146572486865054, (5, 7) = 0.9820223828374587e-2, (5, 8) = 0.21793013656706044e-1, (6, 1) = -.14409851939129248, (6, 2) = -0.25166962349877944e-1, (6, 3) = .44161902578753254, (6, 4) = .37737598360935093, (6, 5) = -0.1811204871965437e-2, (6, 6) = 1.4181683376757317, (6, 7) = 0.16551767115543403e-1, (6, 8) = 0.2819908212449082e-1, (7, 1) = -.15082401972104326, (7, 2) = -0.22883345616240332e-1, (7, 3) = .546566995361021, (7, 4) = .3767592394353197, (7, 5) = -0.26379430409376966e-2, (7, 6) = 1.423951238924928, (7, 7) = 0.2530574188627694e-1, (7, 8) = 0.3467874447064803e-1, (8, 1) = -.15662271721966162, (8, 2) = -0.1879263785160887e-1, (8, 3) = .650475986042538, (8, 4) = .3759074764267706, (8, 5) = -0.3543732228642546e-2, (8, 6) = 1.432339477818811, (8, 7) = 0.3574403196512969e-1, (8, 8) = 0.40893604100372564e-1, (9, 1) = -.16097976785337778, (9, 2) = -0.12656020813637847e-1, (9, 3) = .7533024381136638, (9, 4) = .37480724717639446, (9, 5) = -0.4495519532277643e-2, (9, 6) = 1.4437395006677125, (9, 7) = 0.4775839761612408e-1, (9, 8) = 0.4677096408972486e-1, (10, 1) = -.16334348080313163, (10, 2) = -0.4369045779836154e-2, (10, 3) = .8550010473136669, (10, 4) = .3734541277931229, (10, 5) = -0.5462016466357188e-2, (10, 6) = 1.458517002768622, (10, 7) = 0.61223001646425766e-1, (10, 8) = 0.5223392148642055e-1, (11, 1) = -.16317816891693035, (11, 2) = 0.5922044795027756e-2, (11, 3) = .9552992408083281, (11, 4) = .3718558392388385, (11, 5) = -0.6411982626269342e-2, (11, 6) = 1.4769469365488954, (11, 7) = 0.7595912211689054e-1, (11, 8) = 0.57193745442795506e-1, (12, 1) = -.1600634554218884, (12, 2) = 0.17740826720045982e-1, (12, 3) = 1.0538888365598136, (12, 4) = .37003049775688535, (12, 5) = -0.7316860858898448e-2, (12, 6) = 1.499207309863791, (12, 7) = 0.9175293789636808e-1, (12, 8) = 0.6156719989689199e-1, (13, 1) = -.15376655017624774, (13, 2) = 0.30296704807712918e-1, (13, 3) = 1.1507687254222438, (13, 4) = .3679982116567567, (13, 5) = -0.8154721726663258e-2, (13, 6) = 1.5254608253960227, (13, 7) = .1084188111357934, (13, 8) = 0.6529471058639535e-1, (14, 1) = -.14430646057430674, (14, 2) = 0.4250806547922589e-1, (14, 3) = 1.245943366242156, (14, 4) = .36578343902893384, (14, 5) = -0.8907641852239972e-2, (14, 6) = 1.555816989411266, (14, 7) = .12576396753467523, (14, 8) = 0.6832600602649756e-1, (15, 1) = -.13201176794608704, (15, 2) = 0.53137961864251064e-1, (15, 3) = 1.339345748340381, (15, 4) = .36341579280951025, (15, 5) = -0.9561372713284904e-2, (15, 6) = 1.590302627188974, (15, 7) = .14357624150955856, (15, 8) = 0.7062057397986593e-1, (16, 1) = -.11755024367601966, (16, 2) = 0.6102495948240774e-1, (16, 3) = 1.4306932234947345, (16, 4) = .36093354758169927, (16, 5) = -0.10105088797683102e-1, (16, 6) = 1.628778496660186, (16, 7) = .16159615167866462, (16, 8) = 0.7215057669693223e-1, (17, 1) = -.1017757389941151, (17, 2) = 0.6540052175916726e-1, (17, 3) = 1.5200126345068938, (17, 4) = .35836839869593895, (17, 5) = -0.10534973995215179e-1, (17, 6) = 1.6711446595363155, (17, 7) = .17962464210679904, (17, 8) = 0.7291378535787908e-1, (18, 1) = -0.8562488366373487e-1, (18, 2) = 0.6601577799350121e-1, (18, 3) = 1.6073685521372294, (18, 4) = .3557501139971933, (18, 5) = -0.1085154690665931e-1, (18, 6) = 1.7172737332675954, (18, 7) = .19747921374137573, (18, 8) = 0.729227591867127e-1, (19, 1) = -0.6998673195550159e-1, (19, 2) = 0.6316514351336697e-1, (19, 3) = 1.692827501352813, (19, 4) = .3531065609803749, (19, 5) = -0.11059054704056444e-1, (19, 6) = 1.7670034201936595, (19, 7) = .21498974802357024, (19, 8) = 0.7220335350513343e-1, (20, 1) = -0.55610136299587054e-1, (20, 2) = 0.57585436563437925e-1, (20, 3) = 1.77632437502917, (20, 4) = .35046725376876914, (20, 5) = -0.11164970048420729e-1, (20, 6) = 1.8200532646404195, (20, 7) = .23197376211102866, (20, 8) = 0.7079658035527173e-1, (21, 1) = -0.43000484038105184e-1, (21, 2) = 0.50253823099175934e-1, (21, 3) = 1.8578072943415187, (21, 4) = .34785831678559404, (21, 5) = -0.111801623302582e-1, (21, 6) = 1.8760988685224456, (21, 7) = .24826982947943302, (21, 8) = 0.6875838561442682e-1, (22, 1) = -0.3238521326136785e-1, (22, 2) = 0.42146604914204154e-1, (22, 3) = 1.9373734562831926, (22, 4) = .34529737977456776, (22, 5) = -0.11117984320829395e-1, (22, 6) = 1.9348863621148453, (22, 7) = .26376703841962096, (22, 8) = 0.6615191423106347e-1, (23, 1) = -0.23777175833410786e-1, (23, 2) = 0.34085049240114594e-1, (23, 3) = 2.015116420764514, (23, 4) = .34279810538335065, (23, 5) = -0.10993236209989717e-1, (23, 6) = 1.996152613508324, (23, 7) = .2783739405626572, (23, 8) = 0.6304618263872158e-1, (24, 1) = -0.17032577718097307e-1, (24, 2) = 0.2665729331676524e-1, (24, 3) = 2.0911257386418485, (24, 4) = .340370194206626, (24, 5) = -0.10821600556493872e-1, (24, 6) = 2.059629639205023, (24, 7) = .29201833127085214, (24, 8) = 0.59514066560478224e-1, (25, 1) = -0.11912234609982005e-1, (25, 2) = 0.20207684956014358e-1, (25, 3) = 2.165505306248221, (25, 4) = .33801891240256376, (25, 5) = -0.10619047217973444e-1, (25, 6) = 2.1250654794952815, (25, 7) = .3046497396204352, (25, 8) = 0.55629289468927506e-1, (26, 1) = -0.8138240294430613e-2, (26, 2) = 0.14875114888345182e-1, (26, 3) = 2.238350997284669, (26, 4) = .3357460261587689, (26, 5) = -0.10401381660268688e-1, (26, 6) = 2.1922108137474403, (26, 7) = .3162340733370819, (26, 8) = 0.5146542077826284e-1, (27, 1) = -0.5433887636433142e-2, (27, 2) = 0.1064880363610196e-1, (27, 3) = 2.3097349632638142, (27, 4) = .33355055765848207, (27, 5) = -0.10183874373236527e-1, (27, 6) = 2.2608058123457324, (27, 7) = .32675028982528975, (27, 8) = 0.4709533876452156e-1, (28, 1) = -0.35473836650395138e-2, (28, 2) = 0.7422525245840296e-2, (28, 3) = 2.3797246033167165, (28, 4) = .3314285083244437, (28, 5) = -0.9980819151111209e-2, (28, 6) = 2.3305985328398995, (28, 7) = .3361925680987284, (28, 8) = 0.42588832612515365e-1, (29, 1) = -0.22649595163979426e-2, (29, 2) = 0.5042123940643825e-2, (29, 3) = 2.4483823707573626, (29, 4) = .32937324890833686, (29, 5) = -0.9805194239856069e-2, (29, 6) = 2.4013472411799133, (29, 7) = .34456875648665847, (29, 8) = 0.3801127009896496e-1, (30, 1) = -0.14137540243798479e-2, (30, 2) = 0.3338358133232503e-2, (30, 3) = 2.515861978503066, (30, 4) = .3273730983678873, (30, 5) = -0.9668229828749347e-2, (30, 6) = 2.4729258238550673, (30, 7) = .3519085257409124, (30, 8) = 0.33415920177751274e-1, (31, 1) = -0.8605928820212513e-3, (31, 2) = 0.21504697796892285e-2, (31, 3) = 2.582539204272471, (31, 4) = .32540795861125427, (31, 5) = -0.957946473248892e-2, (31, 6) = 2.545481761283621, (31, 7) = .3582667626570985, (31, 8) = 0.2883403707075255e-1, (32, 1) = -0.5106757568196689e-3, (32, 2) = 0.13475415217635602e-2, (32, 3) = 2.648460200960687, (32, 4) = .32346579035064904, (32, 5) = -0.9547805614663327e-2, (32, 6) = 2.618840629421426, (32, 7) = .36366514670687944, (32, 8) = 0.2431324030318291e-1, (33, 1) = -0.2953327633691435e-3, (33, 2) = 0.8213655825998622e-3, (33, 3) = 2.713638344636691, (33, 4) = .3215339926041049, (33, 5) = -0.9580452220455518e-2, (33, 6) = 2.692804574171342, (33, 7) = .3681309842732225, (33, 8) = 0.19897477825029125e-1, (34, 1) = -0.16641397198798735e-3, (34, 2) = 0.4869401833588519e-3, (34, 3) = 2.778084059250828, (34, 4) = .31959890842541655, (34, 5) = -0.9682706793193413e-2, (34, 6) = 2.767185195379349, (34, 7) = .3716992797163207, (34, 8) = 0.15624441579612264e-1, (35, 1) = -0.9134248027914396e-4, (35, 2) = 0.28074210501946773e-3, (35, 3) = 2.841804712, (35, 4) = .31764623058532726, (35, 5) = -0.9857922636655345e-2, (35, 6) = 2.841804712, (35, 7) = .3744112941998848, (35, 8) = 0.11525252201341013e-1}, datatype = float[8], order = C_order); errproc := proc (x_bvp) local outpoint, X, Y, yout, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; Digits := 15; outpoint := evalf(x_bvp); X := Vector(35, {(1) = .0, (2) = .20472410284384834, (3) = .4211863305043777, (4) = .6516720600363566, (5) = .8993212463695047, (6) = 1.1685298486145983, (7) = 1.4468423487039677, (8) = 1.7229359537348594, (9) = 1.9968629039389574, (10) = 2.268673421313649, (11) = 2.5378029414464036, (12) = 2.8035694406371796, (13) = 3.066093306207618, (14) = 3.325490409787653, (15) = 3.581658551212711, (16) = 3.8338699831956804, (17) = 4.08221409418108, (18) = 4.32686351028502, (19) = 4.567978384890087, (20) = 4.805327686982952, (21) = 5.038694055040347, (22) = 5.268271439374476, (23) = 5.494238613721016, (24) = 5.716760727626145, (25) = 5.936046030245326, (26) = 6.152283284474133, (27) = 6.365596166650127, (28) = 6.576100208955955, (29) = 6.783903531026379, (30) = 6.9894017136482445, (31) = 7.1936893054340665, (32) = 7.3968755375272774, (33) = 7.5989780331822505, (34) = 7.80001395061423, (35) = 8.0}, datatype = float[8], order = C_order); Y := Matrix(35, 8, {(1, 1) = 0.897448267109614e-15, (1, 2) = 0.5588167359031321e-15, (1, 3) = .0, (1, 4) = .0, (1, 5) = 0.13864249525943088e-15, (1, 6) = .0, (1, 7) = 0.12119642246901448e-14, (1, 8) = .0, (2, 1) = 0.17195345226360017e-14, (2, 2) = 0.6181167466331716e-15, (2, 3) = 0.20410981819182018e-16, (2, 4) = 0.10601766383125283e-15, (2, 5) = -0.10490636710626889e-15, (2, 6) = 0.5031667156796011e-15, (2, 7) = 0.11996548135741033e-14, (2, 8) = 0.2771969015070949e-19, (3, 1) = 0.1686737254582015e-14, (3, 2) = 0.9567626045906052e-15, (3, 3) = 0.5604460075778757e-16, (3, 4) = 0.10527680167976054e-15, (3, 5) = 0.20005622560643638e-15, (3, 6) = -0.9913001724420674e-16, (3, 7) = 0.1339416454645461e-14, (3, 8) = -0.1444766507242344e-17, (4, 1) = 0.4333011548848769e-14, (4, 2) = 0.17025161949432959e-14, (4, 3) = 0.10025344277919218e-16, (4, 4) = 0.11064429627289256e-15, (4, 5) = 0.2162077879904567e-15, (4, 6) = -0.4402054460277445e-15, (4, 7) = -0.689926374914955e-15, (4, 8) = -0.2826387029976454e-17, (5, 1) = 0.6633681086898639e-14, (5, 2) = 0.375032295134198e-14, (5, 3) = 0.1812909654403e-15, (5, 4) = -0.12070342909717134e-15, (5, 5) = -0.1596142149617371e-15, (5, 6) = -0.10825942697009252e-15, (5, 7) = 0.18103213104082225e-14, (5, 8) = -0.16764369656937747e-16, (6, 1) = 0.13129840358265059e-13, (6, 2) = 0.7277452916946674e-14, (6, 3) = 0.29179991421150325e-15, (6, 4) = 0.6399550172322422e-16, (6, 5) = -0.22594631239149157e-15, (6, 6) = -0.9174305403629006e-16, (6, 7) = 0.19951541475781265e-15, (6, 8) = -0.43537055740415584e-16, (7, 1) = 0.16558247533243953e-13, (7, 2) = 0.10179772597290096e-13, (7, 3) = 0.5878293642247217e-15, (7, 4) = -0.7410342523151938e-16, (7, 5) = -0.15996611253844913e-15, (7, 6) = 0.1692951814608457e-14, (7, 7) = 0.1740069789475928e-16, (7, 8) = -0.31275576634239585e-16, (8, 1) = 0.1212069312549711e-13, (8, 2) = 0.9543541214045693e-14, (8, 3) = 0.6704668328631497e-15, (8, 4) = -0.44521023708016503e-16, (8, 5) = 0.22199060125967257e-15, (8, 6) = -0.6750801329037803e-15, (8, 7) = 0.21656382445432134e-14, (8, 8) = -0.6435827646555829e-16, (9, 1) = -0.3772034753492132e-14, (9, 2) = 0.5759418721910007e-14, (9, 3) = 0.6527662555019791e-15, (9, 4) = 0.441738628379015e-16, (9, 5) = 0.5658548136938054e-15, (9, 6) = 0.3154847106536809e-14, (9, 7) = 0.7858154752173474e-15, (9, 8) = -0.10311351058385951e-15, (10, 1) = -0.2440608209204811e-13, (10, 2) = 0.28469235452884776e-14, (10, 3) = 0.3866914448702218e-15, (10, 4) = -0.9144516798022403e-16, (10, 5) = -0.10145948392816397e-15, (10, 6) = -0.24442421173399023e-14, (10, 7) = 0.6377245986878261e-16, (10, 8) = -0.17205372425145497e-15, (11, 1) = -0.4123657586548479e-13, (11, 2) = 0.47019634354738835e-14, (11, 3) = 0.7390229161834592e-15, (11, 4) = 0.33830363819193296e-15, (11, 5) = -0.49321754692558303e-16, (11, 6) = -0.7883634580987387e-16, (11, 7) = 0.9384901596020932e-15, (11, 8) = -0.252982075836778e-15, (12, 1) = -0.45482420467991964e-13, (12, 2) = 0.10203470081300767e-13, (12, 3) = 0.7534533806982218e-15, (12, 4) = -0.20573415143689883e-15, (12, 5) = 0.10308521674561246e-15, (12, 6) = -0.306193488603141e-14, (12, 7) = 0.11321549203383949e-14, (12, 8) = -0.3982374979919039e-15, (13, 1) = -0.3692752598727219e-13, (13, 2) = 0.13076295718742951e-13, (13, 3) = -0.42293951496931934e-15, (13, 4) = 0.5793784843910567e-15, (13, 5) = 0.1255527766044886e-15, (13, 6) = 0.14631798233506174e-14, (13, 7) = -0.537526963696651e-16, (13, 8) = -0.43906151981417637e-15, (14, 1) = -0.12180528075494553e-13, (14, 2) = 0.67927440842877486e-14, (14, 3) = -0.7751636018193131e-16, (14, 4) = 0.5989904770359435e-15, (14, 5) = -0.5359630097047029e-16, (14, 6) = -0.13487931939540982e-14, (14, 7) = 0.17179524507174635e-14, (14, 8) = -0.4135968388921909e-15, (15, 1) = 0.3685354836152949e-13, (15, 2) = -0.1664738219468053e-13, (15, 3) = -0.1573909843712974e-14, (15, 4) = 0.794295869180883e-15, (15, 5) = -0.35245821132597215e-17, (15, 6) = -0.11581448838991115e-14, (15, 7) = 0.4173536492488085e-15, (15, 8) = -0.5280874496874946e-15, (16, 1) = 0.10366564920219266e-12, (16, 2) = -0.641879285025774e-13, (16, 3) = 0.20566596972943627e-14, (16, 4) = 0.9266548671796218e-16, (16, 5) = 0.2353325946868509e-15, (16, 6) = 0.18284547948529757e-15, (16, 7) = 0.17622934571819217e-14, (16, 8) = -0.4976417588290511e-15, (17, 1) = 0.14484169648891652e-12, (17, 2) = -0.12297441716887176e-12, (17, 3) = -0.1068182350278374e-14, (17, 4) = -0.5854540915281354e-15, (17, 5) = 0.14535461070078002e-15, (17, 6) = 0.4266610794669015e-14, (17, 7) = 0.4607205530424001e-15, (17, 8) = -0.5886742340881105e-15, (18, 1) = 0.10566223147991009e-12, (18, 2) = -0.13820205741801644e-12, (18, 3) = -0.20123078614811413e-14, (18, 4) = -0.7561398183639445e-16, (18, 5) = 0.2140425035665995e-15, (18, 6) = -0.23561554941772816e-14, (18, 7) = 0.19085985864153077e-14, (18, 8) = -0.5917377444519284e-15, (19, 1) = -0.1679773165980789e-13, (19, 2) = -0.5657134915236689e-13, (19, 3) = 0.1360256674443056e-14, (19, 4) = 0.8707809795722639e-15, (19, 5) = 0.21528390503198728e-15, (19, 6) = -0.5127690553955357e-15, (19, 7) = -0.4826901389884211e-15, (19, 8) = -0.5868641866801674e-15, (20, 1) = -0.14894339690033946e-12, (20, 2) = 0.9602247884781634e-13, (20, 3) = 0.26294719195036576e-14, (20, 4) = -0.502638096454554e-15, (20, 5) = 0.32194304936576336e-16, (20, 6) = 0.25628117174786136e-14, (20, 7) = 0.8377380590237005e-15, (20, 8) = -0.7167682554400696e-15, (21, 1) = -0.20361898739374174e-12, (21, 2) = 0.2159454684255011e-12, (21, 3) = -0.18390456690678095e-14, (21, 4) = 0.16085741943765483e-14, (21, 5) = -0.3751395624658827e-15, (21, 6) = 0.68012918504538484e-14, (21, 7) = 0.25431273083692057e-15, (21, 8) = -0.32419369341927803e-15, (22, 1) = -0.15689971156050872e-12, (22, 2) = 0.21942355904154635e-12, (22, 3) = 0.24099783601109427e-14, (22, 4) = -0.9953957508184104e-15, (22, 5) = 0.8621846497603312e-16, (22, 6) = 0.5849807663571661e-14, (22, 7) = -0.11527500167921049e-14, (22, 8) = 0.5354827376431221e-17, (23, 1) = -0.5259760291556636e-13, (23, 2) = 0.11178856094650594e-12, (23, 3) = -0.8417911290913919e-15, (23, 4) = -0.2207954041887918e-14, (23, 5) = -0.2243044830543838e-15, (23, 6) = 0.15023300748706678e-13, (23, 7) = -0.973903527171104e-15, (23, 8) = -0.32331856502436973e-16, (24, 1) = 0.4443374116829714e-13, (24, 2) = -0.32070809165957353e-13, (24, 3) = -0.34880954720513526e-15, (24, 4) = 0.1231856080413119e-14, (24, 5) = 0.55827387662745e-17, (24, 6) = 0.54319152119881845e-14, (24, 7) = -0.36766647288947504e-15, (24, 8) = -0.3464894477365739e-15, (25, 1) = 0.933019806478322e-13, (25, 2) = -0.13384281309083258e-12, (25, 3) = 0.33197903067130842e-14, (25, 4) = -0.3132682814760555e-14, (25, 5) = -0.28711859306736457e-15, (25, 6) = -0.5470120367959728e-14, (25, 7) = -0.13432374782466947e-14, (25, 8) = 0.2039729831139547e-15, (26, 1) = 0.8977989989773004e-13, (26, 2) = -0.15869171973868484e-12, (26, 3) = 0.23278286029344056e-14, (26, 4) = -0.29354266305866873e-15, (26, 5) = 0.230020828715235e-16, (26, 6) = 0.32968730420794027e-14, (26, 7) = 0.12490842693534877e-14, (26, 8) = 0.3964694184561624e-15, (27, 1) = 0.5380760356273936e-13, (27, 2) = -0.11847870856872766e-12, (27, 3) = 0.2688345544666234e-15, (27, 4) = 0.10619582772389209e-14, (27, 5) = -0.12172639957600914e-15, (27, 6) = 0.3185441694869011e-14, (27, 7) = -0.1489879250602313e-14, (27, 8) = 0.6565146261655062e-15, (28, 1) = 0.10742518103279055e-13, (28, 2) = -0.495306438002946e-13, (28, 3) = 0.4310166135267635e-14, (28, 4) = 0.15683143667115227e-14, (28, 5) = 0.3453405106322541e-16, (28, 6) = 0.1018279419881744e-13, (28, 7) = -0.13632661970738383e-14, (28, 8) = 0.4729842715233933e-15, (29, 1) = -0.2151478390347912e-13, (29, 2) = 0.12771727815782967e-13, (29, 3) = 0.5629863069659428e-14, (29, 4) = -0.14434075930994008e-15, (29, 5) = -0.3455164788374167e-15, (29, 6) = 0.1345923386438848e-15, (29, 7) = 0.6628740317227967e-15, (29, 8) = 0.2370286262471212e-15, (30, 1) = -0.36756430829417473e-13, (30, 2) = 0.4915770478845277e-13, (30, 3) = 0.6364093247487674e-15, (30, 4) = 0.2644278305592894e-15, (30, 5) = 0.19990963262100253e-15, (30, 6) = -0.4147202106691808e-14, (30, 7) = -0.13135113472923236e-14, (30, 8) = 0.79220739160263215e-15, (31, 1) = -0.38142291891788485e-13, (31, 2) = 0.5919398917266647e-13, (31, 3) = 0.13925650940938171e-13, (31, 4) = 0.5542574200502359e-15, (31, 5) = -0.15301256420629026e-15, (31, 6) = 0.4509491169458926e-14, (31, 7) = 0.2495446814784076e-15, (31, 8) = 0.8083662326018128e-15, (32, 1) = -0.30039055413759246e-13, (32, 2) = 0.4722520516979542e-13, (32, 3) = 0.5948740452406517e-14, (32, 4) = 0.3314613919766506e-14, (32, 5) = -0.20036994088420754e-15, (32, 6) = 0.14649613744607957e-13, (32, 7) = -0.7728084332522093e-16, (32, 8) = 0.1933770820597525e-15, (33, 1) = -0.18092057280170896e-13, (33, 2) = 0.23205059829259787e-13, (33, 3) = 0.6050533016944145e-14, (33, 4) = 0.28168060491597395e-15, (33, 5) = 0.2339278829021382e-15, (33, 6) = 0.9701926801570967e-14, (33, 7) = 0.18835370879179478e-15, (33, 8) = 0.21984174087752556e-15, (34, 1) = -0.714859442764903e-14, (34, 2) = -0.19154332194589852e-14, (34, 3) = 0.1348765326796076e-13, (34, 4) = -0.9615633283396454e-15, (34, 5) = 0.8312623586890217e-16, (34, 6) = 0.29574319371284083e-14, (34, 7) = -0.30915701787131377e-14, (34, 8) = 0.27524560756785973e-15, (35, 1) = .0, (35, 2) = -0.20166673380620537e-13, (35, 3) = -0.1179663713625192e-14, (35, 4) = .0, (35, 5) = 0.54374029653237e-16, (35, 6) = -0.3047767633518586e-15, (35, 7) = .0, (35, 8) = -0.3103350258003601e-16}, datatype = float[8], order = C_order); if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "right" then return X[35] elif outpoint = "order" then return 8 elif outpoint = "error" then return HFloat(2.1942355904154635e-13) elif outpoint = "errorproc" then error "this is already the error procedure" elif outpoint = "rawdata" then return [8, 35, [T(eta), diff(T(eta), eta), f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), g(eta), diff(g(eta), eta), diff(diff(g(eta), eta), eta)], X, Y] else return ('procname')(x_bvp) end if end if; if outpoint < X[1] or X[35] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[35] end if; V := array([1 = 4, 2 = 0]); if Digits <= trunc(evalhf(Digits)) then L := Vector(4, 'datatype' = 'float'[8]); yout := Vector(8, 'datatype' = 'float'[8]); evalhf(`dsolve/numeric/lagrange`(35, 8, X, Y, outpoint, var(yout), var(L), var(V))) else L := Vector(4, 'datatype' = 'sfloat'); yout := Vector(8, 'datatype' = 'sfloat'); `dsolve/numeric/lagrange`(35, 8, X, Y, outpoint, yout, L, V) end if; [eta = outpoint, seq('[T(eta), diff(T(eta), eta), f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), g(eta), diff(g(eta), eta), diff(diff(g(eta), eta), eta)]'[i] = yout[i], i = 1 .. 8)] end proc; if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "method" then return "bvp" elif outpoint = "right" then return X[35] elif outpoint = "order" then return 8 elif outpoint = "error" then return HFloat(2.1942355904154635e-13) elif outpoint = "errorproc" then return eval(errproc) elif outpoint = "rawdata" then return [8, 35, "depnames", X, Y, YP] else error "non-numeric value" end if end if; if outpoint < X[1] or X[35] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[35] end if; if Digits <= trunc(evalhf(Digits)) and (_EnvInFsolve <> true or _EnvDSNumericSaveDigits <= trunc(evalhf(Digits))) then V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 5 ) = (false), ( 4 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = .0, (1, 2) = .0, (2, 1) = .0, (2, 2) = .0, (3, 1) = .0, (3, 2) = .0, (4, 1) = .0, (4, 2) = .0, (5, 1) = .0, (5, 2) = .0, (6, 1) = .0, (6, 2) = .0, (7, 1) = .0, (7, 2) = .0}, datatype = float[8], order = C_order); yout := Vector(8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8]); evalhf(`dsolve/numeric/hermite`(35, 8, X, Y, YP, outpoint, var(yout), var(L), var(V))) else if _EnvInFsolve = true then Digits := _EnvDSNumericSaveDigits end if; V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 5 ) = (false), ( 4 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = 0., (1, 2) = 0., (2, 1) = 0., (2, 2) = 0., (3, 1) = 0., (3, 2) = 0., (4, 1) = 0., (4, 2) = 0., (5, 1) = 0., (5, 2) = 0., (6, 1) = 0., (6, 2) = 0., (7, 1) = 0., (7, 2) = 0.}, order = C_order); yout := Vector(8, {(1) = 0., (2) = 0., (3) = 0., (4) = 0., (5) = 0., (6) = 0., (7) = 0., (8) = 0.}); `dsolve/numeric/hermite`(35, 8, X, Y, YP, outpoint, yout, L, V) end if; [outpoint, seq(yout[i], i = 1 .. 8)] end proc, (2) = Array(1..9, {(1) = 4365885730, (2) = 4365885922, (3) = 4365886066, (4) = 4365886162, (5) = 4365886258, (6) = 4365886354, (7) = 4365886450, (8) = 4365886546, (9) = 4365886642}), (3) = [eta, T(eta), diff(T(eta), eta), f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), g(eta), diff(g(eta), eta), diff(diff(g(eta), eta), eta)], (4) = 0}); solnproc := data[1]; if not type(outpoint, 'numeric') then if outpoint = "solnprocedure" then return eval(solnproc) elif member(outpoint, ["start", "left", "right", "errorproc", "rawdata", "order", "error"]) then return solnproc(eta) elif outpoint = "sysvars" then return data[3] elif procname <> unknown then return ('procname')(eta) else `D(T)` := pointto(data[2][3]); return ('`D(T)`')(eta) end if end if; try res := solnproc(outpoint); res[3] catch: error  end try end proc, f = proc (eta) local res, data, solnproc, f, outpoint; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then outpoint := evalf[_EnvDSNumericSaveDigits](eta) else outpoint := evalf(eta) end if; data := Array(1..4, {(1) = proc (outpoint) local X, Y, YP, yout, errproc, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; X := Vector(35, {(1) = .0, (2) = .20472410284384834, (3) = .4211863305043777, (4) = .6516720600363566, (5) = .8993212463695047, (6) = 1.1685298486145983, (7) = 1.4468423487039677, (8) = 1.7229359537348594, (9) = 1.9968629039389574, (10) = 2.268673421313649, (11) = 2.5378029414464036, (12) = 2.8035694406371796, (13) = 3.066093306207618, (14) = 3.325490409787653, (15) = 3.581658551212711, (16) = 3.8338699831956804, (17) = 4.08221409418108, (18) = 4.32686351028502, (19) = 4.567978384890087, (20) = 4.805327686982952, (21) = 5.038694055040347, (22) = 5.268271439374476, (23) = 5.494238613721016, (24) = 5.716760727626145, (25) = 5.936046030245326, (26) = 6.152283284474133, (27) = 6.365596166650127, (28) = 6.576100208955955, (29) = 6.783903531026379, (30) = 6.9894017136482445, (31) = 7.1936893054340665, (32) = 7.3968755375272774, (33) = 7.5989780331822505, (34) = 7.80001395061423, (35) = 8.0}, datatype = float[8], order = C_order); Y := Matrix(35, 8, {(1, 1) = .6800687881055213, (1, 2) = -.11511620494228465, (1, 3) = .0, (1, 4) = .0, (1, 5) = .37811799244920324, (1, 6) = .0, (1, 7) = 1.4117113181447536, (1, 8) = .0, (2, 1) = .6560325255507624, (2, 2) = -.11975318257035834, (2, 3) = 0.7923823323670406e-2, (2, 4) = 0.77409636920803e-1, (2, 5) = .37811352171842283, (2, 6) = .2890131130048752, (2, 7) = 1.411746095030339, (2, 8) = 0.5096115493465316e-3, (3, 1) = .6295510504863806, (3, 2) = -.12496974762969729, (3, 3) = 0.335383312275963e-1, (3, 4) = .15925409044318592, (3, 5) = .37807999460677805, (3, 6) = .5946253962700148, (3, 7) = 1.4120141336647931, (3, 8) = 0.21567165797040048e-2, (4, 1) = .6000810786889832, (4, 2) = -.13078648524102396, (4, 3) = 0.8028592391087024e-1, (4, 4) = .24638626301264996, (4, 5) = .3779809429150307, (4, 6) = .9201555386630824, (4, 7) = 1.4128327072652163, (4, 8) = 0.51609615183282375e-2, (5, 1) = .5669002581395786, (5, 2) = -.1371916401125017, (5, 3) = .1528922356920777, (5, 4) = .33996920774229683, (5, 5) = .37776827912336824, (5, 6) = 1.27024451829135, (5, 7) = 1.4146572486865054, (5, 8) = 0.9820223828374587e-2, (6, 1) = .5290327802230002, (6, 2) = -.14409851939129248, (6, 3) = .25809973947558784, (6, 4) = .44161902578753254, (6, 5) = .37737598360935093, (6, 6) = 1.651514368911508, (6, 7) = 1.4181683376757317, (6, 8) = 0.16551767115543403e-1, (7, 1) = .48797776231069934, (7, 2) = -.15082401972104326, (7, 3) = .3956159784223351, (7, 4) = .546566995361021, (7, 5) = .3767592394353197, (7, 6) = 2.046956560700791, (7, 7) = 1.423951238924928, (7, 8) = 0.2530574188627694e-1, (8, 1) = .4455097689486867, (8, 2) = -.15662271721966162, (8, 3) = .560869343108844, (8, 4) = .650475986042538, (8, 5) = .3759074764267706, (8, 6) = 2.441192046655901, (8, 7) = 1.432339477818811, (8, 8) = 0.3574403196512969e-1, (9, 1) = .4019714737781167, (9, 2) = -.16097976785337778, (9, 3) = .7531425930170065, (9, 4) = .7533024381136638, (9, 5) = .37480724717639446, (9, 6) = 2.835034683009538, (9, 7) = 1.4437395006677125, (9, 8) = 0.4775839761612408e-1, (10, 1) = .3578432116772004, (10, 2) = -.16334348080313163, (10, 3) = .9717278248653037, (10, 4) = .8550010473136669, (10, 5) = .3734541277931229, (10, 6) = 3.229383694258226, (10, 7) = 1.458517002768622, (10, 8) = 0.61223001646425766e-1, (11, 1) = .3138427499613885, (11, 2) = -.16317816891693035, (11, 3) = 1.2153400964446428, (11, 4) = .9552992408083281, (11, 5) = .3718558392388385, (11, 6) = 3.6243047360166147, (11, 7) = 1.4769469365488954, (11, 8) = 0.7595912211689054e-1, (12, 1) = .2708197137303571, (12, 2) = -.1600634554218884, (12, 3) = 1.4823382823352556, (12, 4) = 1.0538888365598136, (12, 5) = .37003049775688535, (12, 6) = 4.019692806711686, (12, 7) = 1.499207309863791, (12, 8) = 0.9175293789636808e-1, (13, 1) = .22955356513321082, (13, 2) = -.15376655017624774, (13, 3) = 1.771737568613686, (13, 4) = 1.1507687254222438, (13, 5) = .3679982116567567, (13, 6) = 4.4166208604325305, (13, 7) = 1.5254608253960227, (13, 8) = .1084188111357934, (14, 1) = .19082533490993417, (14, 2) = -.14430646057430674, (14, 3) = 2.0826000767466843, (14, 4) = 1.245943366242156, (14, 5) = .36578343902893384, (14, 6) = 4.816160855718664, (14, 7) = 1.555816989411266, (14, 8) = .12576396753467523, (15, 1) = .1553751277762106, (15, 2) = -.13201176794608704, (15, 3) = 2.4137473802608245, (15, 4) = 1.339345748340381, (15, 5) = .36341579280951025, (15, 6) = 5.219031239689751, (15, 7) = 1.590302627188974, (15, 8) = .14357624150955856, (16, 1) = .12386204102729283, (16, 2) = -.11755024367601966, (16, 3) = 2.7630782885466254, (16, 4) = 1.4306932234947345, (16, 5) = .36093354758169927, (16, 6) = 5.624880231600311, (16, 7) = 1.628778496660186, (16, 8) = .16159615167866462, (17, 1) = 0.9660535822960543e-1, (17, 2) = -.1017757389941151, (17, 3) = 3.129486686134902, (17, 4) = 1.5200126345068938, (17, 5) = .35836839869593895, (17, 6) = 6.034545798261897, (17, 7) = 1.6711446595363155, (17, 8) = .17962464210679904, (18, 1) = 0.7367857489109031e-1, (18, 2) = -0.8562488366373487e-1, (18, 3) = 3.512055738361352, (18, 4) = 1.6073685521372294, (18, 5) = .3557501139971933, (18, 6) = 6.448944019154785, (18, 7) = 1.7172737332675954, (18, 8) = .19747921374137573, (19, 1) = 0.54932297215312065e-1, (19, 2) = -0.6998673195550159e-1, (19, 3) = 3.909931726386895, (19, 4) = 1.692827501352813, (19, 5) = .3531065609803749, (19, 6) = 6.868914696313914, (19, 7) = 1.7670034201936595, (19, 8) = .21498974802357024, (20, 1) = 0.4005339598008939e-1, (20, 2) = -0.55610136299587054e-1, (20, 3) = 4.32164450688784, (20, 4) = 1.77632437502917, (20, 5) = .35046725376876914, (20, 6) = 7.294527651516823, (20, 7) = 1.8200532646404195, (20, 8) = .23197376211102866, (21, 1) = 0.28580538470935495e-1, (21, 2) = -0.43000484038105184e-1, (21, 3) = 4.745698402930282, (21, 4) = 1.8578072943415187, (21, 5) = .34785831678559404, (21, 6) = 7.725732483059856, (21, 7) = 1.8760988685224456, (21, 8) = .24826982947943302, (22, 1) = 0.1996278053815402e-1, (22, 2) = -0.3238521326136785e-1, (22, 3) = 5.181353487043006, (22, 4) = 1.9373734562831926, (22, 5) = .34529737977456776, (22, 6) = 8.163122417826008, (22, 7) = 1.9348863621148453, (22, 8) = .26376703841962096, (23, 1) = 0.1365169808933715e-1, (23, 2) = -0.23777175833410786e-1, (23, 3) = 5.6279306071831305, (23, 4) = 2.015116420764514, (23, 5) = .34279810538335065, (23, 6) = 8.60720314062156, (23, 7) = 1.996152613508324, (23, 8) = .2783739405626572, (24, 1) = 0.9141837377667494e-2, (24, 2) = -0.17032577718097307e-1, (24, 3) = 6.084805468966238, (24, 4) = 2.0911257386418485, (24, 5) = .340370194206626, (24, 6) = 9.058397452645558, (24, 7) = 2.059629639205023, (24, 8) = .29201833127085214, (25, 1) = 0.5994108163660374e-2, (25, 2) = -0.11912234609982005e-1, (25, 3) = 6.551523204740028, (25, 4) = 2.165505306248221, (25, 5) = .33801891240256376, (25, 6) = 9.517167898738702, (25, 7) = 2.1250654794952815, (25, 8) = .3046497396204352, (26, 1) = 0.38470588985903055e-2, (26, 2) = -0.8138240294430613e-2, (26, 3) = 7.027670958837816, (26, 4) = 2.238350997284669, (26, 5) = .3357460261587689, (26, 6) = 9.983900741341126, (26, 7) = 2.1922108137474403, (26, 8) = .3162340733370819, (27, 1) = 0.2415525316376395e-2, (27, 2) = -0.5433887636433142e-2, (27, 3) = 7.51276194601149, (27, 4) = 2.3097349632638142, (27, 5) = .33355055765848207, (27, 6) = 10.458803767615885, (27, 7) = 2.2608058123457324, (27, 8) = .32675028982528975, (28, 1) = 0.1482134442049264e-2, (28, 2) = -0.35473836650395138e-2, (28, 3) = 8.006344879280913, (28, 4) = 2.3797246033167165, (28, 5) = .3314285083244437, (28, 6) = 10.942023485632674, (28, 7) = 2.3305985328398995, (28, 8) = .3361925680987284, (29, 1) = 0.8867798277494013e-3, (29, 2) = -0.22649595163979426e-2, (29, 3) = 8.508000609042815, (29, 4) = 2.4483823707573626, (29, 5) = .32937324890833686, (29, 6) = 11.433650368387816, (29, 7) = 2.4013472411799133, (29, 8) = .34456875648665847, (30, 1) = 0.5147830582056192e-3, (30, 2) = -0.14137540243798479e-2, (30, 3) = 9.018079243243903, (30, 4) = 2.515861978503066, (30, 5) = .3273730983678873, (30, 6) = 11.934451666568503, (30, 7) = 2.4729258238550673, (30, 8) = .3519085257409124, (31, 1) = 0.28659669973437794e-3, (31, 2) = -0.8605928820212513e-3, (31, 3) = 9.538856126749963, (31, 4) = 2.582539204272471, (31, 5) = .32540795861125427, (31, 6) = 12.44702875421768, (31, 7) = 2.545481761283621, (31, 8) = .3582667626570985, (32, 1) = 0.1500417202447516e-3, (32, 2) = -0.5106757568196689e-3, (32, 3) = 10.070296337466763, (32, 4) = 2.648460200960687, (32, 5) = .32346579035064904, (32, 6) = 12.971669786325668, (32, 7) = 2.618840629421426, (32, 8) = .36366514670687944, (33, 1) = 0.7037994109756306e-4, (33, 2) = -0.2953327633691435e-3, (33, 3) = 10.612149661123444, (33, 4) = 2.713638344636691, (33, 5) = .3215339926041049, (33, 6) = 13.508402962580126, (33, 7) = 2.692804574171342, (33, 8) = .3681309842732225, (34, 1) = 0.2508902470016854e-4, (34, 2) = -0.16641397198798735e-3, (34, 3) = 11.164172903455626, (34, 4) = 2.778084059250828, (34, 5) = .31959890842541655, (34, 6) = 14.057217972519599, (34, 7) = 2.767185195379349, (34, 8) = .3716992797163207, (35, 1) = .0, (35, 2) = -0.9134248027914396e-4, (35, 3) = 11.726129087316146, (35, 4) = 2.841804712, (35, 5) = .31764623058532726, (35, 6) = 14.618068801887034, (35, 7) = 2.841804712, (35, 8) = .3744112941998848}, datatype = float[8], order = C_order); YP := Matrix(35, 8, {(1, 1) = -.11511620494228465, (1, 2) = -0.21848192814805704e-1, (1, 3) = .0, (1, 4) = .37811799244920324, (1, 5) = .0, (1, 6) = 1.4117113181447536, (1, 7) = .0, (1, 8) = .0, (2, 1) = -.11975318257035834, (2, 2) = -0.2340744045683882e-1, (2, 3) = 0.77409636920803e-1, (2, 4) = .37811352171842283, (2, 5) = -0.6501906335844444e-4, (2, 6) = 1.411746095030339, (2, 7) = 0.5096115493465316e-3, (2, 8) = 0.4978393071034031e-2, (3, 1) = -.12496974762969729, (3, 2) = -0.2472737923936798e-1, (3, 3) = .15925409044318592, (3, 4) = .37807999460677805, (3, 5) = -0.26633217492876086e-3, (3, 6) = 1.4120141336647931, (3, 7) = 0.21567165797040048e-2, (3, 8) = 0.10238889928920546e-1, (4, 1) = -.13078648524102396, (4, 2) = -0.25653205134369778e-1, (4, 3) = .24638626301264996, (4, 4) = .3779809429150307, (4, 5) = -0.6148579022689942e-3, (4, 6) = 1.4128327072652163, (4, 7) = 0.51609615183282375e-2, (4, 8) = 0.15826282713831068e-1, (5, 1) = -.1371916401125017, (5, 2) = -0.25935739559925664e-1, (5, 3) = .33996920774229683, (5, 4) = .37776827912336824, (5, 5) = -0.1124149710447512e-2, (5, 6) = 1.4146572486865054, (5, 7) = 0.9820223828374587e-2, (5, 8) = 0.21793013656706044e-1, (6, 1) = -.14409851939129248, (6, 2) = -0.25166962349877944e-1, (6, 3) = .44161902578753254, (6, 4) = .37737598360935093, (6, 5) = -0.1811204871965437e-2, (6, 6) = 1.4181683376757317, (6, 7) = 0.16551767115543403e-1, (6, 8) = 0.2819908212449082e-1, (7, 1) = -.15082401972104326, (7, 2) = -0.22883345616240332e-1, (7, 3) = .546566995361021, (7, 4) = .3767592394353197, (7, 5) = -0.26379430409376966e-2, (7, 6) = 1.423951238924928, (7, 7) = 0.2530574188627694e-1, (7, 8) = 0.3467874447064803e-1, (8, 1) = -.15662271721966162, (8, 2) = -0.1879263785160887e-1, (8, 3) = .650475986042538, (8, 4) = .3759074764267706, (8, 5) = -0.3543732228642546e-2, (8, 6) = 1.432339477818811, (8, 7) = 0.3574403196512969e-1, (8, 8) = 0.40893604100372564e-1, (9, 1) = -.16097976785337778, (9, 2) = -0.12656020813637847e-1, (9, 3) = .7533024381136638, (9, 4) = .37480724717639446, (9, 5) = -0.4495519532277643e-2, (9, 6) = 1.4437395006677125, (9, 7) = 0.4775839761612408e-1, (9, 8) = 0.4677096408972486e-1, (10, 1) = -.16334348080313163, (10, 2) = -0.4369045779836154e-2, (10, 3) = .8550010473136669, (10, 4) = .3734541277931229, (10, 5) = -0.5462016466357188e-2, (10, 6) = 1.458517002768622, (10, 7) = 0.61223001646425766e-1, (10, 8) = 0.5223392148642055e-1, (11, 1) = -.16317816891693035, (11, 2) = 0.5922044795027756e-2, (11, 3) = .9552992408083281, (11, 4) = .3718558392388385, (11, 5) = -0.6411982626269342e-2, (11, 6) = 1.4769469365488954, (11, 7) = 0.7595912211689054e-1, (11, 8) = 0.57193745442795506e-1, (12, 1) = -.1600634554218884, (12, 2) = 0.17740826720045982e-1, (12, 3) = 1.0538888365598136, (12, 4) = .37003049775688535, (12, 5) = -0.7316860858898448e-2, (12, 6) = 1.499207309863791, (12, 7) = 0.9175293789636808e-1, (12, 8) = 0.6156719989689199e-1, (13, 1) = -.15376655017624774, (13, 2) = 0.30296704807712918e-1, (13, 3) = 1.1507687254222438, (13, 4) = .3679982116567567, (13, 5) = -0.8154721726663258e-2, (13, 6) = 1.5254608253960227, (13, 7) = .1084188111357934, (13, 8) = 0.6529471058639535e-1, (14, 1) = -.14430646057430674, (14, 2) = 0.4250806547922589e-1, (14, 3) = 1.245943366242156, (14, 4) = .36578343902893384, (14, 5) = -0.8907641852239972e-2, (14, 6) = 1.555816989411266, (14, 7) = .12576396753467523, (14, 8) = 0.6832600602649756e-1, (15, 1) = -.13201176794608704, (15, 2) = 0.53137961864251064e-1, (15, 3) = 1.339345748340381, (15, 4) = .36341579280951025, (15, 5) = -0.9561372713284904e-2, (15, 6) = 1.590302627188974, (15, 7) = .14357624150955856, (15, 8) = 0.7062057397986593e-1, (16, 1) = -.11755024367601966, (16, 2) = 0.6102495948240774e-1, (16, 3) = 1.4306932234947345, (16, 4) = .36093354758169927, (16, 5) = -0.10105088797683102e-1, (16, 6) = 1.628778496660186, (16, 7) = .16159615167866462, (16, 8) = 0.7215057669693223e-1, (17, 1) = -.1017757389941151, (17, 2) = 0.6540052175916726e-1, (17, 3) = 1.5200126345068938, (17, 4) = .35836839869593895, (17, 5) = -0.10534973995215179e-1, (17, 6) = 1.6711446595363155, (17, 7) = .17962464210679904, (17, 8) = 0.7291378535787908e-1, (18, 1) = -0.8562488366373487e-1, (18, 2) = 0.6601577799350121e-1, (18, 3) = 1.6073685521372294, (18, 4) = .3557501139971933, (18, 5) = -0.1085154690665931e-1, (18, 6) = 1.7172737332675954, (18, 7) = .19747921374137573, (18, 8) = 0.729227591867127e-1, (19, 1) = -0.6998673195550159e-1, (19, 2) = 0.6316514351336697e-1, (19, 3) = 1.692827501352813, (19, 4) = .3531065609803749, (19, 5) = -0.11059054704056444e-1, (19, 6) = 1.7670034201936595, (19, 7) = .21498974802357024, (19, 8) = 0.7220335350513343e-1, (20, 1) = -0.55610136299587054e-1, (20, 2) = 0.57585436563437925e-1, (20, 3) = 1.77632437502917, (20, 4) = .35046725376876914, (20, 5) = -0.11164970048420729e-1, (20, 6) = 1.8200532646404195, (20, 7) = .23197376211102866, (20, 8) = 0.7079658035527173e-1, (21, 1) = -0.43000484038105184e-1, (21, 2) = 0.50253823099175934e-1, (21, 3) = 1.8578072943415187, (21, 4) = .34785831678559404, (21, 5) = -0.111801623302582e-1, (21, 6) = 1.8760988685224456, (21, 7) = .24826982947943302, (21, 8) = 0.6875838561442682e-1, (22, 1) = -0.3238521326136785e-1, (22, 2) = 0.42146604914204154e-1, (22, 3) = 1.9373734562831926, (22, 4) = .34529737977456776, (22, 5) = -0.11117984320829395e-1, (22, 6) = 1.9348863621148453, (22, 7) = .26376703841962096, (22, 8) = 0.6615191423106347e-1, (23, 1) = -0.23777175833410786e-1, (23, 2) = 0.34085049240114594e-1, (23, 3) = 2.015116420764514, (23, 4) = .34279810538335065, (23, 5) = -0.10993236209989717e-1, (23, 6) = 1.996152613508324, (23, 7) = .2783739405626572, (23, 8) = 0.6304618263872158e-1, (24, 1) = -0.17032577718097307e-1, (24, 2) = 0.2665729331676524e-1, (24, 3) = 2.0911257386418485, (24, 4) = .340370194206626, (24, 5) = -0.10821600556493872e-1, (24, 6) = 2.059629639205023, (24, 7) = .29201833127085214, (24, 8) = 0.59514066560478224e-1, (25, 1) = -0.11912234609982005e-1, (25, 2) = 0.20207684956014358e-1, (25, 3) = 2.165505306248221, (25, 4) = .33801891240256376, (25, 5) = -0.10619047217973444e-1, (25, 6) = 2.1250654794952815, (25, 7) = .3046497396204352, (25, 8) = 0.55629289468927506e-1, (26, 1) = -0.8138240294430613e-2, (26, 2) = 0.14875114888345182e-1, (26, 3) = 2.238350997284669, (26, 4) = .3357460261587689, (26, 5) = -0.10401381660268688e-1, (26, 6) = 2.1922108137474403, (26, 7) = .3162340733370819, (26, 8) = 0.5146542077826284e-1, (27, 1) = -0.5433887636433142e-2, (27, 2) = 0.1064880363610196e-1, (27, 3) = 2.3097349632638142, (27, 4) = .33355055765848207, (27, 5) = -0.10183874373236527e-1, (27, 6) = 2.2608058123457324, (27, 7) = .32675028982528975, (27, 8) = 0.4709533876452156e-1, (28, 1) = -0.35473836650395138e-2, (28, 2) = 0.7422525245840296e-2, (28, 3) = 2.3797246033167165, (28, 4) = .3314285083244437, (28, 5) = -0.9980819151111209e-2, (28, 6) = 2.3305985328398995, (28, 7) = .3361925680987284, (28, 8) = 0.42588832612515365e-1, (29, 1) = -0.22649595163979426e-2, (29, 2) = 0.5042123940643825e-2, (29, 3) = 2.4483823707573626, (29, 4) = .32937324890833686, (29, 5) = -0.9805194239856069e-2, (29, 6) = 2.4013472411799133, (29, 7) = .34456875648665847, (29, 8) = 0.3801127009896496e-1, (30, 1) = -0.14137540243798479e-2, (30, 2) = 0.3338358133232503e-2, (30, 3) = 2.515861978503066, (30, 4) = .3273730983678873, (30, 5) = -0.9668229828749347e-2, (30, 6) = 2.4729258238550673, (30, 7) = .3519085257409124, (30, 8) = 0.33415920177751274e-1, (31, 1) = -0.8605928820212513e-3, (31, 2) = 0.21504697796892285e-2, (31, 3) = 2.582539204272471, (31, 4) = .32540795861125427, (31, 5) = -0.957946473248892e-2, (31, 6) = 2.545481761283621, (31, 7) = .3582667626570985, (31, 8) = 0.2883403707075255e-1, (32, 1) = -0.5106757568196689e-3, (32, 2) = 0.13475415217635602e-2, (32, 3) = 2.648460200960687, (32, 4) = .32346579035064904, (32, 5) = -0.9547805614663327e-2, (32, 6) = 2.618840629421426, (32, 7) = .36366514670687944, (32, 8) = 0.2431324030318291e-1, (33, 1) = -0.2953327633691435e-3, (33, 2) = 0.8213655825998622e-3, (33, 3) = 2.713638344636691, (33, 4) = .3215339926041049, (33, 5) = -0.9580452220455518e-2, (33, 6) = 2.692804574171342, (33, 7) = .3681309842732225, (33, 8) = 0.19897477825029125e-1, (34, 1) = -0.16641397198798735e-3, (34, 2) = 0.4869401833588519e-3, (34, 3) = 2.778084059250828, (34, 4) = .31959890842541655, (34, 5) = -0.9682706793193413e-2, (34, 6) = 2.767185195379349, (34, 7) = .3716992797163207, (34, 8) = 0.15624441579612264e-1, (35, 1) = -0.9134248027914396e-4, (35, 2) = 0.28074210501946773e-3, (35, 3) = 2.841804712, (35, 4) = .31764623058532726, (35, 5) = -0.9857922636655345e-2, (35, 6) = 2.841804712, (35, 7) = .3744112941998848, (35, 8) = 0.11525252201341013e-1}, datatype = float[8], order = C_order); errproc := proc (x_bvp) local outpoint, X, Y, yout, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; Digits := 15; outpoint := evalf(x_bvp); X := Vector(35, {(1) = .0, (2) = .20472410284384834, (3) = .4211863305043777, (4) = .6516720600363566, (5) = .8993212463695047, (6) = 1.1685298486145983, (7) = 1.4468423487039677, (8) = 1.7229359537348594, (9) = 1.9968629039389574, (10) = 2.268673421313649, (11) = 2.5378029414464036, (12) = 2.8035694406371796, (13) = 3.066093306207618, (14) = 3.325490409787653, (15) = 3.581658551212711, (16) = 3.8338699831956804, (17) = 4.08221409418108, (18) = 4.32686351028502, (19) = 4.567978384890087, (20) = 4.805327686982952, (21) = 5.038694055040347, (22) = 5.268271439374476, (23) = 5.494238613721016, (24) = 5.716760727626145, (25) = 5.936046030245326, (26) = 6.152283284474133, (27) = 6.365596166650127, (28) = 6.576100208955955, (29) = 6.783903531026379, (30) = 6.9894017136482445, (31) = 7.1936893054340665, (32) = 7.3968755375272774, (33) = 7.5989780331822505, (34) = 7.80001395061423, (35) = 8.0}, datatype = float[8], order = C_order); Y := Matrix(35, 8, {(1, 1) = 0.897448267109614e-15, (1, 2) = 0.5588167359031321e-15, (1, 3) = .0, (1, 4) = .0, (1, 5) = 0.13864249525943088e-15, (1, 6) = .0, (1, 7) = 0.12119642246901448e-14, (1, 8) = .0, (2, 1) = 0.17195345226360017e-14, (2, 2) = 0.6181167466331716e-15, (2, 3) = 0.20410981819182018e-16, (2, 4) = 0.10601766383125283e-15, (2, 5) = -0.10490636710626889e-15, (2, 6) = 0.5031667156796011e-15, (2, 7) = 0.11996548135741033e-14, (2, 8) = 0.2771969015070949e-19, (3, 1) = 0.1686737254582015e-14, (3, 2) = 0.9567626045906052e-15, (3, 3) = 0.5604460075778757e-16, (3, 4) = 0.10527680167976054e-15, (3, 5) = 0.20005622560643638e-15, (3, 6) = -0.9913001724420674e-16, (3, 7) = 0.1339416454645461e-14, (3, 8) = -0.1444766507242344e-17, (4, 1) = 0.4333011548848769e-14, (4, 2) = 0.17025161949432959e-14, (4, 3) = 0.10025344277919218e-16, (4, 4) = 0.11064429627289256e-15, (4, 5) = 0.2162077879904567e-15, (4, 6) = -0.4402054460277445e-15, (4, 7) = -0.689926374914955e-15, (4, 8) = -0.2826387029976454e-17, (5, 1) = 0.6633681086898639e-14, (5, 2) = 0.375032295134198e-14, (5, 3) = 0.1812909654403e-15, (5, 4) = -0.12070342909717134e-15, (5, 5) = -0.1596142149617371e-15, (5, 6) = -0.10825942697009252e-15, (5, 7) = 0.18103213104082225e-14, (5, 8) = -0.16764369656937747e-16, (6, 1) = 0.13129840358265059e-13, (6, 2) = 0.7277452916946674e-14, (6, 3) = 0.29179991421150325e-15, (6, 4) = 0.6399550172322422e-16, (6, 5) = -0.22594631239149157e-15, (6, 6) = -0.9174305403629006e-16, (6, 7) = 0.19951541475781265e-15, (6, 8) = -0.43537055740415584e-16, (7, 1) = 0.16558247533243953e-13, (7, 2) = 0.10179772597290096e-13, (7, 3) = 0.5878293642247217e-15, (7, 4) = -0.7410342523151938e-16, (7, 5) = -0.15996611253844913e-15, (7, 6) = 0.1692951814608457e-14, (7, 7) = 0.1740069789475928e-16, (7, 8) = -0.31275576634239585e-16, (8, 1) = 0.1212069312549711e-13, (8, 2) = 0.9543541214045693e-14, (8, 3) = 0.6704668328631497e-15, (8, 4) = -0.44521023708016503e-16, (8, 5) = 0.22199060125967257e-15, (8, 6) = -0.6750801329037803e-15, (8, 7) = 0.21656382445432134e-14, (8, 8) = -0.6435827646555829e-16, (9, 1) = -0.3772034753492132e-14, (9, 2) = 0.5759418721910007e-14, (9, 3) = 0.6527662555019791e-15, (9, 4) = 0.441738628379015e-16, (9, 5) = 0.5658548136938054e-15, (9, 6) = 0.3154847106536809e-14, (9, 7) = 0.7858154752173474e-15, (9, 8) = -0.10311351058385951e-15, (10, 1) = -0.2440608209204811e-13, (10, 2) = 0.28469235452884776e-14, (10, 3) = 0.3866914448702218e-15, (10, 4) = -0.9144516798022403e-16, (10, 5) = -0.10145948392816397e-15, (10, 6) = -0.24442421173399023e-14, (10, 7) = 0.6377245986878261e-16, (10, 8) = -0.17205372425145497e-15, (11, 1) = -0.4123657586548479e-13, (11, 2) = 0.47019634354738835e-14, (11, 3) = 0.7390229161834592e-15, (11, 4) = 0.33830363819193296e-15, (11, 5) = -0.49321754692558303e-16, (11, 6) = -0.7883634580987387e-16, (11, 7) = 0.9384901596020932e-15, (11, 8) = -0.252982075836778e-15, (12, 1) = -0.45482420467991964e-13, (12, 2) = 0.10203470081300767e-13, (12, 3) = 0.7534533806982218e-15, (12, 4) = -0.20573415143689883e-15, (12, 5) = 0.10308521674561246e-15, (12, 6) = -0.306193488603141e-14, (12, 7) = 0.11321549203383949e-14, (12, 8) = -0.3982374979919039e-15, (13, 1) = -0.3692752598727219e-13, (13, 2) = 0.13076295718742951e-13, (13, 3) = -0.42293951496931934e-15, (13, 4) = 0.5793784843910567e-15, (13, 5) = 0.1255527766044886e-15, (13, 6) = 0.14631798233506174e-14, (13, 7) = -0.537526963696651e-16, (13, 8) = -0.43906151981417637e-15, (14, 1) = -0.12180528075494553e-13, (14, 2) = 0.67927440842877486e-14, (14, 3) = -0.7751636018193131e-16, (14, 4) = 0.5989904770359435e-15, (14, 5) = -0.5359630097047029e-16, (14, 6) = -0.13487931939540982e-14, (14, 7) = 0.17179524507174635e-14, (14, 8) = -0.4135968388921909e-15, (15, 1) = 0.3685354836152949e-13, (15, 2) = -0.1664738219468053e-13, (15, 3) = -0.1573909843712974e-14, (15, 4) = 0.794295869180883e-15, (15, 5) = -0.35245821132597215e-17, (15, 6) = -0.11581448838991115e-14, (15, 7) = 0.4173536492488085e-15, (15, 8) = -0.5280874496874946e-15, (16, 1) = 0.10366564920219266e-12, (16, 2) = -0.641879285025774e-13, (16, 3) = 0.20566596972943627e-14, (16, 4) = 0.9266548671796218e-16, (16, 5) = 0.2353325946868509e-15, (16, 6) = 0.18284547948529757e-15, (16, 7) = 0.17622934571819217e-14, (16, 8) = -0.4976417588290511e-15, (17, 1) = 0.14484169648891652e-12, (17, 2) = -0.12297441716887176e-12, (17, 3) = -0.1068182350278374e-14, (17, 4) = -0.5854540915281354e-15, (17, 5) = 0.14535461070078002e-15, (17, 6) = 0.4266610794669015e-14, (17, 7) = 0.4607205530424001e-15, (17, 8) = -0.5886742340881105e-15, (18, 1) = 0.10566223147991009e-12, (18, 2) = -0.13820205741801644e-12, (18, 3) = -0.20123078614811413e-14, (18, 4) = -0.7561398183639445e-16, (18, 5) = 0.2140425035665995e-15, (18, 6) = -0.23561554941772816e-14, (18, 7) = 0.19085985864153077e-14, (18, 8) = -0.5917377444519284e-15, (19, 1) = -0.1679773165980789e-13, (19, 2) = -0.5657134915236689e-13, (19, 3) = 0.1360256674443056e-14, (19, 4) = 0.8707809795722639e-15, (19, 5) = 0.21528390503198728e-15, (19, 6) = -0.5127690553955357e-15, (19, 7) = -0.4826901389884211e-15, (19, 8) = -0.5868641866801674e-15, (20, 1) = -0.14894339690033946e-12, (20, 2) = 0.9602247884781634e-13, (20, 3) = 0.26294719195036576e-14, (20, 4) = -0.502638096454554e-15, (20, 5) = 0.32194304936576336e-16, (20, 6) = 0.25628117174786136e-14, (20, 7) = 0.8377380590237005e-15, (20, 8) = -0.7167682554400696e-15, (21, 1) = -0.20361898739374174e-12, (21, 2) = 0.2159454684255011e-12, (21, 3) = -0.18390456690678095e-14, (21, 4) = 0.16085741943765483e-14, (21, 5) = -0.3751395624658827e-15, (21, 6) = 0.68012918504538484e-14, (21, 7) = 0.25431273083692057e-15, (21, 8) = -0.32419369341927803e-15, (22, 1) = -0.15689971156050872e-12, (22, 2) = 0.21942355904154635e-12, (22, 3) = 0.24099783601109427e-14, (22, 4) = -0.9953957508184104e-15, (22, 5) = 0.8621846497603312e-16, (22, 6) = 0.5849807663571661e-14, (22, 7) = -0.11527500167921049e-14, (22, 8) = 0.5354827376431221e-17, (23, 1) = -0.5259760291556636e-13, (23, 2) = 0.11178856094650594e-12, (23, 3) = -0.8417911290913919e-15, (23, 4) = -0.2207954041887918e-14, (23, 5) = -0.2243044830543838e-15, (23, 6) = 0.15023300748706678e-13, (23, 7) = -0.973903527171104e-15, (23, 8) = -0.32331856502436973e-16, (24, 1) = 0.4443374116829714e-13, (24, 2) = -0.32070809165957353e-13, (24, 3) = -0.34880954720513526e-15, (24, 4) = 0.1231856080413119e-14, (24, 5) = 0.55827387662745e-17, (24, 6) = 0.54319152119881845e-14, (24, 7) = -0.36766647288947504e-15, (24, 8) = -0.3464894477365739e-15, (25, 1) = 0.933019806478322e-13, (25, 2) = -0.13384281309083258e-12, (25, 3) = 0.33197903067130842e-14, (25, 4) = -0.3132682814760555e-14, (25, 5) = -0.28711859306736457e-15, (25, 6) = -0.5470120367959728e-14, (25, 7) = -0.13432374782466947e-14, (25, 8) = 0.2039729831139547e-15, (26, 1) = 0.8977989989773004e-13, (26, 2) = -0.15869171973868484e-12, (26, 3) = 0.23278286029344056e-14, (26, 4) = -0.29354266305866873e-15, (26, 5) = 0.230020828715235e-16, (26, 6) = 0.32968730420794027e-14, (26, 7) = 0.12490842693534877e-14, (26, 8) = 0.3964694184561624e-15, (27, 1) = 0.5380760356273936e-13, (27, 2) = -0.11847870856872766e-12, (27, 3) = 0.2688345544666234e-15, (27, 4) = 0.10619582772389209e-14, (27, 5) = -0.12172639957600914e-15, (27, 6) = 0.3185441694869011e-14, (27, 7) = -0.1489879250602313e-14, (27, 8) = 0.6565146261655062e-15, (28, 1) = 0.10742518103279055e-13, (28, 2) = -0.495306438002946e-13, (28, 3) = 0.4310166135267635e-14, (28, 4) = 0.15683143667115227e-14, (28, 5) = 0.3453405106322541e-16, (28, 6) = 0.1018279419881744e-13, (28, 7) = -0.13632661970738383e-14, (28, 8) = 0.4729842715233933e-15, (29, 1) = -0.2151478390347912e-13, (29, 2) = 0.12771727815782967e-13, (29, 3) = 0.5629863069659428e-14, (29, 4) = -0.14434075930994008e-15, (29, 5) = -0.3455164788374167e-15, (29, 6) = 0.1345923386438848e-15, (29, 7) = 0.6628740317227967e-15, (29, 8) = 0.2370286262471212e-15, (30, 1) = -0.36756430829417473e-13, (30, 2) = 0.4915770478845277e-13, (30, 3) = 0.6364093247487674e-15, (30, 4) = 0.2644278305592894e-15, (30, 5) = 0.19990963262100253e-15, (30, 6) = -0.4147202106691808e-14, (30, 7) = -0.13135113472923236e-14, (30, 8) = 0.79220739160263215e-15, (31, 1) = -0.38142291891788485e-13, (31, 2) = 0.5919398917266647e-13, (31, 3) = 0.13925650940938171e-13, (31, 4) = 0.5542574200502359e-15, (31, 5) = -0.15301256420629026e-15, (31, 6) = 0.4509491169458926e-14, (31, 7) = 0.2495446814784076e-15, (31, 8) = 0.8083662326018128e-15, (32, 1) = -0.30039055413759246e-13, (32, 2) = 0.4722520516979542e-13, (32, 3) = 0.5948740452406517e-14, (32, 4) = 0.3314613919766506e-14, (32, 5) = -0.20036994088420754e-15, (32, 6) = 0.14649613744607957e-13, (32, 7) = -0.7728084332522093e-16, (32, 8) = 0.1933770820597525e-15, (33, 1) = -0.18092057280170896e-13, (33, 2) = 0.23205059829259787e-13, (33, 3) = 0.6050533016944145e-14, (33, 4) = 0.28168060491597395e-15, (33, 5) = 0.2339278829021382e-15, (33, 6) = 0.9701926801570967e-14, (33, 7) = 0.18835370879179478e-15, (33, 8) = 0.21984174087752556e-15, (34, 1) = -0.714859442764903e-14, (34, 2) = -0.19154332194589852e-14, (34, 3) = 0.1348765326796076e-13, (34, 4) = -0.9615633283396454e-15, (34, 5) = 0.8312623586890217e-16, (34, 6) = 0.29574319371284083e-14, (34, 7) = -0.30915701787131377e-14, (34, 8) = 0.27524560756785973e-15, (35, 1) = .0, (35, 2) = -0.20166673380620537e-13, (35, 3) = -0.1179663713625192e-14, (35, 4) = .0, (35, 5) = 0.54374029653237e-16, (35, 6) = -0.3047767633518586e-15, (35, 7) = .0, (35, 8) = -0.3103350258003601e-16}, datatype = float[8], order = C_order); if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "right" then return X[35] elif outpoint = "order" then return 8 elif outpoint = "error" then return HFloat(2.1942355904154635e-13) elif outpoint = "errorproc" then error "this is already the error procedure" elif outpoint = "rawdata" then return [8, 35, [T(eta), diff(T(eta), eta), f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), g(eta), diff(g(eta), eta), diff(diff(g(eta), eta), eta)], X, Y] else return ('procname')(x_bvp) end if end if; if outpoint < X[1] or X[35] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[35] end if; V := array([1 = 4, 2 = 0]); if Digits <= trunc(evalhf(Digits)) then L := Vector(4, 'datatype' = 'float'[8]); yout := Vector(8, 'datatype' = 'float'[8]); evalhf(`dsolve/numeric/lagrange`(35, 8, X, Y, outpoint, var(yout), var(L), var(V))) else L := Vector(4, 'datatype' = 'sfloat'); yout := Vector(8, 'datatype' = 'sfloat'); `dsolve/numeric/lagrange`(35, 8, X, Y, outpoint, yout, L, V) end if; [eta = outpoint, seq('[T(eta), diff(T(eta), eta), f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), g(eta), diff(g(eta), eta), diff(diff(g(eta), eta), eta)]'[i] = yout[i], i = 1 .. 8)] end proc; if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "method" then return "bvp" elif outpoint = "right" then return X[35] elif outpoint = "order" then return 8 elif outpoint = "error" then return HFloat(2.1942355904154635e-13) elif outpoint = "errorproc" then return eval(errproc) elif outpoint = "rawdata" then return [8, 35, "depnames", X, Y, YP] else error "non-numeric value" end if end if; if outpoint < X[1] or X[35] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[35] end if; if Digits <= trunc(evalhf(Digits)) and (_EnvInFsolve <> true or _EnvDSNumericSaveDigits <= trunc(evalhf(Digits))) then V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 5 ) = (false), ( 4 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = .0, (1, 2) = .0, (2, 1) = .0, (2, 2) = .0, (3, 1) = .0, (3, 2) = .0, (4, 1) = .0, (4, 2) = .0, (5, 1) = .0, (5, 2) = .0, (6, 1) = .0, (6, 2) = .0, (7, 1) = .0, (7, 2) = .0}, datatype = float[8], order = C_order); yout := Vector(8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8]); evalhf(`dsolve/numeric/hermite`(35, 8, X, Y, YP, outpoint, var(yout), var(L), var(V))) else if _EnvInFsolve = true then Digits := _EnvDSNumericSaveDigits end if; V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 5 ) = (false), ( 4 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = 0., (1, 2) = 0., (2, 1) = 0., (2, 2) = 0., (3, 1) = 0., (3, 2) = 0., (4, 1) = 0., (4, 2) = 0., (5, 1) = 0., (5, 2) = 0., (6, 1) = 0., (6, 2) = 0., (7, 1) = 0., (7, 2) = 0.}, order = C_order); yout := Vector(8, {(1) = 0., (2) = 0., (3) = 0., (4) = 0., (5) = 0., (6) = 0., (7) = 0., (8) = 0.}); `dsolve/numeric/hermite`(35, 8, X, Y, YP, outpoint, yout, L, V) end if; [outpoint, seq(yout[i], i = 1 .. 8)] end proc, (2) = Array(1..9, {(1) = 4365885730, (2) = 4365885922, (3) = 4365886066, (4) = 4365886162, (5) = 4365886258, (6) = 4365886354, (7) = 4365886450, (8) = 4365886546, (9) = 4365886642}), (3) = [eta, T(eta), diff(T(eta), eta), f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), g(eta), diff(g(eta), eta), diff(diff(g(eta), eta), eta)], (4) = 0}); solnproc := data[1]; if not type(outpoint, 'numeric') then if outpoint = "solnprocedure" then return eval(solnproc) elif member(outpoint, ["start", "left", "right", "errorproc", "rawdata", "order", "error"]) then return solnproc(eta) elif outpoint = "sysvars" then return data[3] elif procname <> unknown then return ('procname')(eta) else f := pointto(data[2][4]); return ('f')(eta) end if end if; try res := solnproc(outpoint); res[4] catch: error  end try end proc, D(f) = proc (eta) local res, data, solnproc, `D(f)`, outpoint; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then outpoint := evalf[_EnvDSNumericSaveDigits](eta) else outpoint := evalf(eta) end if; data := Array(1..4, {(1) = proc (outpoint) local X, Y, YP, yout, errproc, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; X := Vector(35, {(1) = .0, (2) = .20472410284384834, (3) = .4211863305043777, (4) = .6516720600363566, (5) = .8993212463695047, (6) = 1.1685298486145983, (7) = 1.4468423487039677, (8) = 1.7229359537348594, (9) = 1.9968629039389574, (10) = 2.268673421313649, (11) = 2.5378029414464036, (12) = 2.8035694406371796, (13) = 3.066093306207618, (14) = 3.325490409787653, (15) = 3.581658551212711, (16) = 3.8338699831956804, (17) = 4.08221409418108, (18) = 4.32686351028502, (19) = 4.567978384890087, (20) = 4.805327686982952, (21) = 5.038694055040347, (22) = 5.268271439374476, (23) = 5.494238613721016, (24) = 5.716760727626145, (25) = 5.936046030245326, (26) = 6.152283284474133, (27) = 6.365596166650127, (28) = 6.576100208955955, (29) = 6.783903531026379, (30) = 6.9894017136482445, (31) = 7.1936893054340665, (32) = 7.3968755375272774, (33) = 7.5989780331822505, (34) = 7.80001395061423, (35) = 8.0}, datatype = float[8], order = C_order); Y := Matrix(35, 8, {(1, 1) = .6800687881055213, (1, 2) = -.11511620494228465, (1, 3) = .0, (1, 4) = .0, (1, 5) = .37811799244920324, (1, 6) = .0, (1, 7) = 1.4117113181447536, (1, 8) = .0, (2, 1) = .6560325255507624, (2, 2) = -.11975318257035834, (2, 3) = 0.7923823323670406e-2, (2, 4) = 0.77409636920803e-1, (2, 5) = .37811352171842283, (2, 6) = .2890131130048752, (2, 7) = 1.411746095030339, (2, 8) = 0.5096115493465316e-3, (3, 1) = .6295510504863806, (3, 2) = -.12496974762969729, (3, 3) = 0.335383312275963e-1, (3, 4) = .15925409044318592, (3, 5) = .37807999460677805, (3, 6) = .5946253962700148, (3, 7) = 1.4120141336647931, (3, 8) = 0.21567165797040048e-2, (4, 1) = .6000810786889832, (4, 2) = -.13078648524102396, (4, 3) = 0.8028592391087024e-1, (4, 4) = .24638626301264996, (4, 5) = .3779809429150307, (4, 6) = .9201555386630824, (4, 7) = 1.4128327072652163, (4, 8) = 0.51609615183282375e-2, (5, 1) = .5669002581395786, (5, 2) = -.1371916401125017, (5, 3) = .1528922356920777, (5, 4) = .33996920774229683, (5, 5) = .37776827912336824, (5, 6) = 1.27024451829135, (5, 7) = 1.4146572486865054, (5, 8) = 0.9820223828374587e-2, (6, 1) = .5290327802230002, (6, 2) = -.14409851939129248, (6, 3) = .25809973947558784, (6, 4) = .44161902578753254, (6, 5) = .37737598360935093, (6, 6) = 1.651514368911508, (6, 7) = 1.4181683376757317, (6, 8) = 0.16551767115543403e-1, (7, 1) = .48797776231069934, (7, 2) = -.15082401972104326, (7, 3) = .3956159784223351, (7, 4) = .546566995361021, (7, 5) = .3767592394353197, (7, 6) = 2.046956560700791, (7, 7) = 1.423951238924928, (7, 8) = 0.2530574188627694e-1, (8, 1) = .4455097689486867, (8, 2) = -.15662271721966162, (8, 3) = .560869343108844, (8, 4) = .650475986042538, (8, 5) = .3759074764267706, (8, 6) = 2.441192046655901, (8, 7) = 1.432339477818811, (8, 8) = 0.3574403196512969e-1, (9, 1) = .4019714737781167, (9, 2) = -.16097976785337778, (9, 3) = .7531425930170065, (9, 4) = .7533024381136638, (9, 5) = .37480724717639446, (9, 6) = 2.835034683009538, (9, 7) = 1.4437395006677125, (9, 8) = 0.4775839761612408e-1, (10, 1) = .3578432116772004, (10, 2) = -.16334348080313163, (10, 3) = .9717278248653037, (10, 4) = .8550010473136669, (10, 5) = .3734541277931229, (10, 6) = 3.229383694258226, (10, 7) = 1.458517002768622, (10, 8) = 0.61223001646425766e-1, (11, 1) = .3138427499613885, (11, 2) = -.16317816891693035, (11, 3) = 1.2153400964446428, (11, 4) = .9552992408083281, (11, 5) = .3718558392388385, (11, 6) = 3.6243047360166147, (11, 7) = 1.4769469365488954, (11, 8) = 0.7595912211689054e-1, (12, 1) = .2708197137303571, (12, 2) = -.1600634554218884, (12, 3) = 1.4823382823352556, (12, 4) = 1.0538888365598136, (12, 5) = .37003049775688535, (12, 6) = 4.019692806711686, (12, 7) = 1.499207309863791, (12, 8) = 0.9175293789636808e-1, (13, 1) = .22955356513321082, (13, 2) = -.15376655017624774, (13, 3) = 1.771737568613686, (13, 4) = 1.1507687254222438, (13, 5) = .3679982116567567, (13, 6) = 4.4166208604325305, (13, 7) = 1.5254608253960227, (13, 8) = .1084188111357934, (14, 1) = .19082533490993417, (14, 2) = -.14430646057430674, (14, 3) = 2.0826000767466843, (14, 4) = 1.245943366242156, (14, 5) = .36578343902893384, (14, 6) = 4.816160855718664, (14, 7) = 1.555816989411266, (14, 8) = .12576396753467523, (15, 1) = .1553751277762106, (15, 2) = -.13201176794608704, (15, 3) = 2.4137473802608245, (15, 4) = 1.339345748340381, (15, 5) = .36341579280951025, (15, 6) = 5.219031239689751, (15, 7) = 1.590302627188974, (15, 8) = .14357624150955856, (16, 1) = .12386204102729283, (16, 2) = -.11755024367601966, (16, 3) = 2.7630782885466254, (16, 4) = 1.4306932234947345, (16, 5) = .36093354758169927, (16, 6) = 5.624880231600311, (16, 7) = 1.628778496660186, (16, 8) = .16159615167866462, (17, 1) = 0.9660535822960543e-1, (17, 2) = -.1017757389941151, (17, 3) = 3.129486686134902, (17, 4) = 1.5200126345068938, (17, 5) = .35836839869593895, (17, 6) = 6.034545798261897, (17, 7) = 1.6711446595363155, (17, 8) = .17962464210679904, (18, 1) = 0.7367857489109031e-1, (18, 2) = -0.8562488366373487e-1, (18, 3) = 3.512055738361352, (18, 4) = 1.6073685521372294, (18, 5) = .3557501139971933, (18, 6) = 6.448944019154785, (18, 7) = 1.7172737332675954, (18, 8) = .19747921374137573, (19, 1) = 0.54932297215312065e-1, (19, 2) = -0.6998673195550159e-1, (19, 3) = 3.909931726386895, (19, 4) = 1.692827501352813, (19, 5) = .3531065609803749, (19, 6) = 6.868914696313914, (19, 7) = 1.7670034201936595, (19, 8) = .21498974802357024, (20, 1) = 0.4005339598008939e-1, (20, 2) = -0.55610136299587054e-1, (20, 3) = 4.32164450688784, (20, 4) = 1.77632437502917, (20, 5) = .35046725376876914, (20, 6) = 7.294527651516823, (20, 7) = 1.8200532646404195, (20, 8) = .23197376211102866, (21, 1) = 0.28580538470935495e-1, (21, 2) = -0.43000484038105184e-1, (21, 3) = 4.745698402930282, (21, 4) = 1.8578072943415187, (21, 5) = .34785831678559404, (21, 6) = 7.725732483059856, (21, 7) = 1.8760988685224456, (21, 8) = .24826982947943302, (22, 1) = 0.1996278053815402e-1, (22, 2) = -0.3238521326136785e-1, (22, 3) = 5.181353487043006, (22, 4) = 1.9373734562831926, (22, 5) = .34529737977456776, (22, 6) = 8.163122417826008, (22, 7) = 1.9348863621148453, (22, 8) = .26376703841962096, (23, 1) = 0.1365169808933715e-1, (23, 2) = -0.23777175833410786e-1, (23, 3) = 5.6279306071831305, (23, 4) = 2.015116420764514, (23, 5) = .34279810538335065, (23, 6) = 8.60720314062156, (23, 7) = 1.996152613508324, (23, 8) = .2783739405626572, (24, 1) = 0.9141837377667494e-2, (24, 2) = -0.17032577718097307e-1, (24, 3) = 6.084805468966238, (24, 4) = 2.0911257386418485, (24, 5) = .340370194206626, (24, 6) = 9.058397452645558, (24, 7) = 2.059629639205023, (24, 8) = .29201833127085214, (25, 1) = 0.5994108163660374e-2, (25, 2) = -0.11912234609982005e-1, (25, 3) = 6.551523204740028, (25, 4) = 2.165505306248221, (25, 5) = .33801891240256376, (25, 6) = 9.517167898738702, (25, 7) = 2.1250654794952815, (25, 8) = .3046497396204352, (26, 1) = 0.38470588985903055e-2, (26, 2) = -0.8138240294430613e-2, (26, 3) = 7.027670958837816, (26, 4) = 2.238350997284669, (26, 5) = .3357460261587689, (26, 6) = 9.983900741341126, (26, 7) = 2.1922108137474403, (26, 8) = .3162340733370819, (27, 1) = 0.2415525316376395e-2, (27, 2) = -0.5433887636433142e-2, (27, 3) = 7.51276194601149, (27, 4) = 2.3097349632638142, (27, 5) = .33355055765848207, (27, 6) = 10.458803767615885, (27, 7) = 2.2608058123457324, (27, 8) = .32675028982528975, (28, 1) = 0.1482134442049264e-2, (28, 2) = -0.35473836650395138e-2, (28, 3) = 8.006344879280913, (28, 4) = 2.3797246033167165, (28, 5) = .3314285083244437, (28, 6) = 10.942023485632674, (28, 7) = 2.3305985328398995, (28, 8) = .3361925680987284, (29, 1) = 0.8867798277494013e-3, (29, 2) = -0.22649595163979426e-2, (29, 3) = 8.508000609042815, (29, 4) = 2.4483823707573626, (29, 5) = .32937324890833686, (29, 6) = 11.433650368387816, (29, 7) = 2.4013472411799133, (29, 8) = .34456875648665847, (30, 1) = 0.5147830582056192e-3, (30, 2) = -0.14137540243798479e-2, (30, 3) = 9.018079243243903, (30, 4) = 2.515861978503066, (30, 5) = .3273730983678873, (30, 6) = 11.934451666568503, (30, 7) = 2.4729258238550673, (30, 8) = .3519085257409124, (31, 1) = 0.28659669973437794e-3, (31, 2) = -0.8605928820212513e-3, (31, 3) = 9.538856126749963, (31, 4) = 2.582539204272471, (31, 5) = .32540795861125427, (31, 6) = 12.44702875421768, (31, 7) = 2.545481761283621, (31, 8) = .3582667626570985, (32, 1) = 0.1500417202447516e-3, (32, 2) = -0.5106757568196689e-3, (32, 3) = 10.070296337466763, (32, 4) = 2.648460200960687, (32, 5) = .32346579035064904, (32, 6) = 12.971669786325668, (32, 7) = 2.618840629421426, (32, 8) = .36366514670687944, (33, 1) = 0.7037994109756306e-4, (33, 2) = -0.2953327633691435e-3, (33, 3) = 10.612149661123444, (33, 4) = 2.713638344636691, (33, 5) = .3215339926041049, (33, 6) = 13.508402962580126, (33, 7) = 2.692804574171342, (33, 8) = .3681309842732225, (34, 1) = 0.2508902470016854e-4, (34, 2) = -0.16641397198798735e-3, (34, 3) = 11.164172903455626, (34, 4) = 2.778084059250828, (34, 5) = .31959890842541655, (34, 6) = 14.057217972519599, (34, 7) = 2.767185195379349, (34, 8) = .3716992797163207, (35, 1) = .0, (35, 2) = -0.9134248027914396e-4, (35, 3) = 11.726129087316146, (35, 4) = 2.841804712, (35, 5) = .31764623058532726, (35, 6) = 14.618068801887034, (35, 7) = 2.841804712, (35, 8) = .3744112941998848}, datatype = float[8], order = C_order); YP := Matrix(35, 8, {(1, 1) = -.11511620494228465, (1, 2) = -0.21848192814805704e-1, (1, 3) = .0, (1, 4) = .37811799244920324, (1, 5) = .0, (1, 6) = 1.4117113181447536, (1, 7) = .0, (1, 8) = .0, (2, 1) = -.11975318257035834, (2, 2) = -0.2340744045683882e-1, (2, 3) = 0.77409636920803e-1, (2, 4) = .37811352171842283, (2, 5) = -0.6501906335844444e-4, (2, 6) = 1.411746095030339, (2, 7) = 0.5096115493465316e-3, (2, 8) = 0.4978393071034031e-2, (3, 1) = -.12496974762969729, (3, 2) = -0.2472737923936798e-1, (3, 3) = .15925409044318592, (3, 4) = .37807999460677805, (3, 5) = -0.26633217492876086e-3, (3, 6) = 1.4120141336647931, (3, 7) = 0.21567165797040048e-2, (3, 8) = 0.10238889928920546e-1, (4, 1) = -.13078648524102396, (4, 2) = -0.25653205134369778e-1, (4, 3) = .24638626301264996, (4, 4) = .3779809429150307, (4, 5) = -0.6148579022689942e-3, (4, 6) = 1.4128327072652163, (4, 7) = 0.51609615183282375e-2, (4, 8) = 0.15826282713831068e-1, (5, 1) = -.1371916401125017, (5, 2) = -0.25935739559925664e-1, (5, 3) = .33996920774229683, (5, 4) = .37776827912336824, (5, 5) = -0.1124149710447512e-2, (5, 6) = 1.4146572486865054, (5, 7) = 0.9820223828374587e-2, (5, 8) = 0.21793013656706044e-1, (6, 1) = -.14409851939129248, (6, 2) = -0.25166962349877944e-1, (6, 3) = .44161902578753254, (6, 4) = .37737598360935093, (6, 5) = -0.1811204871965437e-2, (6, 6) = 1.4181683376757317, (6, 7) = 0.16551767115543403e-1, (6, 8) = 0.2819908212449082e-1, (7, 1) = -.15082401972104326, (7, 2) = -0.22883345616240332e-1, (7, 3) = .546566995361021, (7, 4) = .3767592394353197, (7, 5) = -0.26379430409376966e-2, (7, 6) = 1.423951238924928, (7, 7) = 0.2530574188627694e-1, (7, 8) = 0.3467874447064803e-1, (8, 1) = -.15662271721966162, (8, 2) = -0.1879263785160887e-1, (8, 3) = .650475986042538, (8, 4) = .3759074764267706, (8, 5) = -0.3543732228642546e-2, (8, 6) = 1.432339477818811, (8, 7) = 0.3574403196512969e-1, (8, 8) = 0.40893604100372564e-1, (9, 1) = -.16097976785337778, (9, 2) = -0.12656020813637847e-1, (9, 3) = .7533024381136638, (9, 4) = .37480724717639446, (9, 5) = -0.4495519532277643e-2, (9, 6) = 1.4437395006677125, (9, 7) = 0.4775839761612408e-1, (9, 8) = 0.4677096408972486e-1, (10, 1) = -.16334348080313163, (10, 2) = -0.4369045779836154e-2, (10, 3) = .8550010473136669, (10, 4) = .3734541277931229, (10, 5) = -0.5462016466357188e-2, (10, 6) = 1.458517002768622, (10, 7) = 0.61223001646425766e-1, (10, 8) = 0.5223392148642055e-1, (11, 1) = -.16317816891693035, (11, 2) = 0.5922044795027756e-2, (11, 3) = .9552992408083281, (11, 4) = .3718558392388385, (11, 5) = -0.6411982626269342e-2, (11, 6) = 1.4769469365488954, (11, 7) = 0.7595912211689054e-1, (11, 8) = 0.57193745442795506e-1, (12, 1) = -.1600634554218884, (12, 2) = 0.17740826720045982e-1, (12, 3) = 1.0538888365598136, (12, 4) = .37003049775688535, (12, 5) = -0.7316860858898448e-2, (12, 6) = 1.499207309863791, (12, 7) = 0.9175293789636808e-1, (12, 8) = 0.6156719989689199e-1, (13, 1) = -.15376655017624774, (13, 2) = 0.30296704807712918e-1, (13, 3) = 1.1507687254222438, (13, 4) = .3679982116567567, (13, 5) = -0.8154721726663258e-2, (13, 6) = 1.5254608253960227, (13, 7) = .1084188111357934, (13, 8) = 0.6529471058639535e-1, (14, 1) = -.14430646057430674, (14, 2) = 0.4250806547922589e-1, (14, 3) = 1.245943366242156, (14, 4) = .36578343902893384, (14, 5) = -0.8907641852239972e-2, (14, 6) = 1.555816989411266, (14, 7) = .12576396753467523, (14, 8) = 0.6832600602649756e-1, (15, 1) = -.13201176794608704, (15, 2) = 0.53137961864251064e-1, (15, 3) = 1.339345748340381, (15, 4) = .36341579280951025, (15, 5) = -0.9561372713284904e-2, (15, 6) = 1.590302627188974, (15, 7) = .14357624150955856, (15, 8) = 0.7062057397986593e-1, (16, 1) = -.11755024367601966, (16, 2) = 0.6102495948240774e-1, (16, 3) = 1.4306932234947345, (16, 4) = .36093354758169927, (16, 5) = -0.10105088797683102e-1, (16, 6) = 1.628778496660186, (16, 7) = .16159615167866462, (16, 8) = 0.7215057669693223e-1, (17, 1) = -.1017757389941151, (17, 2) = 0.6540052175916726e-1, (17, 3) = 1.5200126345068938, (17, 4) = .35836839869593895, (17, 5) = -0.10534973995215179e-1, (17, 6) = 1.6711446595363155, (17, 7) = .17962464210679904, (17, 8) = 0.7291378535787908e-1, (18, 1) = -0.8562488366373487e-1, (18, 2) = 0.6601577799350121e-1, (18, 3) = 1.6073685521372294, (18, 4) = .3557501139971933, (18, 5) = -0.1085154690665931e-1, (18, 6) = 1.7172737332675954, (18, 7) = .19747921374137573, (18, 8) = 0.729227591867127e-1, (19, 1) = -0.6998673195550159e-1, (19, 2) = 0.6316514351336697e-1, (19, 3) = 1.692827501352813, (19, 4) = .3531065609803749, (19, 5) = -0.11059054704056444e-1, (19, 6) = 1.7670034201936595, (19, 7) = .21498974802357024, (19, 8) = 0.7220335350513343e-1, (20, 1) = -0.55610136299587054e-1, (20, 2) = 0.57585436563437925e-1, (20, 3) = 1.77632437502917, (20, 4) = .35046725376876914, (20, 5) = -0.11164970048420729e-1, (20, 6) = 1.8200532646404195, (20, 7) = .23197376211102866, (20, 8) = 0.7079658035527173e-1, (21, 1) = -0.43000484038105184e-1, (21, 2) = 0.50253823099175934e-1, (21, 3) = 1.8578072943415187, (21, 4) = .34785831678559404, (21, 5) = -0.111801623302582e-1, (21, 6) = 1.8760988685224456, (21, 7) = .24826982947943302, (21, 8) = 0.6875838561442682e-1, (22, 1) = -0.3238521326136785e-1, (22, 2) = 0.42146604914204154e-1, (22, 3) = 1.9373734562831926, (22, 4) = .34529737977456776, (22, 5) = -0.11117984320829395e-1, (22, 6) = 1.9348863621148453, (22, 7) = .26376703841962096, (22, 8) = 0.6615191423106347e-1, (23, 1) = -0.23777175833410786e-1, (23, 2) = 0.34085049240114594e-1, (23, 3) = 2.015116420764514, (23, 4) = .34279810538335065, (23, 5) = -0.10993236209989717e-1, (23, 6) = 1.996152613508324, (23, 7) = .2783739405626572, (23, 8) = 0.6304618263872158e-1, (24, 1) = -0.17032577718097307e-1, (24, 2) = 0.2665729331676524e-1, (24, 3) = 2.0911257386418485, (24, 4) = .340370194206626, (24, 5) = -0.10821600556493872e-1, (24, 6) = 2.059629639205023, (24, 7) = .29201833127085214, (24, 8) = 0.59514066560478224e-1, (25, 1) = -0.11912234609982005e-1, (25, 2) = 0.20207684956014358e-1, (25, 3) = 2.165505306248221, (25, 4) = .33801891240256376, (25, 5) = -0.10619047217973444e-1, (25, 6) = 2.1250654794952815, (25, 7) = .3046497396204352, (25, 8) = 0.55629289468927506e-1, (26, 1) = -0.8138240294430613e-2, (26, 2) = 0.14875114888345182e-1, (26, 3) = 2.238350997284669, (26, 4) = .3357460261587689, (26, 5) = -0.10401381660268688e-1, (26, 6) = 2.1922108137474403, (26, 7) = .3162340733370819, (26, 8) = 0.5146542077826284e-1, (27, 1) = -0.5433887636433142e-2, (27, 2) = 0.1064880363610196e-1, (27, 3) = 2.3097349632638142, (27, 4) = .33355055765848207, (27, 5) = -0.10183874373236527e-1, (27, 6) = 2.2608058123457324, (27, 7) = .32675028982528975, (27, 8) = 0.4709533876452156e-1, (28, 1) = -0.35473836650395138e-2, (28, 2) = 0.7422525245840296e-2, (28, 3) = 2.3797246033167165, (28, 4) = .3314285083244437, (28, 5) = -0.9980819151111209e-2, (28, 6) = 2.3305985328398995, (28, 7) = .3361925680987284, (28, 8) = 0.42588832612515365e-1, (29, 1) = -0.22649595163979426e-2, (29, 2) = 0.5042123940643825e-2, (29, 3) = 2.4483823707573626, (29, 4) = .32937324890833686, (29, 5) = -0.9805194239856069e-2, (29, 6) = 2.4013472411799133, (29, 7) = .34456875648665847, (29, 8) = 0.3801127009896496e-1, (30, 1) = -0.14137540243798479e-2, (30, 2) = 0.3338358133232503e-2, (30, 3) = 2.515861978503066, (30, 4) = .3273730983678873, (30, 5) = -0.9668229828749347e-2, (30, 6) = 2.4729258238550673, (30, 7) = .3519085257409124, (30, 8) = 0.33415920177751274e-1, (31, 1) = -0.8605928820212513e-3, (31, 2) = 0.21504697796892285e-2, (31, 3) = 2.582539204272471, (31, 4) = .32540795861125427, (31, 5) = -0.957946473248892e-2, (31, 6) = 2.545481761283621, (31, 7) = .3582667626570985, (31, 8) = 0.2883403707075255e-1, (32, 1) = -0.5106757568196689e-3, (32, 2) = 0.13475415217635602e-2, (32, 3) = 2.648460200960687, (32, 4) = .32346579035064904, (32, 5) = -0.9547805614663327e-2, (32, 6) = 2.618840629421426, (32, 7) = .36366514670687944, (32, 8) = 0.2431324030318291e-1, (33, 1) = -0.2953327633691435e-3, (33, 2) = 0.8213655825998622e-3, (33, 3) = 2.713638344636691, (33, 4) = .3215339926041049, (33, 5) = -0.9580452220455518e-2, (33, 6) = 2.692804574171342, (33, 7) = .3681309842732225, (33, 8) = 0.19897477825029125e-1, (34, 1) = -0.16641397198798735e-3, (34, 2) = 0.4869401833588519e-3, (34, 3) = 2.778084059250828, (34, 4) = .31959890842541655, (34, 5) = -0.9682706793193413e-2, (34, 6) = 2.767185195379349, (34, 7) = .3716992797163207, (34, 8) = 0.15624441579612264e-1, (35, 1) = -0.9134248027914396e-4, (35, 2) = 0.28074210501946773e-3, (35, 3) = 2.841804712, (35, 4) = .31764623058532726, (35, 5) = -0.9857922636655345e-2, (35, 6) = 2.841804712, (35, 7) = .3744112941998848, (35, 8) = 0.11525252201341013e-1}, datatype = float[8], order = C_order); errproc := proc (x_bvp) local outpoint, X, Y, yout, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; Digits := 15; outpoint := evalf(x_bvp); X := Vector(35, {(1) = .0, (2) = .20472410284384834, (3) = .4211863305043777, (4) = .6516720600363566, (5) = .8993212463695047, (6) = 1.1685298486145983, (7) = 1.4468423487039677, (8) = 1.7229359537348594, (9) = 1.9968629039389574, (10) = 2.268673421313649, (11) = 2.5378029414464036, (12) = 2.8035694406371796, (13) = 3.066093306207618, (14) = 3.325490409787653, (15) = 3.581658551212711, (16) = 3.8338699831956804, (17) = 4.08221409418108, (18) = 4.32686351028502, (19) = 4.567978384890087, (20) = 4.805327686982952, (21) = 5.038694055040347, (22) = 5.268271439374476, (23) = 5.494238613721016, (24) = 5.716760727626145, (25) = 5.936046030245326, (26) = 6.152283284474133, (27) = 6.365596166650127, (28) = 6.576100208955955, (29) = 6.783903531026379, (30) = 6.9894017136482445, (31) = 7.1936893054340665, (32) = 7.3968755375272774, (33) = 7.5989780331822505, (34) = 7.80001395061423, (35) = 8.0}, datatype = float[8], order = C_order); Y := Matrix(35, 8, {(1, 1) = 0.897448267109614e-15, (1, 2) = 0.5588167359031321e-15, (1, 3) = .0, (1, 4) = .0, (1, 5) = 0.13864249525943088e-15, (1, 6) = .0, (1, 7) = 0.12119642246901448e-14, (1, 8) = .0, (2, 1) = 0.17195345226360017e-14, (2, 2) = 0.6181167466331716e-15, (2, 3) = 0.20410981819182018e-16, (2, 4) = 0.10601766383125283e-15, (2, 5) = -0.10490636710626889e-15, (2, 6) = 0.5031667156796011e-15, (2, 7) = 0.11996548135741033e-14, (2, 8) = 0.2771969015070949e-19, (3, 1) = 0.1686737254582015e-14, (3, 2) = 0.9567626045906052e-15, (3, 3) = 0.5604460075778757e-16, (3, 4) = 0.10527680167976054e-15, (3, 5) = 0.20005622560643638e-15, (3, 6) = -0.9913001724420674e-16, (3, 7) = 0.1339416454645461e-14, (3, 8) = -0.1444766507242344e-17, (4, 1) = 0.4333011548848769e-14, (4, 2) = 0.17025161949432959e-14, (4, 3) = 0.10025344277919218e-16, (4, 4) = 0.11064429627289256e-15, (4, 5) = 0.2162077879904567e-15, (4, 6) = -0.4402054460277445e-15, (4, 7) = -0.689926374914955e-15, (4, 8) = -0.2826387029976454e-17, (5, 1) = 0.6633681086898639e-14, (5, 2) = 0.375032295134198e-14, (5, 3) = 0.1812909654403e-15, (5, 4) = -0.12070342909717134e-15, (5, 5) = -0.1596142149617371e-15, (5, 6) = -0.10825942697009252e-15, (5, 7) = 0.18103213104082225e-14, (5, 8) = -0.16764369656937747e-16, (6, 1) = 0.13129840358265059e-13, (6, 2) = 0.7277452916946674e-14, (6, 3) = 0.29179991421150325e-15, (6, 4) = 0.6399550172322422e-16, (6, 5) = -0.22594631239149157e-15, (6, 6) = -0.9174305403629006e-16, (6, 7) = 0.19951541475781265e-15, (6, 8) = -0.43537055740415584e-16, (7, 1) = 0.16558247533243953e-13, (7, 2) = 0.10179772597290096e-13, (7, 3) = 0.5878293642247217e-15, (7, 4) = -0.7410342523151938e-16, (7, 5) = -0.15996611253844913e-15, (7, 6) = 0.1692951814608457e-14, (7, 7) = 0.1740069789475928e-16, (7, 8) = -0.31275576634239585e-16, (8, 1) = 0.1212069312549711e-13, (8, 2) = 0.9543541214045693e-14, (8, 3) = 0.6704668328631497e-15, (8, 4) = -0.44521023708016503e-16, (8, 5) = 0.22199060125967257e-15, (8, 6) = -0.6750801329037803e-15, (8, 7) = 0.21656382445432134e-14, (8, 8) = -0.6435827646555829e-16, (9, 1) = -0.3772034753492132e-14, (9, 2) = 0.5759418721910007e-14, (9, 3) = 0.6527662555019791e-15, (9, 4) = 0.441738628379015e-16, (9, 5) = 0.5658548136938054e-15, (9, 6) = 0.3154847106536809e-14, (9, 7) = 0.7858154752173474e-15, (9, 8) = -0.10311351058385951e-15, (10, 1) = -0.2440608209204811e-13, (10, 2) = 0.28469235452884776e-14, (10, 3) = 0.3866914448702218e-15, (10, 4) = -0.9144516798022403e-16, (10, 5) = -0.10145948392816397e-15, (10, 6) = -0.24442421173399023e-14, (10, 7) = 0.6377245986878261e-16, (10, 8) = -0.17205372425145497e-15, (11, 1) = -0.4123657586548479e-13, (11, 2) = 0.47019634354738835e-14, (11, 3) = 0.7390229161834592e-15, (11, 4) = 0.33830363819193296e-15, (11, 5) = -0.49321754692558303e-16, (11, 6) = -0.7883634580987387e-16, (11, 7) = 0.9384901596020932e-15, (11, 8) = -0.252982075836778e-15, (12, 1) = -0.45482420467991964e-13, (12, 2) = 0.10203470081300767e-13, (12, 3) = 0.7534533806982218e-15, (12, 4) = -0.20573415143689883e-15, (12, 5) = 0.10308521674561246e-15, (12, 6) = -0.306193488603141e-14, (12, 7) = 0.11321549203383949e-14, (12, 8) = -0.3982374979919039e-15, (13, 1) = -0.3692752598727219e-13, (13, 2) = 0.13076295718742951e-13, (13, 3) = -0.42293951496931934e-15, (13, 4) = 0.5793784843910567e-15, (13, 5) = 0.1255527766044886e-15, (13, 6) = 0.14631798233506174e-14, (13, 7) = -0.537526963696651e-16, (13, 8) = -0.43906151981417637e-15, (14, 1) = -0.12180528075494553e-13, (14, 2) = 0.67927440842877486e-14, (14, 3) = -0.7751636018193131e-16, (14, 4) = 0.5989904770359435e-15, (14, 5) = -0.5359630097047029e-16, (14, 6) = -0.13487931939540982e-14, (14, 7) = 0.17179524507174635e-14, (14, 8) = -0.4135968388921909e-15, (15, 1) = 0.3685354836152949e-13, (15, 2) = -0.1664738219468053e-13, (15, 3) = -0.1573909843712974e-14, (15, 4) = 0.794295869180883e-15, (15, 5) = -0.35245821132597215e-17, (15, 6) = -0.11581448838991115e-14, (15, 7) = 0.4173536492488085e-15, (15, 8) = -0.5280874496874946e-15, (16, 1) = 0.10366564920219266e-12, (16, 2) = -0.641879285025774e-13, (16, 3) = 0.20566596972943627e-14, (16, 4) = 0.9266548671796218e-16, (16, 5) = 0.2353325946868509e-15, (16, 6) = 0.18284547948529757e-15, (16, 7) = 0.17622934571819217e-14, (16, 8) = -0.4976417588290511e-15, (17, 1) = 0.14484169648891652e-12, (17, 2) = -0.12297441716887176e-12, (17, 3) = -0.1068182350278374e-14, (17, 4) = -0.5854540915281354e-15, (17, 5) = 0.14535461070078002e-15, (17, 6) = 0.4266610794669015e-14, (17, 7) = 0.4607205530424001e-15, (17, 8) = -0.5886742340881105e-15, (18, 1) = 0.10566223147991009e-12, (18, 2) = -0.13820205741801644e-12, (18, 3) = -0.20123078614811413e-14, (18, 4) = -0.7561398183639445e-16, (18, 5) = 0.2140425035665995e-15, (18, 6) = -0.23561554941772816e-14, (18, 7) = 0.19085985864153077e-14, (18, 8) = -0.5917377444519284e-15, (19, 1) = -0.1679773165980789e-13, (19, 2) = -0.5657134915236689e-13, (19, 3) = 0.1360256674443056e-14, (19, 4) = 0.8707809795722639e-15, (19, 5) = 0.21528390503198728e-15, (19, 6) = -0.5127690553955357e-15, (19, 7) = -0.4826901389884211e-15, (19, 8) = -0.5868641866801674e-15, (20, 1) = -0.14894339690033946e-12, (20, 2) = 0.9602247884781634e-13, (20, 3) = 0.26294719195036576e-14, (20, 4) = -0.502638096454554e-15, (20, 5) = 0.32194304936576336e-16, (20, 6) = 0.25628117174786136e-14, (20, 7) = 0.8377380590237005e-15, (20, 8) = -0.7167682554400696e-15, (21, 1) = -0.20361898739374174e-12, (21, 2) = 0.2159454684255011e-12, (21, 3) = -0.18390456690678095e-14, (21, 4) = 0.16085741943765483e-14, (21, 5) = -0.3751395624658827e-15, (21, 6) = 0.68012918504538484e-14, (21, 7) = 0.25431273083692057e-15, (21, 8) = -0.32419369341927803e-15, (22, 1) = -0.15689971156050872e-12, (22, 2) = 0.21942355904154635e-12, (22, 3) = 0.24099783601109427e-14, (22, 4) = -0.9953957508184104e-15, (22, 5) = 0.8621846497603312e-16, (22, 6) = 0.5849807663571661e-14, (22, 7) = -0.11527500167921049e-14, (22, 8) = 0.5354827376431221e-17, (23, 1) = -0.5259760291556636e-13, (23, 2) = 0.11178856094650594e-12, (23, 3) = -0.8417911290913919e-15, (23, 4) = -0.2207954041887918e-14, (23, 5) = -0.2243044830543838e-15, (23, 6) = 0.15023300748706678e-13, (23, 7) = -0.973903527171104e-15, (23, 8) = -0.32331856502436973e-16, (24, 1) = 0.4443374116829714e-13, (24, 2) = -0.32070809165957353e-13, (24, 3) = -0.34880954720513526e-15, (24, 4) = 0.1231856080413119e-14, (24, 5) = 0.55827387662745e-17, (24, 6) = 0.54319152119881845e-14, (24, 7) = -0.36766647288947504e-15, (24, 8) = -0.3464894477365739e-15, (25, 1) = 0.933019806478322e-13, (25, 2) = -0.13384281309083258e-12, (25, 3) = 0.33197903067130842e-14, (25, 4) = -0.3132682814760555e-14, (25, 5) = -0.28711859306736457e-15, (25, 6) = -0.5470120367959728e-14, (25, 7) = -0.13432374782466947e-14, (25, 8) = 0.2039729831139547e-15, (26, 1) = 0.8977989989773004e-13, (26, 2) = -0.15869171973868484e-12, (26, 3) = 0.23278286029344056e-14, (26, 4) = -0.29354266305866873e-15, (26, 5) = 0.230020828715235e-16, (26, 6) = 0.32968730420794027e-14, (26, 7) = 0.12490842693534877e-14, (26, 8) = 0.3964694184561624e-15, (27, 1) = 0.5380760356273936e-13, (27, 2) = -0.11847870856872766e-12, (27, 3) = 0.2688345544666234e-15, (27, 4) = 0.10619582772389209e-14, (27, 5) = -0.12172639957600914e-15, (27, 6) = 0.3185441694869011e-14, (27, 7) = -0.1489879250602313e-14, (27, 8) = 0.6565146261655062e-15, (28, 1) = 0.10742518103279055e-13, (28, 2) = -0.495306438002946e-13, (28, 3) = 0.4310166135267635e-14, (28, 4) = 0.15683143667115227e-14, (28, 5) = 0.3453405106322541e-16, (28, 6) = 0.1018279419881744e-13, (28, 7) = -0.13632661970738383e-14, (28, 8) = 0.4729842715233933e-15, (29, 1) = -0.2151478390347912e-13, (29, 2) = 0.12771727815782967e-13, (29, 3) = 0.5629863069659428e-14, (29, 4) = -0.14434075930994008e-15, (29, 5) = -0.3455164788374167e-15, (29, 6) = 0.1345923386438848e-15, (29, 7) = 0.6628740317227967e-15, (29, 8) = 0.2370286262471212e-15, (30, 1) = -0.36756430829417473e-13, (30, 2) = 0.4915770478845277e-13, (30, 3) = 0.6364093247487674e-15, (30, 4) = 0.2644278305592894e-15, (30, 5) = 0.19990963262100253e-15, (30, 6) = -0.4147202106691808e-14, (30, 7) = -0.13135113472923236e-14, (30, 8) = 0.79220739160263215e-15, (31, 1) = -0.38142291891788485e-13, (31, 2) = 0.5919398917266647e-13, (31, 3) = 0.13925650940938171e-13, (31, 4) = 0.5542574200502359e-15, (31, 5) = -0.15301256420629026e-15, (31, 6) = 0.4509491169458926e-14, (31, 7) = 0.2495446814784076e-15, (31, 8) = 0.8083662326018128e-15, (32, 1) = -0.30039055413759246e-13, (32, 2) = 0.4722520516979542e-13, (32, 3) = 0.5948740452406517e-14, (32, 4) = 0.3314613919766506e-14, (32, 5) = -0.20036994088420754e-15, (32, 6) = 0.14649613744607957e-13, (32, 7) = -0.7728084332522093e-16, (32, 8) = 0.1933770820597525e-15, (33, 1) = -0.18092057280170896e-13, (33, 2) = 0.23205059829259787e-13, (33, 3) = 0.6050533016944145e-14, (33, 4) = 0.28168060491597395e-15, (33, 5) = 0.2339278829021382e-15, (33, 6) = 0.9701926801570967e-14, (33, 7) = 0.18835370879179478e-15, (33, 8) = 0.21984174087752556e-15, (34, 1) = -0.714859442764903e-14, (34, 2) = -0.19154332194589852e-14, (34, 3) = 0.1348765326796076e-13, (34, 4) = -0.9615633283396454e-15, (34, 5) = 0.8312623586890217e-16, (34, 6) = 0.29574319371284083e-14, (34, 7) = -0.30915701787131377e-14, (34, 8) = 0.27524560756785973e-15, (35, 1) = .0, (35, 2) = -0.20166673380620537e-13, (35, 3) = -0.1179663713625192e-14, (35, 4) = .0, (35, 5) = 0.54374029653237e-16, (35, 6) = -0.3047767633518586e-15, (35, 7) = .0, (35, 8) = -0.3103350258003601e-16}, datatype = float[8], order = C_order); if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "right" then return X[35] elif outpoint = "order" then return 8 elif outpoint = "error" then return HFloat(2.1942355904154635e-13) elif outpoint = "errorproc" then error "this is already the error procedure" elif outpoint = "rawdata" then return [8, 35, [T(eta), diff(T(eta), eta), f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), g(eta), diff(g(eta), eta), diff(diff(g(eta), eta), eta)], X, Y] else return ('procname')(x_bvp) end if end if; if outpoint < X[1] or X[35] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[35] end if; V := array([1 = 4, 2 = 0]); if Digits <= trunc(evalhf(Digits)) then L := Vector(4, 'datatype' = 'float'[8]); yout := Vector(8, 'datatype' = 'float'[8]); evalhf(`dsolve/numeric/lagrange`(35, 8, X, Y, outpoint, var(yout), var(L), var(V))) else L := Vector(4, 'datatype' = 'sfloat'); yout := Vector(8, 'datatype' = 'sfloat'); `dsolve/numeric/lagrange`(35, 8, X, Y, outpoint, yout, L, V) end if; [eta = outpoint, seq('[T(eta), diff(T(eta), eta), f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), g(eta), diff(g(eta), eta), diff(diff(g(eta), eta), eta)]'[i] = yout[i], i = 1 .. 8)] end proc; if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "method" then return "bvp" elif outpoint = "right" then return X[35] elif outpoint = "order" then return 8 elif outpoint = "error" then return HFloat(2.1942355904154635e-13) elif outpoint = "errorproc" then return eval(errproc) elif outpoint = "rawdata" then return [8, 35, "depnames", X, Y, YP] else error "non-numeric value" end if end if; if outpoint < X[1] or X[35] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[35] end if; if Digits <= trunc(evalhf(Digits)) and (_EnvInFsolve <> true or _EnvDSNumericSaveDigits <= trunc(evalhf(Digits))) then V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 5 ) = (false), ( 4 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = .0, (1, 2) = .0, (2, 1) = .0, (2, 2) = .0, (3, 1) = .0, (3, 2) = .0, (4, 1) = .0, (4, 2) = .0, (5, 1) = .0, (5, 2) = .0, (6, 1) = .0, (6, 2) = .0, (7, 1) = .0, (7, 2) = .0}, datatype = float[8], order = C_order); yout := Vector(8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8]); evalhf(`dsolve/numeric/hermite`(35, 8, X, Y, YP, outpoint, var(yout), var(L), var(V))) else if _EnvInFsolve = true then Digits := _EnvDSNumericSaveDigits end if; V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 5 ) = (false), ( 4 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = 0., (1, 2) = 0., (2, 1) = 0., (2, 2) = 0., (3, 1) = 0., (3, 2) = 0., (4, 1) = 0., (4, 2) = 0., (5, 1) = 0., (5, 2) = 0., (6, 1) = 0., (6, 2) = 0., (7, 1) = 0., (7, 2) = 0.}, order = C_order); yout := Vector(8, {(1) = 0., (2) = 0., (3) = 0., (4) = 0., (5) = 0., (6) = 0., (7) = 0., (8) = 0.}); `dsolve/numeric/hermite`(35, 8, X, Y, YP, outpoint, yout, L, V) end if; [outpoint, seq(yout[i], i = 1 .. 8)] end proc, (2) = Array(1..9, {(1) = 4365885730, (2) = 4365885922, (3) = 4365886066, (4) = 4365886162, (5) = 4365886258, (6) = 4365886354, (7) = 4365886450, (8) = 4365886546, (9) = 4365886642}), (3) = [eta, T(eta), diff(T(eta), eta), f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), g(eta), diff(g(eta), eta), diff(diff(g(eta), eta), eta)], (4) = 0}); solnproc := data[1]; if not type(outpoint, 'numeric') then if outpoint = "solnprocedure" then return eval(solnproc) elif member(outpoint, ["start", "left", "right", "errorproc", "rawdata", "order", "error"]) then return solnproc(eta) elif outpoint = "sysvars" then return data[3] elif procname <> unknown then return ('procname')(eta) else `D(f)` := pointto(data[2][5]); return ('`D(f)`')(eta) end if end if; try res := solnproc(outpoint); res[5] catch: error  end try end proc, (D@@2)(f) = proc (eta) local res, data, solnproc, `\`@@\`(D,2)(f)`, outpoint; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then outpoint := evalf[_EnvDSNumericSaveDigits](eta) else outpoint := evalf(eta) end if; data := Array(1..4, {(1) = proc (outpoint) local X, Y, YP, yout, errproc, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; X := Vector(35, {(1) = .0, (2) = .20472410284384834, (3) = .4211863305043777, (4) = .6516720600363566, (5) = .8993212463695047, (6) = 1.1685298486145983, (7) = 1.4468423487039677, (8) = 1.7229359537348594, (9) = 1.9968629039389574, (10) = 2.268673421313649, (11) = 2.5378029414464036, (12) = 2.8035694406371796, (13) = 3.066093306207618, (14) = 3.325490409787653, (15) = 3.581658551212711, (16) = 3.8338699831956804, (17) = 4.08221409418108, (18) = 4.32686351028502, (19) = 4.567978384890087, (20) = 4.805327686982952, (21) = 5.038694055040347, (22) = 5.268271439374476, (23) = 5.494238613721016, (24) = 5.716760727626145, (25) = 5.936046030245326, (26) = 6.152283284474133, (27) = 6.365596166650127, (28) = 6.576100208955955, (29) = 6.783903531026379, (30) = 6.9894017136482445, (31) = 7.1936893054340665, (32) = 7.3968755375272774, (33) = 7.5989780331822505, (34) = 7.80001395061423, (35) = 8.0}, datatype = float[8], order = C_order); Y := Matrix(35, 8, {(1, 1) = .6800687881055213, (1, 2) = -.11511620494228465, (1, 3) = .0, (1, 4) = .0, (1, 5) = .37811799244920324, (1, 6) = .0, (1, 7) = 1.4117113181447536, (1, 8) = .0, (2, 1) = .6560325255507624, (2, 2) = -.11975318257035834, (2, 3) = 0.7923823323670406e-2, (2, 4) = 0.77409636920803e-1, (2, 5) = .37811352171842283, (2, 6) = .2890131130048752, (2, 7) = 1.411746095030339, (2, 8) = 0.5096115493465316e-3, (3, 1) = .6295510504863806, (3, 2) = -.12496974762969729, (3, 3) = 0.335383312275963e-1, (3, 4) = .15925409044318592, (3, 5) = .37807999460677805, (3, 6) = .5946253962700148, (3, 7) = 1.4120141336647931, (3, 8) = 0.21567165797040048e-2, (4, 1) = .6000810786889832, (4, 2) = -.13078648524102396, (4, 3) = 0.8028592391087024e-1, (4, 4) = .24638626301264996, (4, 5) = .3779809429150307, (4, 6) = .9201555386630824, (4, 7) = 1.4128327072652163, (4, 8) = 0.51609615183282375e-2, (5, 1) = .5669002581395786, (5, 2) = -.1371916401125017, (5, 3) = .1528922356920777, (5, 4) = .33996920774229683, (5, 5) = .37776827912336824, (5, 6) = 1.27024451829135, (5, 7) = 1.4146572486865054, (5, 8) = 0.9820223828374587e-2, (6, 1) = .5290327802230002, (6, 2) = -.14409851939129248, (6, 3) = .25809973947558784, (6, 4) = .44161902578753254, (6, 5) = .37737598360935093, (6, 6) = 1.651514368911508, (6, 7) = 1.4181683376757317, (6, 8) = 0.16551767115543403e-1, (7, 1) = .48797776231069934, (7, 2) = -.15082401972104326, (7, 3) = .3956159784223351, (7, 4) = .546566995361021, (7, 5) = .3767592394353197, (7, 6) = 2.046956560700791, (7, 7) = 1.423951238924928, (7, 8) = 0.2530574188627694e-1, (8, 1) = .4455097689486867, (8, 2) = -.15662271721966162, (8, 3) = .560869343108844, (8, 4) = .650475986042538, (8, 5) = .3759074764267706, (8, 6) = 2.441192046655901, (8, 7) = 1.432339477818811, (8, 8) = 0.3574403196512969e-1, (9, 1) = .4019714737781167, (9, 2) = -.16097976785337778, (9, 3) = .7531425930170065, (9, 4) = .7533024381136638, (9, 5) = .37480724717639446, (9, 6) = 2.835034683009538, (9, 7) = 1.4437395006677125, (9, 8) = 0.4775839761612408e-1, (10, 1) = .3578432116772004, (10, 2) = -.16334348080313163, (10, 3) = .9717278248653037, (10, 4) = .8550010473136669, (10, 5) = .3734541277931229, (10, 6) = 3.229383694258226, (10, 7) = 1.458517002768622, (10, 8) = 0.61223001646425766e-1, (11, 1) = .3138427499613885, (11, 2) = -.16317816891693035, (11, 3) = 1.2153400964446428, (11, 4) = .9552992408083281, (11, 5) = .3718558392388385, (11, 6) = 3.6243047360166147, (11, 7) = 1.4769469365488954, (11, 8) = 0.7595912211689054e-1, (12, 1) = .2708197137303571, (12, 2) = -.1600634554218884, (12, 3) = 1.4823382823352556, (12, 4) = 1.0538888365598136, (12, 5) = .37003049775688535, (12, 6) = 4.019692806711686, (12, 7) = 1.499207309863791, (12, 8) = 0.9175293789636808e-1, (13, 1) = .22955356513321082, (13, 2) = -.15376655017624774, (13, 3) = 1.771737568613686, (13, 4) = 1.1507687254222438, (13, 5) = .3679982116567567, (13, 6) = 4.4166208604325305, (13, 7) = 1.5254608253960227, (13, 8) = .1084188111357934, (14, 1) = .19082533490993417, (14, 2) = -.14430646057430674, (14, 3) = 2.0826000767466843, (14, 4) = 1.245943366242156, (14, 5) = .36578343902893384, (14, 6) = 4.816160855718664, (14, 7) = 1.555816989411266, (14, 8) = .12576396753467523, (15, 1) = .1553751277762106, (15, 2) = -.13201176794608704, (15, 3) = 2.4137473802608245, (15, 4) = 1.339345748340381, (15, 5) = .36341579280951025, (15, 6) = 5.219031239689751, (15, 7) = 1.590302627188974, (15, 8) = .14357624150955856, (16, 1) = .12386204102729283, (16, 2) = -.11755024367601966, (16, 3) = 2.7630782885466254, (16, 4) = 1.4306932234947345, (16, 5) = .36093354758169927, (16, 6) = 5.624880231600311, (16, 7) = 1.628778496660186, (16, 8) = .16159615167866462, (17, 1) = 0.9660535822960543e-1, (17, 2) = -.1017757389941151, (17, 3) = 3.129486686134902, (17, 4) = 1.5200126345068938, (17, 5) = .35836839869593895, (17, 6) = 6.034545798261897, (17, 7) = 1.6711446595363155, (17, 8) = .17962464210679904, (18, 1) = 0.7367857489109031e-1, (18, 2) = -0.8562488366373487e-1, (18, 3) = 3.512055738361352, (18, 4) = 1.6073685521372294, (18, 5) = .3557501139971933, (18, 6) = 6.448944019154785, (18, 7) = 1.7172737332675954, (18, 8) = .19747921374137573, (19, 1) = 0.54932297215312065e-1, (19, 2) = -0.6998673195550159e-1, (19, 3) = 3.909931726386895, (19, 4) = 1.692827501352813, (19, 5) = .3531065609803749, (19, 6) = 6.868914696313914, (19, 7) = 1.7670034201936595, (19, 8) = .21498974802357024, (20, 1) = 0.4005339598008939e-1, (20, 2) = -0.55610136299587054e-1, (20, 3) = 4.32164450688784, (20, 4) = 1.77632437502917, (20, 5) = .35046725376876914, (20, 6) = 7.294527651516823, (20, 7) = 1.8200532646404195, (20, 8) = .23197376211102866, (21, 1) = 0.28580538470935495e-1, (21, 2) = -0.43000484038105184e-1, (21, 3) = 4.745698402930282, (21, 4) = 1.8578072943415187, (21, 5) = .34785831678559404, (21, 6) = 7.725732483059856, (21, 7) = 1.8760988685224456, (21, 8) = .24826982947943302, (22, 1) = 0.1996278053815402e-1, (22, 2) = -0.3238521326136785e-1, (22, 3) = 5.181353487043006, (22, 4) = 1.9373734562831926, (22, 5) = .34529737977456776, (22, 6) = 8.163122417826008, (22, 7) = 1.9348863621148453, (22, 8) = .26376703841962096, (23, 1) = 0.1365169808933715e-1, (23, 2) = -0.23777175833410786e-1, (23, 3) = 5.6279306071831305, (23, 4) = 2.015116420764514, (23, 5) = .34279810538335065, (23, 6) = 8.60720314062156, (23, 7) = 1.996152613508324, (23, 8) = .2783739405626572, (24, 1) = 0.9141837377667494e-2, (24, 2) = -0.17032577718097307e-1, (24, 3) = 6.084805468966238, (24, 4) = 2.0911257386418485, (24, 5) = .340370194206626, (24, 6) = 9.058397452645558, (24, 7) = 2.059629639205023, (24, 8) = .29201833127085214, (25, 1) = 0.5994108163660374e-2, (25, 2) = -0.11912234609982005e-1, (25, 3) = 6.551523204740028, (25, 4) = 2.165505306248221, (25, 5) = .33801891240256376, (25, 6) = 9.517167898738702, (25, 7) = 2.1250654794952815, (25, 8) = .3046497396204352, (26, 1) = 0.38470588985903055e-2, (26, 2) = -0.8138240294430613e-2, (26, 3) = 7.027670958837816, (26, 4) = 2.238350997284669, (26, 5) = .3357460261587689, (26, 6) = 9.983900741341126, (26, 7) = 2.1922108137474403, (26, 8) = .3162340733370819, (27, 1) = 0.2415525316376395e-2, (27, 2) = -0.5433887636433142e-2, (27, 3) = 7.51276194601149, (27, 4) = 2.3097349632638142, (27, 5) = .33355055765848207, (27, 6) = 10.458803767615885, (27, 7) = 2.2608058123457324, (27, 8) = .32675028982528975, (28, 1) = 0.1482134442049264e-2, (28, 2) = -0.35473836650395138e-2, (28, 3) = 8.006344879280913, (28, 4) = 2.3797246033167165, (28, 5) = .3314285083244437, (28, 6) = 10.942023485632674, (28, 7) = 2.3305985328398995, (28, 8) = .3361925680987284, (29, 1) = 0.8867798277494013e-3, (29, 2) = -0.22649595163979426e-2, (29, 3) = 8.508000609042815, (29, 4) = 2.4483823707573626, (29, 5) = .32937324890833686, (29, 6) = 11.433650368387816, (29, 7) = 2.4013472411799133, (29, 8) = .34456875648665847, (30, 1) = 0.5147830582056192e-3, (30, 2) = -0.14137540243798479e-2, (30, 3) = 9.018079243243903, (30, 4) = 2.515861978503066, (30, 5) = .3273730983678873, (30, 6) = 11.934451666568503, (30, 7) = 2.4729258238550673, (30, 8) = .3519085257409124, (31, 1) = 0.28659669973437794e-3, (31, 2) = -0.8605928820212513e-3, (31, 3) = 9.538856126749963, (31, 4) = 2.582539204272471, (31, 5) = .32540795861125427, (31, 6) = 12.44702875421768, (31, 7) = 2.545481761283621, (31, 8) = .3582667626570985, (32, 1) = 0.1500417202447516e-3, (32, 2) = -0.5106757568196689e-3, (32, 3) = 10.070296337466763, (32, 4) = 2.648460200960687, (32, 5) = .32346579035064904, (32, 6) = 12.971669786325668, (32, 7) = 2.618840629421426, (32, 8) = .36366514670687944, (33, 1) = 0.7037994109756306e-4, (33, 2) = -0.2953327633691435e-3, (33, 3) = 10.612149661123444, (33, 4) = 2.713638344636691, (33, 5) = .3215339926041049, (33, 6) = 13.508402962580126, (33, 7) = 2.692804574171342, (33, 8) = .3681309842732225, (34, 1) = 0.2508902470016854e-4, (34, 2) = -0.16641397198798735e-3, (34, 3) = 11.164172903455626, (34, 4) = 2.778084059250828, (34, 5) = .31959890842541655, (34, 6) = 14.057217972519599, (34, 7) = 2.767185195379349, (34, 8) = .3716992797163207, (35, 1) = .0, (35, 2) = -0.9134248027914396e-4, (35, 3) = 11.726129087316146, (35, 4) = 2.841804712, (35, 5) = .31764623058532726, (35, 6) = 14.618068801887034, (35, 7) = 2.841804712, (35, 8) = .3744112941998848}, datatype = float[8], order = C_order); YP := Matrix(35, 8, {(1, 1) = -.11511620494228465, (1, 2) = -0.21848192814805704e-1, (1, 3) = .0, (1, 4) = .37811799244920324, (1, 5) = .0, (1, 6) = 1.4117113181447536, (1, 7) = .0, (1, 8) = .0, (2, 1) = -.11975318257035834, (2, 2) = -0.2340744045683882e-1, (2, 3) = 0.77409636920803e-1, (2, 4) = .37811352171842283, (2, 5) = -0.6501906335844444e-4, (2, 6) = 1.411746095030339, (2, 7) = 0.5096115493465316e-3, (2, 8) = 0.4978393071034031e-2, (3, 1) = -.12496974762969729, (3, 2) = -0.2472737923936798e-1, (3, 3) = .15925409044318592, (3, 4) = .37807999460677805, (3, 5) = -0.26633217492876086e-3, (3, 6) = 1.4120141336647931, (3, 7) = 0.21567165797040048e-2, (3, 8) = 0.10238889928920546e-1, (4, 1) = -.13078648524102396, (4, 2) = -0.25653205134369778e-1, (4, 3) = .24638626301264996, (4, 4) = .3779809429150307, (4, 5) = -0.6148579022689942e-3, (4, 6) = 1.4128327072652163, (4, 7) = 0.51609615183282375e-2, (4, 8) = 0.15826282713831068e-1, (5, 1) = -.1371916401125017, (5, 2) = -0.25935739559925664e-1, (5, 3) = .33996920774229683, (5, 4) = .37776827912336824, (5, 5) = -0.1124149710447512e-2, (5, 6) = 1.4146572486865054, (5, 7) = 0.9820223828374587e-2, (5, 8) = 0.21793013656706044e-1, (6, 1) = -.14409851939129248, (6, 2) = -0.25166962349877944e-1, (6, 3) = .44161902578753254, (6, 4) = .37737598360935093, (6, 5) = -0.1811204871965437e-2, (6, 6) = 1.4181683376757317, (6, 7) = 0.16551767115543403e-1, (6, 8) = 0.2819908212449082e-1, (7, 1) = -.15082401972104326, (7, 2) = -0.22883345616240332e-1, (7, 3) = .546566995361021, (7, 4) = .3767592394353197, (7, 5) = -0.26379430409376966e-2, (7, 6) = 1.423951238924928, (7, 7) = 0.2530574188627694e-1, (7, 8) = 0.3467874447064803e-1, (8, 1) = -.15662271721966162, (8, 2) = -0.1879263785160887e-1, (8, 3) = .650475986042538, (8, 4) = .3759074764267706, (8, 5) = -0.3543732228642546e-2, (8, 6) = 1.432339477818811, (8, 7) = 0.3574403196512969e-1, (8, 8) = 0.40893604100372564e-1, (9, 1) = -.16097976785337778, (9, 2) = -0.12656020813637847e-1, (9, 3) = .7533024381136638, (9, 4) = .37480724717639446, (9, 5) = -0.4495519532277643e-2, (9, 6) = 1.4437395006677125, (9, 7) = 0.4775839761612408e-1, (9, 8) = 0.4677096408972486e-1, (10, 1) = -.16334348080313163, (10, 2) = -0.4369045779836154e-2, (10, 3) = .8550010473136669, (10, 4) = .3734541277931229, (10, 5) = -0.5462016466357188e-2, (10, 6) = 1.458517002768622, (10, 7) = 0.61223001646425766e-1, (10, 8) = 0.5223392148642055e-1, (11, 1) = -.16317816891693035, (11, 2) = 0.5922044795027756e-2, (11, 3) = .9552992408083281, (11, 4) = .3718558392388385, (11, 5) = -0.6411982626269342e-2, (11, 6) = 1.4769469365488954, (11, 7) = 0.7595912211689054e-1, (11, 8) = 0.57193745442795506e-1, (12, 1) = -.1600634554218884, (12, 2) = 0.17740826720045982e-1, (12, 3) = 1.0538888365598136, (12, 4) = .37003049775688535, (12, 5) = -0.7316860858898448e-2, (12, 6) = 1.499207309863791, (12, 7) = 0.9175293789636808e-1, (12, 8) = 0.6156719989689199e-1, (13, 1) = -.15376655017624774, (13, 2) = 0.30296704807712918e-1, (13, 3) = 1.1507687254222438, (13, 4) = .3679982116567567, (13, 5) = -0.8154721726663258e-2, (13, 6) = 1.5254608253960227, (13, 7) = .1084188111357934, (13, 8) = 0.6529471058639535e-1, (14, 1) = -.14430646057430674, (14, 2) = 0.4250806547922589e-1, (14, 3) = 1.245943366242156, (14, 4) = .36578343902893384, (14, 5) = -0.8907641852239972e-2, (14, 6) = 1.555816989411266, (14, 7) = .12576396753467523, (14, 8) = 0.6832600602649756e-1, (15, 1) = -.13201176794608704, (15, 2) = 0.53137961864251064e-1, (15, 3) = 1.339345748340381, (15, 4) = .36341579280951025, (15, 5) = -0.9561372713284904e-2, (15, 6) = 1.590302627188974, (15, 7) = .14357624150955856, (15, 8) = 0.7062057397986593e-1, (16, 1) = -.11755024367601966, (16, 2) = 0.6102495948240774e-1, (16, 3) = 1.4306932234947345, (16, 4) = .36093354758169927, (16, 5) = -0.10105088797683102e-1, (16, 6) = 1.628778496660186, (16, 7) = .16159615167866462, (16, 8) = 0.7215057669693223e-1, (17, 1) = -.1017757389941151, (17, 2) = 0.6540052175916726e-1, (17, 3) = 1.5200126345068938, (17, 4) = .35836839869593895, (17, 5) = -0.10534973995215179e-1, (17, 6) = 1.6711446595363155, (17, 7) = .17962464210679904, (17, 8) = 0.7291378535787908e-1, (18, 1) = -0.8562488366373487e-1, (18, 2) = 0.6601577799350121e-1, (18, 3) = 1.6073685521372294, (18, 4) = .3557501139971933, (18, 5) = -0.1085154690665931e-1, (18, 6) = 1.7172737332675954, (18, 7) = .19747921374137573, (18, 8) = 0.729227591867127e-1, (19, 1) = -0.6998673195550159e-1, (19, 2) = 0.6316514351336697e-1, (19, 3) = 1.692827501352813, (19, 4) = .3531065609803749, (19, 5) = -0.11059054704056444e-1, (19, 6) = 1.7670034201936595, (19, 7) = .21498974802357024, (19, 8) = 0.7220335350513343e-1, (20, 1) = -0.55610136299587054e-1, (20, 2) = 0.57585436563437925e-1, (20, 3) = 1.77632437502917, (20, 4) = .35046725376876914, (20, 5) = -0.11164970048420729e-1, (20, 6) = 1.8200532646404195, (20, 7) = .23197376211102866, (20, 8) = 0.7079658035527173e-1, (21, 1) = -0.43000484038105184e-1, (21, 2) = 0.50253823099175934e-1, (21, 3) = 1.8578072943415187, (21, 4) = .34785831678559404, (21, 5) = -0.111801623302582e-1, (21, 6) = 1.8760988685224456, (21, 7) = .24826982947943302, (21, 8) = 0.6875838561442682e-1, (22, 1) = -0.3238521326136785e-1, (22, 2) = 0.42146604914204154e-1, (22, 3) = 1.9373734562831926, (22, 4) = .34529737977456776, (22, 5) = -0.11117984320829395e-1, (22, 6) = 1.9348863621148453, (22, 7) = .26376703841962096, (22, 8) = 0.6615191423106347e-1, (23, 1) = -0.23777175833410786e-1, (23, 2) = 0.34085049240114594e-1, (23, 3) = 2.015116420764514, (23, 4) = .34279810538335065, (23, 5) = -0.10993236209989717e-1, (23, 6) = 1.996152613508324, (23, 7) = .2783739405626572, (23, 8) = 0.6304618263872158e-1, (24, 1) = -0.17032577718097307e-1, (24, 2) = 0.2665729331676524e-1, (24, 3) = 2.0911257386418485, (24, 4) = .340370194206626, (24, 5) = -0.10821600556493872e-1, (24, 6) = 2.059629639205023, (24, 7) = .29201833127085214, (24, 8) = 0.59514066560478224e-1, (25, 1) = -0.11912234609982005e-1, (25, 2) = 0.20207684956014358e-1, (25, 3) = 2.165505306248221, (25, 4) = .33801891240256376, (25, 5) = -0.10619047217973444e-1, (25, 6) = 2.1250654794952815, (25, 7) = .3046497396204352, (25, 8) = 0.55629289468927506e-1, (26, 1) = -0.8138240294430613e-2, (26, 2) = 0.14875114888345182e-1, (26, 3) = 2.238350997284669, (26, 4) = .3357460261587689, (26, 5) = -0.10401381660268688e-1, (26, 6) = 2.1922108137474403, (26, 7) = .3162340733370819, (26, 8) = 0.5146542077826284e-1, (27, 1) = -0.5433887636433142e-2, (27, 2) = 0.1064880363610196e-1, (27, 3) = 2.3097349632638142, (27, 4) = .33355055765848207, (27, 5) = -0.10183874373236527e-1, (27, 6) = 2.2608058123457324, (27, 7) = .32675028982528975, (27, 8) = 0.4709533876452156e-1, (28, 1) = -0.35473836650395138e-2, (28, 2) = 0.7422525245840296e-2, (28, 3) = 2.3797246033167165, (28, 4) = .3314285083244437, (28, 5) = -0.9980819151111209e-2, (28, 6) = 2.3305985328398995, (28, 7) = .3361925680987284, (28, 8) = 0.42588832612515365e-1, (29, 1) = -0.22649595163979426e-2, (29, 2) = 0.5042123940643825e-2, (29, 3) = 2.4483823707573626, (29, 4) = .32937324890833686, (29, 5) = -0.9805194239856069e-2, (29, 6) = 2.4013472411799133, (29, 7) = .34456875648665847, (29, 8) = 0.3801127009896496e-1, (30, 1) = -0.14137540243798479e-2, (30, 2) = 0.3338358133232503e-2, (30, 3) = 2.515861978503066, (30, 4) = .3273730983678873, (30, 5) = -0.9668229828749347e-2, (30, 6) = 2.4729258238550673, (30, 7) = .3519085257409124, (30, 8) = 0.33415920177751274e-1, (31, 1) = -0.8605928820212513e-3, (31, 2) = 0.21504697796892285e-2, (31, 3) = 2.582539204272471, (31, 4) = .32540795861125427, (31, 5) = -0.957946473248892e-2, (31, 6) = 2.545481761283621, (31, 7) = .3582667626570985, (31, 8) = 0.2883403707075255e-1, (32, 1) = -0.5106757568196689e-3, (32, 2) = 0.13475415217635602e-2, (32, 3) = 2.648460200960687, (32, 4) = .32346579035064904, (32, 5) = -0.9547805614663327e-2, (32, 6) = 2.618840629421426, (32, 7) = .36366514670687944, (32, 8) = 0.2431324030318291e-1, (33, 1) = -0.2953327633691435e-3, (33, 2) = 0.8213655825998622e-3, (33, 3) = 2.713638344636691, (33, 4) = .3215339926041049, (33, 5) = -0.9580452220455518e-2, (33, 6) = 2.692804574171342, (33, 7) = .3681309842732225, (33, 8) = 0.19897477825029125e-1, (34, 1) = -0.16641397198798735e-3, (34, 2) = 0.4869401833588519e-3, (34, 3) = 2.778084059250828, (34, 4) = .31959890842541655, (34, 5) = -0.9682706793193413e-2, (34, 6) = 2.767185195379349, (34, 7) = .3716992797163207, (34, 8) = 0.15624441579612264e-1, (35, 1) = -0.9134248027914396e-4, (35, 2) = 0.28074210501946773e-3, (35, 3) = 2.841804712, (35, 4) = .31764623058532726, (35, 5) = -0.9857922636655345e-2, (35, 6) = 2.841804712, (35, 7) = .3744112941998848, (35, 8) = 0.11525252201341013e-1}, datatype = float[8], order = C_order); errproc := proc (x_bvp) local outpoint, X, Y, yout, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; Digits := 15; outpoint := evalf(x_bvp); X := Vector(35, {(1) = .0, (2) = .20472410284384834, (3) = .4211863305043777, (4) = .6516720600363566, (5) = .8993212463695047, (6) = 1.1685298486145983, (7) = 1.4468423487039677, (8) = 1.7229359537348594, (9) = 1.9968629039389574, (10) = 2.268673421313649, (11) = 2.5378029414464036, (12) = 2.8035694406371796, (13) = 3.066093306207618, (14) = 3.325490409787653, (15) = 3.581658551212711, (16) = 3.8338699831956804, (17) = 4.08221409418108, (18) = 4.32686351028502, (19) = 4.567978384890087, (20) = 4.805327686982952, (21) = 5.038694055040347, (22) = 5.268271439374476, (23) = 5.494238613721016, (24) = 5.716760727626145, (25) = 5.936046030245326, (26) = 6.152283284474133, (27) = 6.365596166650127, (28) = 6.576100208955955, (29) = 6.783903531026379, (30) = 6.9894017136482445, (31) = 7.1936893054340665, (32) = 7.3968755375272774, (33) = 7.5989780331822505, (34) = 7.80001395061423, (35) = 8.0}, datatype = float[8], order = C_order); Y := Matrix(35, 8, {(1, 1) = 0.897448267109614e-15, (1, 2) = 0.5588167359031321e-15, (1, 3) = .0, (1, 4) = .0, (1, 5) = 0.13864249525943088e-15, (1, 6) = .0, (1, 7) = 0.12119642246901448e-14, (1, 8) = .0, (2, 1) = 0.17195345226360017e-14, (2, 2) = 0.6181167466331716e-15, (2, 3) = 0.20410981819182018e-16, (2, 4) = 0.10601766383125283e-15, (2, 5) = -0.10490636710626889e-15, (2, 6) = 0.5031667156796011e-15, (2, 7) = 0.11996548135741033e-14, (2, 8) = 0.2771969015070949e-19, (3, 1) = 0.1686737254582015e-14, (3, 2) = 0.9567626045906052e-15, (3, 3) = 0.5604460075778757e-16, (3, 4) = 0.10527680167976054e-15, (3, 5) = 0.20005622560643638e-15, (3, 6) = -0.9913001724420674e-16, (3, 7) = 0.1339416454645461e-14, (3, 8) = -0.1444766507242344e-17, (4, 1) = 0.4333011548848769e-14, (4, 2) = 0.17025161949432959e-14, (4, 3) = 0.10025344277919218e-16, (4, 4) = 0.11064429627289256e-15, (4, 5) = 0.2162077879904567e-15, (4, 6) = -0.4402054460277445e-15, (4, 7) = -0.689926374914955e-15, (4, 8) = -0.2826387029976454e-17, (5, 1) = 0.6633681086898639e-14, (5, 2) = 0.375032295134198e-14, (5, 3) = 0.1812909654403e-15, (5, 4) = -0.12070342909717134e-15, (5, 5) = -0.1596142149617371e-15, (5, 6) = -0.10825942697009252e-15, (5, 7) = 0.18103213104082225e-14, (5, 8) = -0.16764369656937747e-16, (6, 1) = 0.13129840358265059e-13, (6, 2) = 0.7277452916946674e-14, (6, 3) = 0.29179991421150325e-15, (6, 4) = 0.6399550172322422e-16, (6, 5) = -0.22594631239149157e-15, (6, 6) = -0.9174305403629006e-16, (6, 7) = 0.19951541475781265e-15, (6, 8) = -0.43537055740415584e-16, (7, 1) = 0.16558247533243953e-13, (7, 2) = 0.10179772597290096e-13, (7, 3) = 0.5878293642247217e-15, (7, 4) = -0.7410342523151938e-16, (7, 5) = -0.15996611253844913e-15, (7, 6) = 0.1692951814608457e-14, (7, 7) = 0.1740069789475928e-16, (7, 8) = -0.31275576634239585e-16, (8, 1) = 0.1212069312549711e-13, (8, 2) = 0.9543541214045693e-14, (8, 3) = 0.6704668328631497e-15, (8, 4) = -0.44521023708016503e-16, (8, 5) = 0.22199060125967257e-15, (8, 6) = -0.6750801329037803e-15, (8, 7) = 0.21656382445432134e-14, (8, 8) = -0.6435827646555829e-16, (9, 1) = -0.3772034753492132e-14, (9, 2) = 0.5759418721910007e-14, (9, 3) = 0.6527662555019791e-15, (9, 4) = 0.441738628379015e-16, (9, 5) = 0.5658548136938054e-15, (9, 6) = 0.3154847106536809e-14, (9, 7) = 0.7858154752173474e-15, (9, 8) = -0.10311351058385951e-15, (10, 1) = -0.2440608209204811e-13, (10, 2) = 0.28469235452884776e-14, (10, 3) = 0.3866914448702218e-15, (10, 4) = -0.9144516798022403e-16, (10, 5) = -0.10145948392816397e-15, (10, 6) = -0.24442421173399023e-14, (10, 7) = 0.6377245986878261e-16, (10, 8) = -0.17205372425145497e-15, (11, 1) = -0.4123657586548479e-13, (11, 2) = 0.47019634354738835e-14, (11, 3) = 0.7390229161834592e-15, (11, 4) = 0.33830363819193296e-15, (11, 5) = -0.49321754692558303e-16, (11, 6) = -0.7883634580987387e-16, (11, 7) = 0.9384901596020932e-15, (11, 8) = -0.252982075836778e-15, (12, 1) = -0.45482420467991964e-13, (12, 2) = 0.10203470081300767e-13, (12, 3) = 0.7534533806982218e-15, (12, 4) = -0.20573415143689883e-15, (12, 5) = 0.10308521674561246e-15, (12, 6) = -0.306193488603141e-14, (12, 7) = 0.11321549203383949e-14, (12, 8) = -0.3982374979919039e-15, (13, 1) = -0.3692752598727219e-13, (13, 2) = 0.13076295718742951e-13, (13, 3) = -0.42293951496931934e-15, (13, 4) = 0.5793784843910567e-15, (13, 5) = 0.1255527766044886e-15, (13, 6) = 0.14631798233506174e-14, (13, 7) = -0.537526963696651e-16, (13, 8) = -0.43906151981417637e-15, (14, 1) = -0.12180528075494553e-13, (14, 2) = 0.67927440842877486e-14, (14, 3) = -0.7751636018193131e-16, (14, 4) = 0.5989904770359435e-15, (14, 5) = -0.5359630097047029e-16, (14, 6) = -0.13487931939540982e-14, (14, 7) = 0.17179524507174635e-14, (14, 8) = -0.4135968388921909e-15, (15, 1) = 0.3685354836152949e-13, (15, 2) = -0.1664738219468053e-13, (15, 3) = -0.1573909843712974e-14, (15, 4) = 0.794295869180883e-15, (15, 5) = -0.35245821132597215e-17, (15, 6) = -0.11581448838991115e-14, (15, 7) = 0.4173536492488085e-15, (15, 8) = -0.5280874496874946e-15, (16, 1) = 0.10366564920219266e-12, (16, 2) = -0.641879285025774e-13, (16, 3) = 0.20566596972943627e-14, (16, 4) = 0.9266548671796218e-16, (16, 5) = 0.2353325946868509e-15, (16, 6) = 0.18284547948529757e-15, (16, 7) = 0.17622934571819217e-14, (16, 8) = -0.4976417588290511e-15, (17, 1) = 0.14484169648891652e-12, (17, 2) = -0.12297441716887176e-12, (17, 3) = -0.1068182350278374e-14, (17, 4) = -0.5854540915281354e-15, (17, 5) = 0.14535461070078002e-15, (17, 6) = 0.4266610794669015e-14, (17, 7) = 0.4607205530424001e-15, (17, 8) = -0.5886742340881105e-15, (18, 1) = 0.10566223147991009e-12, (18, 2) = -0.13820205741801644e-12, (18, 3) = -0.20123078614811413e-14, (18, 4) = -0.7561398183639445e-16, (18, 5) = 0.2140425035665995e-15, (18, 6) = -0.23561554941772816e-14, (18, 7) = 0.19085985864153077e-14, (18, 8) = -0.5917377444519284e-15, (19, 1) = -0.1679773165980789e-13, (19, 2) = -0.5657134915236689e-13, (19, 3) = 0.1360256674443056e-14, (19, 4) = 0.8707809795722639e-15, (19, 5) = 0.21528390503198728e-15, (19, 6) = -0.5127690553955357e-15, (19, 7) = -0.4826901389884211e-15, (19, 8) = -0.5868641866801674e-15, (20, 1) = -0.14894339690033946e-12, (20, 2) = 0.9602247884781634e-13, (20, 3) = 0.26294719195036576e-14, (20, 4) = -0.502638096454554e-15, (20, 5) = 0.32194304936576336e-16, (20, 6) = 0.25628117174786136e-14, (20, 7) = 0.8377380590237005e-15, (20, 8) = -0.7167682554400696e-15, (21, 1) = -0.20361898739374174e-12, (21, 2) = 0.2159454684255011e-12, (21, 3) = -0.18390456690678095e-14, (21, 4) = 0.16085741943765483e-14, (21, 5) = -0.3751395624658827e-15, (21, 6) = 0.68012918504538484e-14, (21, 7) = 0.25431273083692057e-15, (21, 8) = -0.32419369341927803e-15, (22, 1) = -0.15689971156050872e-12, (22, 2) = 0.21942355904154635e-12, (22, 3) = 0.24099783601109427e-14, (22, 4) = -0.9953957508184104e-15, (22, 5) = 0.8621846497603312e-16, (22, 6) = 0.5849807663571661e-14, (22, 7) = -0.11527500167921049e-14, (22, 8) = 0.5354827376431221e-17, (23, 1) = -0.5259760291556636e-13, (23, 2) = 0.11178856094650594e-12, (23, 3) = -0.8417911290913919e-15, (23, 4) = -0.2207954041887918e-14, (23, 5) = -0.2243044830543838e-15, (23, 6) = 0.15023300748706678e-13, (23, 7) = -0.973903527171104e-15, (23, 8) = -0.32331856502436973e-16, (24, 1) = 0.4443374116829714e-13, (24, 2) = -0.32070809165957353e-13, (24, 3) = -0.34880954720513526e-15, (24, 4) = 0.1231856080413119e-14, (24, 5) = 0.55827387662745e-17, (24, 6) = 0.54319152119881845e-14, (24, 7) = -0.36766647288947504e-15, (24, 8) = -0.3464894477365739e-15, (25, 1) = 0.933019806478322e-13, (25, 2) = -0.13384281309083258e-12, (25, 3) = 0.33197903067130842e-14, (25, 4) = -0.3132682814760555e-14, (25, 5) = -0.28711859306736457e-15, (25, 6) = -0.5470120367959728e-14, (25, 7) = -0.13432374782466947e-14, (25, 8) = 0.2039729831139547e-15, (26, 1) = 0.8977989989773004e-13, (26, 2) = -0.15869171973868484e-12, (26, 3) = 0.23278286029344056e-14, (26, 4) = -0.29354266305866873e-15, (26, 5) = 0.230020828715235e-16, (26, 6) = 0.32968730420794027e-14, (26, 7) = 0.12490842693534877e-14, (26, 8) = 0.3964694184561624e-15, (27, 1) = 0.5380760356273936e-13, (27, 2) = -0.11847870856872766e-12, (27, 3) = 0.2688345544666234e-15, (27, 4) = 0.10619582772389209e-14, (27, 5) = -0.12172639957600914e-15, (27, 6) = 0.3185441694869011e-14, (27, 7) = -0.1489879250602313e-14, (27, 8) = 0.6565146261655062e-15, (28, 1) = 0.10742518103279055e-13, (28, 2) = -0.495306438002946e-13, (28, 3) = 0.4310166135267635e-14, (28, 4) = 0.15683143667115227e-14, (28, 5) = 0.3453405106322541e-16, (28, 6) = 0.1018279419881744e-13, (28, 7) = -0.13632661970738383e-14, (28, 8) = 0.4729842715233933e-15, (29, 1) = -0.2151478390347912e-13, (29, 2) = 0.12771727815782967e-13, (29, 3) = 0.5629863069659428e-14, (29, 4) = -0.14434075930994008e-15, (29, 5) = -0.3455164788374167e-15, (29, 6) = 0.1345923386438848e-15, (29, 7) = 0.6628740317227967e-15, (29, 8) = 0.2370286262471212e-15, (30, 1) = -0.36756430829417473e-13, (30, 2) = 0.4915770478845277e-13, (30, 3) = 0.6364093247487674e-15, (30, 4) = 0.2644278305592894e-15, (30, 5) = 0.19990963262100253e-15, (30, 6) = -0.4147202106691808e-14, (30, 7) = -0.13135113472923236e-14, (30, 8) = 0.79220739160263215e-15, (31, 1) = -0.38142291891788485e-13, (31, 2) = 0.5919398917266647e-13, (31, 3) = 0.13925650940938171e-13, (31, 4) = 0.5542574200502359e-15, (31, 5) = -0.15301256420629026e-15, (31, 6) = 0.4509491169458926e-14, (31, 7) = 0.2495446814784076e-15, (31, 8) = 0.8083662326018128e-15, (32, 1) = -0.30039055413759246e-13, (32, 2) = 0.4722520516979542e-13, (32, 3) = 0.5948740452406517e-14, (32, 4) = 0.3314613919766506e-14, (32, 5) = -0.20036994088420754e-15, (32, 6) = 0.14649613744607957e-13, (32, 7) = -0.7728084332522093e-16, (32, 8) = 0.1933770820597525e-15, (33, 1) = -0.18092057280170896e-13, (33, 2) = 0.23205059829259787e-13, (33, 3) = 0.6050533016944145e-14, (33, 4) = 0.28168060491597395e-15, (33, 5) = 0.2339278829021382e-15, (33, 6) = 0.9701926801570967e-14, (33, 7) = 0.18835370879179478e-15, (33, 8) = 0.21984174087752556e-15, (34, 1) = -0.714859442764903e-14, (34, 2) = -0.19154332194589852e-14, (34, 3) = 0.1348765326796076e-13, (34, 4) = -0.9615633283396454e-15, (34, 5) = 0.8312623586890217e-16, (34, 6) = 0.29574319371284083e-14, (34, 7) = -0.30915701787131377e-14, (34, 8) = 0.27524560756785973e-15, (35, 1) = .0, (35, 2) = -0.20166673380620537e-13, (35, 3) = -0.1179663713625192e-14, (35, 4) = .0, (35, 5) = 0.54374029653237e-16, (35, 6) = -0.3047767633518586e-15, (35, 7) = .0, (35, 8) = -0.3103350258003601e-16}, datatype = float[8], order = C_order); if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "right" then return X[35] elif outpoint = "order" then return 8 elif outpoint = "error" then return HFloat(2.1942355904154635e-13) elif outpoint = "errorproc" then error "this is already the error procedure" elif outpoint = "rawdata" then return [8, 35, [T(eta), diff(T(eta), eta), f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), g(eta), diff(g(eta), eta), diff(diff(g(eta), eta), eta)], X, Y] else return ('procname')(x_bvp) end if end if; if outpoint < X[1] or X[35] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[35] end if; V := array([1 = 4, 2 = 0]); if Digits <= trunc(evalhf(Digits)) then L := Vector(4, 'datatype' = 'float'[8]); yout := Vector(8, 'datatype' = 'float'[8]); evalhf(`dsolve/numeric/lagrange`(35, 8, X, Y, outpoint, var(yout), var(L), var(V))) else L := Vector(4, 'datatype' = 'sfloat'); yout := Vector(8, 'datatype' = 'sfloat'); `dsolve/numeric/lagrange`(35, 8, X, Y, outpoint, yout, L, V) end if; [eta = outpoint, seq('[T(eta), diff(T(eta), eta), f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), g(eta), diff(g(eta), eta), diff(diff(g(eta), eta), eta)]'[i] = yout[i], i = 1 .. 8)] end proc; if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "method" then return "bvp" elif outpoint = "right" then return X[35] elif outpoint = "order" then return 8 elif outpoint = "error" then return HFloat(2.1942355904154635e-13) elif outpoint = "errorproc" then return eval(errproc) elif outpoint = "rawdata" then return [8, 35, "depnames", X, Y, YP] else error "non-numeric value" end if end if; if outpoint < X[1] or X[35] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[35] end if; if Digits <= trunc(evalhf(Digits)) and (_EnvInFsolve <> true or _EnvDSNumericSaveDigits <= trunc(evalhf(Digits))) then V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 5 ) = (false), ( 4 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = .0, (1, 2) = .0, (2, 1) = .0, (2, 2) = .0, (3, 1) = .0, (3, 2) = .0, (4, 1) = .0, (4, 2) = .0, (5, 1) = .0, (5, 2) = .0, (6, 1) = .0, (6, 2) = .0, (7, 1) = .0, (7, 2) = .0}, datatype = float[8], order = C_order); yout := Vector(8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8]); evalhf(`dsolve/numeric/hermite`(35, 8, X, Y, YP, outpoint, var(yout), var(L), var(V))) else if _EnvInFsolve = true then Digits := _EnvDSNumericSaveDigits end if; V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 5 ) = (false), ( 4 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = 0., (1, 2) = 0., (2, 1) = 0., (2, 2) = 0., (3, 1) = 0., (3, 2) = 0., (4, 1) = 0., (4, 2) = 0., (5, 1) = 0., (5, 2) = 0., (6, 1) = 0., (6, 2) = 0., (7, 1) = 0., (7, 2) = 0.}, order = C_order); yout := Vector(8, {(1) = 0., (2) = 0., (3) = 0., (4) = 0., (5) = 0., (6) = 0., (7) = 0., (8) = 0.}); `dsolve/numeric/hermite`(35, 8, X, Y, YP, outpoint, yout, L, V) end if; [outpoint, seq(yout[i], i = 1 .. 8)] end proc, (2) = Array(1..9, {(1) = 4365885730, (2) = 4365885922, (3) = 4365886066, (4) = 4365886162, (5) = 4365886258, (6) = 4365886354, (7) = 4365886450, (8) = 4365886546, (9) = 4365886642}), (3) = [eta, T(eta), diff(T(eta), eta), f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), g(eta), diff(g(eta), eta), diff(diff(g(eta), eta), eta)], (4) = 0}); solnproc := data[1]; if not type(outpoint, 'numeric') then if outpoint = "solnprocedure" then return eval(solnproc) elif member(outpoint, ["start", "left", "right", "errorproc", "rawdata", "order", "error"]) then return solnproc(eta) elif outpoint = "sysvars" then return data[3] elif procname <> unknown then return ('procname')(eta) else `\`@@\`(D,2)(f)` := pointto(data[2][6]); return ('`\`@@\`(D,2)(f)`')(eta) end if end if; try res := solnproc(outpoint); res[6] catch: error  end try end proc, g = proc (eta) local res, data, solnproc, g, outpoint; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then outpoint := evalf[_EnvDSNumericSaveDigits](eta) else outpoint := evalf(eta) end if; data := Array(1..4, {(1) = proc (outpoint) local X, Y, YP, yout, errproc, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; X := Vector(35, {(1) = .0, (2) = .20472410284384834, (3) = .4211863305043777, (4) = .6516720600363566, (5) = .8993212463695047, (6) = 1.1685298486145983, (7) = 1.4468423487039677, (8) = 1.7229359537348594, (9) = 1.9968629039389574, (10) = 2.268673421313649, (11) = 2.5378029414464036, (12) = 2.8035694406371796, (13) = 3.066093306207618, (14) = 3.325490409787653, (15) = 3.581658551212711, (16) = 3.8338699831956804, (17) = 4.08221409418108, (18) = 4.32686351028502, (19) = 4.567978384890087, (20) = 4.805327686982952, (21) = 5.038694055040347, (22) = 5.268271439374476, (23) = 5.494238613721016, (24) = 5.716760727626145, (25) = 5.936046030245326, (26) = 6.152283284474133, (27) = 6.365596166650127, (28) = 6.576100208955955, (29) = 6.783903531026379, (30) = 6.9894017136482445, (31) = 7.1936893054340665, (32) = 7.3968755375272774, (33) = 7.5989780331822505, (34) = 7.80001395061423, (35) = 8.0}, datatype = float[8], order = C_order); Y := Matrix(35, 8, {(1, 1) = .6800687881055213, (1, 2) = -.11511620494228465, (1, 3) = .0, (1, 4) = .0, (1, 5) = .37811799244920324, (1, 6) = .0, (1, 7) = 1.4117113181447536, (1, 8) = .0, (2, 1) = .6560325255507624, (2, 2) = -.11975318257035834, (2, 3) = 0.7923823323670406e-2, (2, 4) = 0.77409636920803e-1, (2, 5) = .37811352171842283, (2, 6) = .2890131130048752, (2, 7) = 1.411746095030339, (2, 8) = 0.5096115493465316e-3, (3, 1) = .6295510504863806, (3, 2) = -.12496974762969729, (3, 3) = 0.335383312275963e-1, (3, 4) = .15925409044318592, (3, 5) = .37807999460677805, (3, 6) = .5946253962700148, (3, 7) = 1.4120141336647931, (3, 8) = 0.21567165797040048e-2, (4, 1) = .6000810786889832, (4, 2) = -.13078648524102396, (4, 3) = 0.8028592391087024e-1, (4, 4) = .24638626301264996, (4, 5) = .3779809429150307, (4, 6) = .9201555386630824, (4, 7) = 1.4128327072652163, (4, 8) = 0.51609615183282375e-2, (5, 1) = .5669002581395786, (5, 2) = -.1371916401125017, (5, 3) = .1528922356920777, (5, 4) = .33996920774229683, (5, 5) = .37776827912336824, (5, 6) = 1.27024451829135, (5, 7) = 1.4146572486865054, (5, 8) = 0.9820223828374587e-2, (6, 1) = .5290327802230002, (6, 2) = -.14409851939129248, (6, 3) = .25809973947558784, (6, 4) = .44161902578753254, (6, 5) = .37737598360935093, (6, 6) = 1.651514368911508, (6, 7) = 1.4181683376757317, (6, 8) = 0.16551767115543403e-1, (7, 1) = .48797776231069934, (7, 2) = -.15082401972104326, (7, 3) = .3956159784223351, (7, 4) = .546566995361021, (7, 5) = .3767592394353197, (7, 6) = 2.046956560700791, (7, 7) = 1.423951238924928, (7, 8) = 0.2530574188627694e-1, (8, 1) = .4455097689486867, (8, 2) = -.15662271721966162, (8, 3) = .560869343108844, (8, 4) = .650475986042538, (8, 5) = .3759074764267706, (8, 6) = 2.441192046655901, (8, 7) = 1.432339477818811, (8, 8) = 0.3574403196512969e-1, (9, 1) = .4019714737781167, (9, 2) = -.16097976785337778, (9, 3) = .7531425930170065, (9, 4) = .7533024381136638, (9, 5) = .37480724717639446, (9, 6) = 2.835034683009538, (9, 7) = 1.4437395006677125, (9, 8) = 0.4775839761612408e-1, (10, 1) = .3578432116772004, (10, 2) = -.16334348080313163, (10, 3) = .9717278248653037, (10, 4) = .8550010473136669, (10, 5) = .3734541277931229, (10, 6) = 3.229383694258226, (10, 7) = 1.458517002768622, (10, 8) = 0.61223001646425766e-1, (11, 1) = .3138427499613885, (11, 2) = -.16317816891693035, (11, 3) = 1.2153400964446428, (11, 4) = .9552992408083281, (11, 5) = .3718558392388385, (11, 6) = 3.6243047360166147, (11, 7) = 1.4769469365488954, (11, 8) = 0.7595912211689054e-1, (12, 1) = .2708197137303571, (12, 2) = -.1600634554218884, (12, 3) = 1.4823382823352556, (12, 4) = 1.0538888365598136, (12, 5) = .37003049775688535, (12, 6) = 4.019692806711686, (12, 7) = 1.499207309863791, (12, 8) = 0.9175293789636808e-1, (13, 1) = .22955356513321082, (13, 2) = -.15376655017624774, (13, 3) = 1.771737568613686, (13, 4) = 1.1507687254222438, (13, 5) = .3679982116567567, (13, 6) = 4.4166208604325305, (13, 7) = 1.5254608253960227, (13, 8) = .1084188111357934, (14, 1) = .19082533490993417, (14, 2) = -.14430646057430674, (14, 3) = 2.0826000767466843, (14, 4) = 1.245943366242156, (14, 5) = .36578343902893384, (14, 6) = 4.816160855718664, (14, 7) = 1.555816989411266, (14, 8) = .12576396753467523, (15, 1) = .1553751277762106, (15, 2) = -.13201176794608704, (15, 3) = 2.4137473802608245, (15, 4) = 1.339345748340381, (15, 5) = .36341579280951025, (15, 6) = 5.219031239689751, (15, 7) = 1.590302627188974, (15, 8) = .14357624150955856, (16, 1) = .12386204102729283, (16, 2) = -.11755024367601966, (16, 3) = 2.7630782885466254, (16, 4) = 1.4306932234947345, (16, 5) = .36093354758169927, (16, 6) = 5.624880231600311, (16, 7) = 1.628778496660186, (16, 8) = .16159615167866462, (17, 1) = 0.9660535822960543e-1, (17, 2) = -.1017757389941151, (17, 3) = 3.129486686134902, (17, 4) = 1.5200126345068938, (17, 5) = .35836839869593895, (17, 6) = 6.034545798261897, (17, 7) = 1.6711446595363155, (17, 8) = .17962464210679904, (18, 1) = 0.7367857489109031e-1, (18, 2) = -0.8562488366373487e-1, (18, 3) = 3.512055738361352, (18, 4) = 1.6073685521372294, (18, 5) = .3557501139971933, (18, 6) = 6.448944019154785, (18, 7) = 1.7172737332675954, (18, 8) = .19747921374137573, (19, 1) = 0.54932297215312065e-1, (19, 2) = -0.6998673195550159e-1, (19, 3) = 3.909931726386895, (19, 4) = 1.692827501352813, (19, 5) = .3531065609803749, (19, 6) = 6.868914696313914, (19, 7) = 1.7670034201936595, (19, 8) = .21498974802357024, (20, 1) = 0.4005339598008939e-1, (20, 2) = -0.55610136299587054e-1, (20, 3) = 4.32164450688784, (20, 4) = 1.77632437502917, (20, 5) = .35046725376876914, (20, 6) = 7.294527651516823, (20, 7) = 1.8200532646404195, (20, 8) = .23197376211102866, (21, 1) = 0.28580538470935495e-1, (21, 2) = -0.43000484038105184e-1, (21, 3) = 4.745698402930282, (21, 4) = 1.8578072943415187, (21, 5) = .34785831678559404, (21, 6) = 7.725732483059856, (21, 7) = 1.8760988685224456, (21, 8) = .24826982947943302, (22, 1) = 0.1996278053815402e-1, (22, 2) = -0.3238521326136785e-1, (22, 3) = 5.181353487043006, (22, 4) = 1.9373734562831926, (22, 5) = .34529737977456776, (22, 6) = 8.163122417826008, (22, 7) = 1.9348863621148453, (22, 8) = .26376703841962096, (23, 1) = 0.1365169808933715e-1, (23, 2) = -0.23777175833410786e-1, (23, 3) = 5.6279306071831305, (23, 4) = 2.015116420764514, (23, 5) = .34279810538335065, (23, 6) = 8.60720314062156, (23, 7) = 1.996152613508324, (23, 8) = .2783739405626572, (24, 1) = 0.9141837377667494e-2, (24, 2) = -0.17032577718097307e-1, (24, 3) = 6.084805468966238, (24, 4) = 2.0911257386418485, (24, 5) = .340370194206626, (24, 6) = 9.058397452645558, (24, 7) = 2.059629639205023, (24, 8) = .29201833127085214, (25, 1) = 0.5994108163660374e-2, (25, 2) = -0.11912234609982005e-1, (25, 3) = 6.551523204740028, (25, 4) = 2.165505306248221, (25, 5) = .33801891240256376, (25, 6) = 9.517167898738702, (25, 7) = 2.1250654794952815, (25, 8) = .3046497396204352, (26, 1) = 0.38470588985903055e-2, (26, 2) = -0.8138240294430613e-2, (26, 3) = 7.027670958837816, (26, 4) = 2.238350997284669, (26, 5) = .3357460261587689, (26, 6) = 9.983900741341126, (26, 7) = 2.1922108137474403, (26, 8) = .3162340733370819, (27, 1) = 0.2415525316376395e-2, (27, 2) = -0.5433887636433142e-2, (27, 3) = 7.51276194601149, (27, 4) = 2.3097349632638142, (27, 5) = .33355055765848207, (27, 6) = 10.458803767615885, (27, 7) = 2.2608058123457324, (27, 8) = .32675028982528975, (28, 1) = 0.1482134442049264e-2, (28, 2) = -0.35473836650395138e-2, (28, 3) = 8.006344879280913, (28, 4) = 2.3797246033167165, (28, 5) = .3314285083244437, (28, 6) = 10.942023485632674, (28, 7) = 2.3305985328398995, (28, 8) = .3361925680987284, (29, 1) = 0.8867798277494013e-3, (29, 2) = -0.22649595163979426e-2, (29, 3) = 8.508000609042815, (29, 4) = 2.4483823707573626, (29, 5) = .32937324890833686, (29, 6) = 11.433650368387816, (29, 7) = 2.4013472411799133, (29, 8) = .34456875648665847, (30, 1) = 0.5147830582056192e-3, (30, 2) = -0.14137540243798479e-2, (30, 3) = 9.018079243243903, (30, 4) = 2.515861978503066, (30, 5) = .3273730983678873, (30, 6) = 11.934451666568503, (30, 7) = 2.4729258238550673, (30, 8) = .3519085257409124, (31, 1) = 0.28659669973437794e-3, (31, 2) = -0.8605928820212513e-3, (31, 3) = 9.538856126749963, (31, 4) = 2.582539204272471, (31, 5) = .32540795861125427, (31, 6) = 12.44702875421768, (31, 7) = 2.545481761283621, (31, 8) = .3582667626570985, (32, 1) = 0.1500417202447516e-3, (32, 2) = -0.5106757568196689e-3, (32, 3) = 10.070296337466763, (32, 4) = 2.648460200960687, (32, 5) = .32346579035064904, (32, 6) = 12.971669786325668, (32, 7) = 2.618840629421426, (32, 8) = .36366514670687944, (33, 1) = 0.7037994109756306e-4, (33, 2) = -0.2953327633691435e-3, (33, 3) = 10.612149661123444, (33, 4) = 2.713638344636691, (33, 5) = .3215339926041049, (33, 6) = 13.508402962580126, (33, 7) = 2.692804574171342, (33, 8) = .3681309842732225, (34, 1) = 0.2508902470016854e-4, (34, 2) = -0.16641397198798735e-3, (34, 3) = 11.164172903455626, (34, 4) = 2.778084059250828, (34, 5) = .31959890842541655, (34, 6) = 14.057217972519599, (34, 7) = 2.767185195379349, (34, 8) = .3716992797163207, (35, 1) = .0, (35, 2) = -0.9134248027914396e-4, (35, 3) = 11.726129087316146, (35, 4) = 2.841804712, (35, 5) = .31764623058532726, (35, 6) = 14.618068801887034, (35, 7) = 2.841804712, (35, 8) = .3744112941998848}, datatype = float[8], order = C_order); YP := Matrix(35, 8, {(1, 1) = -.11511620494228465, (1, 2) = -0.21848192814805704e-1, (1, 3) = .0, (1, 4) = .37811799244920324, (1, 5) = .0, (1, 6) = 1.4117113181447536, (1, 7) = .0, (1, 8) = .0, (2, 1) = -.11975318257035834, (2, 2) = -0.2340744045683882e-1, (2, 3) = 0.77409636920803e-1, (2, 4) = .37811352171842283, (2, 5) = -0.6501906335844444e-4, (2, 6) = 1.411746095030339, (2, 7) = 0.5096115493465316e-3, (2, 8) = 0.4978393071034031e-2, (3, 1) = -.12496974762969729, (3, 2) = -0.2472737923936798e-1, (3, 3) = .15925409044318592, (3, 4) = .37807999460677805, (3, 5) = -0.26633217492876086e-3, (3, 6) = 1.4120141336647931, (3, 7) = 0.21567165797040048e-2, (3, 8) = 0.10238889928920546e-1, (4, 1) = -.13078648524102396, (4, 2) = -0.25653205134369778e-1, (4, 3) = .24638626301264996, (4, 4) = .3779809429150307, (4, 5) = -0.6148579022689942e-3, (4, 6) = 1.4128327072652163, (4, 7) = 0.51609615183282375e-2, (4, 8) = 0.15826282713831068e-1, (5, 1) = -.1371916401125017, (5, 2) = -0.25935739559925664e-1, (5, 3) = .33996920774229683, (5, 4) = .37776827912336824, (5, 5) = -0.1124149710447512e-2, (5, 6) = 1.4146572486865054, (5, 7) = 0.9820223828374587e-2, (5, 8) = 0.21793013656706044e-1, (6, 1) = -.14409851939129248, (6, 2) = -0.25166962349877944e-1, (6, 3) = .44161902578753254, (6, 4) = .37737598360935093, (6, 5) = -0.1811204871965437e-2, (6, 6) = 1.4181683376757317, (6, 7) = 0.16551767115543403e-1, (6, 8) = 0.2819908212449082e-1, (7, 1) = -.15082401972104326, (7, 2) = -0.22883345616240332e-1, (7, 3) = .546566995361021, (7, 4) = .3767592394353197, (7, 5) = -0.26379430409376966e-2, (7, 6) = 1.423951238924928, (7, 7) = 0.2530574188627694e-1, (7, 8) = 0.3467874447064803e-1, (8, 1) = -.15662271721966162, (8, 2) = -0.1879263785160887e-1, (8, 3) = .650475986042538, (8, 4) = .3759074764267706, (8, 5) = -0.3543732228642546e-2, (8, 6) = 1.432339477818811, (8, 7) = 0.3574403196512969e-1, (8, 8) = 0.40893604100372564e-1, (9, 1) = -.16097976785337778, (9, 2) = -0.12656020813637847e-1, (9, 3) = .7533024381136638, (9, 4) = .37480724717639446, (9, 5) = -0.4495519532277643e-2, (9, 6) = 1.4437395006677125, (9, 7) = 0.4775839761612408e-1, (9, 8) = 0.4677096408972486e-1, (10, 1) = -.16334348080313163, (10, 2) = -0.4369045779836154e-2, (10, 3) = .8550010473136669, (10, 4) = .3734541277931229, (10, 5) = -0.5462016466357188e-2, (10, 6) = 1.458517002768622, (10, 7) = 0.61223001646425766e-1, (10, 8) = 0.5223392148642055e-1, (11, 1) = -.16317816891693035, (11, 2) = 0.5922044795027756e-2, (11, 3) = .9552992408083281, (11, 4) = .3718558392388385, (11, 5) = -0.6411982626269342e-2, (11, 6) = 1.4769469365488954, (11, 7) = 0.7595912211689054e-1, (11, 8) = 0.57193745442795506e-1, (12, 1) = -.1600634554218884, (12, 2) = 0.17740826720045982e-1, (12, 3) = 1.0538888365598136, (12, 4) = .37003049775688535, (12, 5) = -0.7316860858898448e-2, (12, 6) = 1.499207309863791, (12, 7) = 0.9175293789636808e-1, (12, 8) = 0.6156719989689199e-1, (13, 1) = -.15376655017624774, (13, 2) = 0.30296704807712918e-1, (13, 3) = 1.1507687254222438, (13, 4) = .3679982116567567, (13, 5) = -0.8154721726663258e-2, (13, 6) = 1.5254608253960227, (13, 7) = .1084188111357934, (13, 8) = 0.6529471058639535e-1, (14, 1) = -.14430646057430674, (14, 2) = 0.4250806547922589e-1, (14, 3) = 1.245943366242156, (14, 4) = .36578343902893384, (14, 5) = -0.8907641852239972e-2, (14, 6) = 1.555816989411266, (14, 7) = .12576396753467523, (14, 8) = 0.6832600602649756e-1, (15, 1) = -.13201176794608704, (15, 2) = 0.53137961864251064e-1, (15, 3) = 1.339345748340381, (15, 4) = .36341579280951025, (15, 5) = -0.9561372713284904e-2, (15, 6) = 1.590302627188974, (15, 7) = .14357624150955856, (15, 8) = 0.7062057397986593e-1, (16, 1) = -.11755024367601966, (16, 2) = 0.6102495948240774e-1, (16, 3) = 1.4306932234947345, (16, 4) = .36093354758169927, (16, 5) = -0.10105088797683102e-1, (16, 6) = 1.628778496660186, (16, 7) = .16159615167866462, (16, 8) = 0.7215057669693223e-1, (17, 1) = -.1017757389941151, (17, 2) = 0.6540052175916726e-1, (17, 3) = 1.5200126345068938, (17, 4) = .35836839869593895, (17, 5) = -0.10534973995215179e-1, (17, 6) = 1.6711446595363155, (17, 7) = .17962464210679904, (17, 8) = 0.7291378535787908e-1, (18, 1) = -0.8562488366373487e-1, (18, 2) = 0.6601577799350121e-1, (18, 3) = 1.6073685521372294, (18, 4) = .3557501139971933, (18, 5) = -0.1085154690665931e-1, (18, 6) = 1.7172737332675954, (18, 7) = .19747921374137573, (18, 8) = 0.729227591867127e-1, (19, 1) = -0.6998673195550159e-1, (19, 2) = 0.6316514351336697e-1, (19, 3) = 1.692827501352813, (19, 4) = .3531065609803749, (19, 5) = -0.11059054704056444e-1, (19, 6) = 1.7670034201936595, (19, 7) = .21498974802357024, (19, 8) = 0.7220335350513343e-1, (20, 1) = -0.55610136299587054e-1, (20, 2) = 0.57585436563437925e-1, (20, 3) = 1.77632437502917, (20, 4) = .35046725376876914, (20, 5) = -0.11164970048420729e-1, (20, 6) = 1.8200532646404195, (20, 7) = .23197376211102866, (20, 8) = 0.7079658035527173e-1, (21, 1) = -0.43000484038105184e-1, (21, 2) = 0.50253823099175934e-1, (21, 3) = 1.8578072943415187, (21, 4) = .34785831678559404, (21, 5) = -0.111801623302582e-1, (21, 6) = 1.8760988685224456, (21, 7) = .24826982947943302, (21, 8) = 0.6875838561442682e-1, (22, 1) = -0.3238521326136785e-1, (22, 2) = 0.42146604914204154e-1, (22, 3) = 1.9373734562831926, (22, 4) = .34529737977456776, (22, 5) = -0.11117984320829395e-1, (22, 6) = 1.9348863621148453, (22, 7) = .26376703841962096, (22, 8) = 0.6615191423106347e-1, (23, 1) = -0.23777175833410786e-1, (23, 2) = 0.34085049240114594e-1, (23, 3) = 2.015116420764514, (23, 4) = .34279810538335065, (23, 5) = -0.10993236209989717e-1, (23, 6) = 1.996152613508324, (23, 7) = .2783739405626572, (23, 8) = 0.6304618263872158e-1, (24, 1) = -0.17032577718097307e-1, (24, 2) = 0.2665729331676524e-1, (24, 3) = 2.0911257386418485, (24, 4) = .340370194206626, (24, 5) = -0.10821600556493872e-1, (24, 6) = 2.059629639205023, (24, 7) = .29201833127085214, (24, 8) = 0.59514066560478224e-1, (25, 1) = -0.11912234609982005e-1, (25, 2) = 0.20207684956014358e-1, (25, 3) = 2.165505306248221, (25, 4) = .33801891240256376, (25, 5) = -0.10619047217973444e-1, (25, 6) = 2.1250654794952815, (25, 7) = .3046497396204352, (25, 8) = 0.55629289468927506e-1, (26, 1) = -0.8138240294430613e-2, (26, 2) = 0.14875114888345182e-1, (26, 3) = 2.238350997284669, (26, 4) = .3357460261587689, (26, 5) = -0.10401381660268688e-1, (26, 6) = 2.1922108137474403, (26, 7) = .3162340733370819, (26, 8) = 0.5146542077826284e-1, (27, 1) = -0.5433887636433142e-2, (27, 2) = 0.1064880363610196e-1, (27, 3) = 2.3097349632638142, (27, 4) = .33355055765848207, (27, 5) = -0.10183874373236527e-1, (27, 6) = 2.2608058123457324, (27, 7) = .32675028982528975, (27, 8) = 0.4709533876452156e-1, (28, 1) = -0.35473836650395138e-2, (28, 2) = 0.7422525245840296e-2, (28, 3) = 2.3797246033167165, (28, 4) = .3314285083244437, (28, 5) = -0.9980819151111209e-2, (28, 6) = 2.3305985328398995, (28, 7) = .3361925680987284, (28, 8) = 0.42588832612515365e-1, (29, 1) = -0.22649595163979426e-2, (29, 2) = 0.5042123940643825e-2, (29, 3) = 2.4483823707573626, (29, 4) = .32937324890833686, (29, 5) = -0.9805194239856069e-2, (29, 6) = 2.4013472411799133, (29, 7) = .34456875648665847, (29, 8) = 0.3801127009896496e-1, (30, 1) = -0.14137540243798479e-2, (30, 2) = 0.3338358133232503e-2, (30, 3) = 2.515861978503066, (30, 4) = .3273730983678873, (30, 5) = -0.9668229828749347e-2, (30, 6) = 2.4729258238550673, (30, 7) = .3519085257409124, (30, 8) = 0.33415920177751274e-1, (31, 1) = -0.8605928820212513e-3, (31, 2) = 0.21504697796892285e-2, (31, 3) = 2.582539204272471, (31, 4) = .32540795861125427, (31, 5) = -0.957946473248892e-2, (31, 6) = 2.545481761283621, (31, 7) = .3582667626570985, (31, 8) = 0.2883403707075255e-1, (32, 1) = -0.5106757568196689e-3, (32, 2) = 0.13475415217635602e-2, (32, 3) = 2.648460200960687, (32, 4) = .32346579035064904, (32, 5) = -0.9547805614663327e-2, (32, 6) = 2.618840629421426, (32, 7) = .36366514670687944, (32, 8) = 0.2431324030318291e-1, (33, 1) = -0.2953327633691435e-3, (33, 2) = 0.8213655825998622e-3, (33, 3) = 2.713638344636691, (33, 4) = .3215339926041049, (33, 5) = -0.9580452220455518e-2, (33, 6) = 2.692804574171342, (33, 7) = .3681309842732225, (33, 8) = 0.19897477825029125e-1, (34, 1) = -0.16641397198798735e-3, (34, 2) = 0.4869401833588519e-3, (34, 3) = 2.778084059250828, (34, 4) = .31959890842541655, (34, 5) = -0.9682706793193413e-2, (34, 6) = 2.767185195379349, (34, 7) = .3716992797163207, (34, 8) = 0.15624441579612264e-1, (35, 1) = -0.9134248027914396e-4, (35, 2) = 0.28074210501946773e-3, (35, 3) = 2.841804712, (35, 4) = .31764623058532726, (35, 5) = -0.9857922636655345e-2, (35, 6) = 2.841804712, (35, 7) = .3744112941998848, (35, 8) = 0.11525252201341013e-1}, datatype = float[8], order = C_order); errproc := proc (x_bvp) local outpoint, X, Y, yout, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; Digits := 15; outpoint := evalf(x_bvp); X := Vector(35, {(1) = .0, (2) = .20472410284384834, (3) = .4211863305043777, (4) = .6516720600363566, (5) = .8993212463695047, (6) = 1.1685298486145983, (7) = 1.4468423487039677, (8) = 1.7229359537348594, (9) = 1.9968629039389574, (10) = 2.268673421313649, (11) = 2.5378029414464036, (12) = 2.8035694406371796, (13) = 3.066093306207618, (14) = 3.325490409787653, (15) = 3.581658551212711, (16) = 3.8338699831956804, (17) = 4.08221409418108, (18) = 4.32686351028502, (19) = 4.567978384890087, (20) = 4.805327686982952, (21) = 5.038694055040347, (22) = 5.268271439374476, (23) = 5.494238613721016, (24) = 5.716760727626145, (25) = 5.936046030245326, (26) = 6.152283284474133, (27) = 6.365596166650127, (28) = 6.576100208955955, (29) = 6.783903531026379, (30) = 6.9894017136482445, (31) = 7.1936893054340665, (32) = 7.3968755375272774, (33) = 7.5989780331822505, (34) = 7.80001395061423, (35) = 8.0}, datatype = float[8], order = C_order); Y := Matrix(35, 8, {(1, 1) = 0.897448267109614e-15, (1, 2) = 0.5588167359031321e-15, (1, 3) = .0, (1, 4) = .0, (1, 5) = 0.13864249525943088e-15, (1, 6) = .0, (1, 7) = 0.12119642246901448e-14, (1, 8) = .0, (2, 1) = 0.17195345226360017e-14, (2, 2) = 0.6181167466331716e-15, (2, 3) = 0.20410981819182018e-16, (2, 4) = 0.10601766383125283e-15, (2, 5) = -0.10490636710626889e-15, (2, 6) = 0.5031667156796011e-15, (2, 7) = 0.11996548135741033e-14, (2, 8) = 0.2771969015070949e-19, (3, 1) = 0.1686737254582015e-14, (3, 2) = 0.9567626045906052e-15, (3, 3) = 0.5604460075778757e-16, (3, 4) = 0.10527680167976054e-15, (3, 5) = 0.20005622560643638e-15, (3, 6) = -0.9913001724420674e-16, (3, 7) = 0.1339416454645461e-14, (3, 8) = -0.1444766507242344e-17, (4, 1) = 0.4333011548848769e-14, (4, 2) = 0.17025161949432959e-14, (4, 3) = 0.10025344277919218e-16, (4, 4) = 0.11064429627289256e-15, (4, 5) = 0.2162077879904567e-15, (4, 6) = -0.4402054460277445e-15, (4, 7) = -0.689926374914955e-15, (4, 8) = -0.2826387029976454e-17, (5, 1) = 0.6633681086898639e-14, (5, 2) = 0.375032295134198e-14, (5, 3) = 0.1812909654403e-15, (5, 4) = -0.12070342909717134e-15, (5, 5) = -0.1596142149617371e-15, (5, 6) = -0.10825942697009252e-15, (5, 7) = 0.18103213104082225e-14, (5, 8) = -0.16764369656937747e-16, (6, 1) = 0.13129840358265059e-13, (6, 2) = 0.7277452916946674e-14, (6, 3) = 0.29179991421150325e-15, (6, 4) = 0.6399550172322422e-16, (6, 5) = -0.22594631239149157e-15, (6, 6) = -0.9174305403629006e-16, (6, 7) = 0.19951541475781265e-15, (6, 8) = -0.43537055740415584e-16, (7, 1) = 0.16558247533243953e-13, (7, 2) = 0.10179772597290096e-13, (7, 3) = 0.5878293642247217e-15, (7, 4) = -0.7410342523151938e-16, (7, 5) = -0.15996611253844913e-15, (7, 6) = 0.1692951814608457e-14, (7, 7) = 0.1740069789475928e-16, (7, 8) = -0.31275576634239585e-16, (8, 1) = 0.1212069312549711e-13, (8, 2) = 0.9543541214045693e-14, (8, 3) = 0.6704668328631497e-15, (8, 4) = -0.44521023708016503e-16, (8, 5) = 0.22199060125967257e-15, (8, 6) = -0.6750801329037803e-15, (8, 7) = 0.21656382445432134e-14, (8, 8) = -0.6435827646555829e-16, (9, 1) = -0.3772034753492132e-14, (9, 2) = 0.5759418721910007e-14, (9, 3) = 0.6527662555019791e-15, (9, 4) = 0.441738628379015e-16, (9, 5) = 0.5658548136938054e-15, (9, 6) = 0.3154847106536809e-14, (9, 7) = 0.7858154752173474e-15, (9, 8) = -0.10311351058385951e-15, (10, 1) = -0.2440608209204811e-13, (10, 2) = 0.28469235452884776e-14, (10, 3) = 0.3866914448702218e-15, (10, 4) = -0.9144516798022403e-16, (10, 5) = -0.10145948392816397e-15, (10, 6) = -0.24442421173399023e-14, (10, 7) = 0.6377245986878261e-16, (10, 8) = -0.17205372425145497e-15, (11, 1) = -0.4123657586548479e-13, (11, 2) = 0.47019634354738835e-14, (11, 3) = 0.7390229161834592e-15, (11, 4) = 0.33830363819193296e-15, (11, 5) = -0.49321754692558303e-16, (11, 6) = -0.7883634580987387e-16, (11, 7) = 0.9384901596020932e-15, (11, 8) = -0.252982075836778e-15, (12, 1) = -0.45482420467991964e-13, (12, 2) = 0.10203470081300767e-13, (12, 3) = 0.7534533806982218e-15, (12, 4) = -0.20573415143689883e-15, (12, 5) = 0.10308521674561246e-15, (12, 6) = -0.306193488603141e-14, (12, 7) = 0.11321549203383949e-14, (12, 8) = -0.3982374979919039e-15, (13, 1) = -0.3692752598727219e-13, (13, 2) = 0.13076295718742951e-13, (13, 3) = -0.42293951496931934e-15, (13, 4) = 0.5793784843910567e-15, (13, 5) = 0.1255527766044886e-15, (13, 6) = 0.14631798233506174e-14, (13, 7) = -0.537526963696651e-16, (13, 8) = -0.43906151981417637e-15, (14, 1) = -0.12180528075494553e-13, (14, 2) = 0.67927440842877486e-14, (14, 3) = -0.7751636018193131e-16, (14, 4) = 0.5989904770359435e-15, (14, 5) = -0.5359630097047029e-16, (14, 6) = -0.13487931939540982e-14, (14, 7) = 0.17179524507174635e-14, (14, 8) = -0.4135968388921909e-15, (15, 1) = 0.3685354836152949e-13, (15, 2) = -0.1664738219468053e-13, (15, 3) = -0.1573909843712974e-14, (15, 4) = 0.794295869180883e-15, (15, 5) = -0.35245821132597215e-17, (15, 6) = -0.11581448838991115e-14, (15, 7) = 0.4173536492488085e-15, (15, 8) = -0.5280874496874946e-15, (16, 1) = 0.10366564920219266e-12, (16, 2) = -0.641879285025774e-13, (16, 3) = 0.20566596972943627e-14, (16, 4) = 0.9266548671796218e-16, (16, 5) = 0.2353325946868509e-15, (16, 6) = 0.18284547948529757e-15, (16, 7) = 0.17622934571819217e-14, (16, 8) = -0.4976417588290511e-15, (17, 1) = 0.14484169648891652e-12, (17, 2) = -0.12297441716887176e-12, (17, 3) = -0.1068182350278374e-14, (17, 4) = -0.5854540915281354e-15, (17, 5) = 0.14535461070078002e-15, (17, 6) = 0.4266610794669015e-14, (17, 7) = 0.4607205530424001e-15, (17, 8) = -0.5886742340881105e-15, (18, 1) = 0.10566223147991009e-12, (18, 2) = -0.13820205741801644e-12, (18, 3) = -0.20123078614811413e-14, (18, 4) = -0.7561398183639445e-16, (18, 5) = 0.2140425035665995e-15, (18, 6) = -0.23561554941772816e-14, (18, 7) = 0.19085985864153077e-14, (18, 8) = -0.5917377444519284e-15, (19, 1) = -0.1679773165980789e-13, (19, 2) = -0.5657134915236689e-13, (19, 3) = 0.1360256674443056e-14, (19, 4) = 0.8707809795722639e-15, (19, 5) = 0.21528390503198728e-15, (19, 6) = -0.5127690553955357e-15, (19, 7) = -0.4826901389884211e-15, (19, 8) = -0.5868641866801674e-15, (20, 1) = -0.14894339690033946e-12, (20, 2) = 0.9602247884781634e-13, (20, 3) = 0.26294719195036576e-14, (20, 4) = -0.502638096454554e-15, (20, 5) = 0.32194304936576336e-16, (20, 6) = 0.25628117174786136e-14, (20, 7) = 0.8377380590237005e-15, (20, 8) = -0.7167682554400696e-15, (21, 1) = -0.20361898739374174e-12, (21, 2) = 0.2159454684255011e-12, (21, 3) = -0.18390456690678095e-14, (21, 4) = 0.16085741943765483e-14, (21, 5) = -0.3751395624658827e-15, (21, 6) = 0.68012918504538484e-14, (21, 7) = 0.25431273083692057e-15, (21, 8) = -0.32419369341927803e-15, (22, 1) = -0.15689971156050872e-12, (22, 2) = 0.21942355904154635e-12, (22, 3) = 0.24099783601109427e-14, (22, 4) = -0.9953957508184104e-15, (22, 5) = 0.8621846497603312e-16, (22, 6) = 0.5849807663571661e-14, (22, 7) = -0.11527500167921049e-14, (22, 8) = 0.5354827376431221e-17, (23, 1) = -0.5259760291556636e-13, (23, 2) = 0.11178856094650594e-12, (23, 3) = -0.8417911290913919e-15, (23, 4) = -0.2207954041887918e-14, (23, 5) = -0.2243044830543838e-15, (23, 6) = 0.15023300748706678e-13, (23, 7) = -0.973903527171104e-15, (23, 8) = -0.32331856502436973e-16, (24, 1) = 0.4443374116829714e-13, (24, 2) = -0.32070809165957353e-13, (24, 3) = -0.34880954720513526e-15, (24, 4) = 0.1231856080413119e-14, (24, 5) = 0.55827387662745e-17, (24, 6) = 0.54319152119881845e-14, (24, 7) = -0.36766647288947504e-15, (24, 8) = -0.3464894477365739e-15, (25, 1) = 0.933019806478322e-13, (25, 2) = -0.13384281309083258e-12, (25, 3) = 0.33197903067130842e-14, (25, 4) = -0.3132682814760555e-14, (25, 5) = -0.28711859306736457e-15, (25, 6) = -0.5470120367959728e-14, (25, 7) = -0.13432374782466947e-14, (25, 8) = 0.2039729831139547e-15, (26, 1) = 0.8977989989773004e-13, (26, 2) = -0.15869171973868484e-12, (26, 3) = 0.23278286029344056e-14, (26, 4) = -0.29354266305866873e-15, (26, 5) = 0.230020828715235e-16, (26, 6) = 0.32968730420794027e-14, (26, 7) = 0.12490842693534877e-14, (26, 8) = 0.3964694184561624e-15, (27, 1) = 0.5380760356273936e-13, (27, 2) = -0.11847870856872766e-12, (27, 3) = 0.2688345544666234e-15, (27, 4) = 0.10619582772389209e-14, (27, 5) = -0.12172639957600914e-15, (27, 6) = 0.3185441694869011e-14, (27, 7) = -0.1489879250602313e-14, (27, 8) = 0.6565146261655062e-15, (28, 1) = 0.10742518103279055e-13, (28, 2) = -0.495306438002946e-13, (28, 3) = 0.4310166135267635e-14, (28, 4) = 0.15683143667115227e-14, (28, 5) = 0.3453405106322541e-16, (28, 6) = 0.1018279419881744e-13, (28, 7) = -0.13632661970738383e-14, (28, 8) = 0.4729842715233933e-15, (29, 1) = -0.2151478390347912e-13, (29, 2) = 0.12771727815782967e-13, (29, 3) = 0.5629863069659428e-14, (29, 4) = -0.14434075930994008e-15, (29, 5) = -0.3455164788374167e-15, (29, 6) = 0.1345923386438848e-15, (29, 7) = 0.6628740317227967e-15, (29, 8) = 0.2370286262471212e-15, (30, 1) = -0.36756430829417473e-13, (30, 2) = 0.4915770478845277e-13, (30, 3) = 0.6364093247487674e-15, (30, 4) = 0.2644278305592894e-15, (30, 5) = 0.19990963262100253e-15, (30, 6) = -0.4147202106691808e-14, (30, 7) = -0.13135113472923236e-14, (30, 8) = 0.79220739160263215e-15, (31, 1) = -0.38142291891788485e-13, (31, 2) = 0.5919398917266647e-13, (31, 3) = 0.13925650940938171e-13, (31, 4) = 0.5542574200502359e-15, (31, 5) = -0.15301256420629026e-15, (31, 6) = 0.4509491169458926e-14, (31, 7) = 0.2495446814784076e-15, (31, 8) = 0.8083662326018128e-15, (32, 1) = -0.30039055413759246e-13, (32, 2) = 0.4722520516979542e-13, (32, 3) = 0.5948740452406517e-14, (32, 4) = 0.3314613919766506e-14, (32, 5) = -0.20036994088420754e-15, (32, 6) = 0.14649613744607957e-13, (32, 7) = -0.7728084332522093e-16, (32, 8) = 0.1933770820597525e-15, (33, 1) = -0.18092057280170896e-13, (33, 2) = 0.23205059829259787e-13, (33, 3) = 0.6050533016944145e-14, (33, 4) = 0.28168060491597395e-15, (33, 5) = 0.2339278829021382e-15, (33, 6) = 0.9701926801570967e-14, (33, 7) = 0.18835370879179478e-15, (33, 8) = 0.21984174087752556e-15, (34, 1) = -0.714859442764903e-14, (34, 2) = -0.19154332194589852e-14, (34, 3) = 0.1348765326796076e-13, (34, 4) = -0.9615633283396454e-15, (34, 5) = 0.8312623586890217e-16, (34, 6) = 0.29574319371284083e-14, (34, 7) = -0.30915701787131377e-14, (34, 8) = 0.27524560756785973e-15, (35, 1) = .0, (35, 2) = -0.20166673380620537e-13, (35, 3) = -0.1179663713625192e-14, (35, 4) = .0, (35, 5) = 0.54374029653237e-16, (35, 6) = -0.3047767633518586e-15, (35, 7) = .0, (35, 8) = -0.3103350258003601e-16}, datatype = float[8], order = C_order); if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "right" then return X[35] elif outpoint = "order" then return 8 elif outpoint = "error" then return HFloat(2.1942355904154635e-13) elif outpoint = "errorproc" then error "this is already the error procedure" elif outpoint = "rawdata" then return [8, 35, [T(eta), diff(T(eta), eta), f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), g(eta), diff(g(eta), eta), diff(diff(g(eta), eta), eta)], X, Y] else return ('procname')(x_bvp) end if end if; if outpoint < X[1] or X[35] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[35] end if; V := array([1 = 4, 2 = 0]); if Digits <= trunc(evalhf(Digits)) then L := Vector(4, 'datatype' = 'float'[8]); yout := Vector(8, 'datatype' = 'float'[8]); evalhf(`dsolve/numeric/lagrange`(35, 8, X, Y, outpoint, var(yout), var(L), var(V))) else L := Vector(4, 'datatype' = 'sfloat'); yout := Vector(8, 'datatype' = 'sfloat'); `dsolve/numeric/lagrange`(35, 8, X, Y, outpoint, yout, L, V) end if; [eta = outpoint, seq('[T(eta), diff(T(eta), eta), f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), g(eta), diff(g(eta), eta), diff(diff(g(eta), eta), eta)]'[i] = yout[i], i = 1 .. 8)] end proc; if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "method" then return "bvp" elif outpoint = "right" then return X[35] elif outpoint = "order" then return 8 elif outpoint = "error" then return HFloat(2.1942355904154635e-13) elif outpoint = "errorproc" then return eval(errproc) elif outpoint = "rawdata" then return [8, 35, "depnames", X, Y, YP] else error "non-numeric value" end if end if; if outpoint < X[1] or X[35] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[35] end if; if Digits <= trunc(evalhf(Digits)) and (_EnvInFsolve <> true or _EnvDSNumericSaveDigits <= trunc(evalhf(Digits))) then V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 5 ) = (false), ( 4 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = .0, (1, 2) = .0, (2, 1) = .0, (2, 2) = .0, (3, 1) = .0, (3, 2) = .0, (4, 1) = .0, (4, 2) = .0, (5, 1) = .0, (5, 2) = .0, (6, 1) = .0, (6, 2) = .0, (7, 1) = .0, (7, 2) = .0}, datatype = float[8], order = C_order); yout := Vector(8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8]); evalhf(`dsolve/numeric/hermite`(35, 8, X, Y, YP, outpoint, var(yout), var(L), var(V))) else if _EnvInFsolve = true then Digits := _EnvDSNumericSaveDigits end if; V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 5 ) = (false), ( 4 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = 0., (1, 2) = 0., (2, 1) = 0., (2, 2) = 0., (3, 1) = 0., (3, 2) = 0., (4, 1) = 0., (4, 2) = 0., (5, 1) = 0., (5, 2) = 0., (6, 1) = 0., (6, 2) = 0., (7, 1) = 0., (7, 2) = 0.}, order = C_order); yout := Vector(8, {(1) = 0., (2) = 0., (3) = 0., (4) = 0., (5) = 0., (6) = 0., (7) = 0., (8) = 0.}); `dsolve/numeric/hermite`(35, 8, X, Y, YP, outpoint, yout, L, V) end if; [outpoint, seq(yout[i], i = 1 .. 8)] end proc, (2) = Array(1..9, {(1) = 4365885730, (2) = 4365885922, (3) = 4365886066, (4) = 4365886162, (5) = 4365886258, (6) = 4365886354, (7) = 4365886450, (8) = 4365886546, (9) = 4365886642}), (3) = [eta, T(eta), diff(T(eta), eta), f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), g(eta), diff(g(eta), eta), diff(diff(g(eta), eta), eta)], (4) = 0}); solnproc := data[1]; if not type(outpoint, 'numeric') then if outpoint = "solnprocedure" then return eval(solnproc) elif member(outpoint, ["start", "left", "right", "errorproc", "rawdata", "order", "error"]) then return solnproc(eta) elif outpoint = "sysvars" then return data[3] elif procname <> unknown then return ('procname')(eta) else g := pointto(data[2][7]); return ('g')(eta) end if end if; try res := solnproc(outpoint); res[7] catch: error  end try end proc, D(g) = proc (eta) local res, data, solnproc, `D(g)`, outpoint; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then outpoint := evalf[_EnvDSNumericSaveDigits](eta) else outpoint := evalf(eta) end if; data := Array(1..4, {(1) = proc (outpoint) local X, Y, YP, yout, errproc, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; X := Vector(35, {(1) = .0, (2) = .20472410284384834, (3) = .4211863305043777, (4) = .6516720600363566, (5) = .8993212463695047, (6) = 1.1685298486145983, (7) = 1.4468423487039677, (8) = 1.7229359537348594, (9) = 1.9968629039389574, (10) = 2.268673421313649, (11) = 2.5378029414464036, (12) = 2.8035694406371796, (13) = 3.066093306207618, (14) = 3.325490409787653, (15) = 3.581658551212711, (16) = 3.8338699831956804, (17) = 4.08221409418108, (18) = 4.32686351028502, (19) = 4.567978384890087, (20) = 4.805327686982952, (21) = 5.038694055040347, (22) = 5.268271439374476, (23) = 5.494238613721016, (24) = 5.716760727626145, (25) = 5.936046030245326, (26) = 6.152283284474133, (27) = 6.365596166650127, (28) = 6.576100208955955, (29) = 6.783903531026379, (30) = 6.9894017136482445, (31) = 7.1936893054340665, (32) = 7.3968755375272774, (33) = 7.5989780331822505, (34) = 7.80001395061423, (35) = 8.0}, datatype = float[8], order = C_order); Y := Matrix(35, 8, {(1, 1) = .6800687881055213, (1, 2) = -.11511620494228465, (1, 3) = .0, (1, 4) = .0, (1, 5) = .37811799244920324, (1, 6) = .0, (1, 7) = 1.4117113181447536, (1, 8) = .0, (2, 1) = .6560325255507624, (2, 2) = -.11975318257035834, (2, 3) = 0.7923823323670406e-2, (2, 4) = 0.77409636920803e-1, (2, 5) = .37811352171842283, (2, 6) = .2890131130048752, (2, 7) = 1.411746095030339, (2, 8) = 0.5096115493465316e-3, (3, 1) = .6295510504863806, (3, 2) = -.12496974762969729, (3, 3) = 0.335383312275963e-1, (3, 4) = .15925409044318592, (3, 5) = .37807999460677805, (3, 6) = .5946253962700148, (3, 7) = 1.4120141336647931, (3, 8) = 0.21567165797040048e-2, (4, 1) = .6000810786889832, (4, 2) = -.13078648524102396, (4, 3) = 0.8028592391087024e-1, (4, 4) = .24638626301264996, (4, 5) = .3779809429150307, (4, 6) = .9201555386630824, (4, 7) = 1.4128327072652163, (4, 8) = 0.51609615183282375e-2, (5, 1) = .5669002581395786, (5, 2) = -.1371916401125017, (5, 3) = .1528922356920777, (5, 4) = .33996920774229683, (5, 5) = .37776827912336824, (5, 6) = 1.27024451829135, (5, 7) = 1.4146572486865054, (5, 8) = 0.9820223828374587e-2, (6, 1) = .5290327802230002, (6, 2) = -.14409851939129248, (6, 3) = .25809973947558784, (6, 4) = .44161902578753254, (6, 5) = .37737598360935093, (6, 6) = 1.651514368911508, (6, 7) = 1.4181683376757317, (6, 8) = 0.16551767115543403e-1, (7, 1) = .48797776231069934, (7, 2) = -.15082401972104326, (7, 3) = .3956159784223351, (7, 4) = .546566995361021, (7, 5) = .3767592394353197, (7, 6) = 2.046956560700791, (7, 7) = 1.423951238924928, (7, 8) = 0.2530574188627694e-1, (8, 1) = .4455097689486867, (8, 2) = -.15662271721966162, (8, 3) = .560869343108844, (8, 4) = .650475986042538, (8, 5) = .3759074764267706, (8, 6) = 2.441192046655901, (8, 7) = 1.432339477818811, (8, 8) = 0.3574403196512969e-1, (9, 1) = .4019714737781167, (9, 2) = -.16097976785337778, (9, 3) = .7531425930170065, (9, 4) = .7533024381136638, (9, 5) = .37480724717639446, (9, 6) = 2.835034683009538, (9, 7) = 1.4437395006677125, (9, 8) = 0.4775839761612408e-1, (10, 1) = .3578432116772004, (10, 2) = -.16334348080313163, (10, 3) = .9717278248653037, (10, 4) = .8550010473136669, (10, 5) = .3734541277931229, (10, 6) = 3.229383694258226, (10, 7) = 1.458517002768622, (10, 8) = 0.61223001646425766e-1, (11, 1) = .3138427499613885, (11, 2) = -.16317816891693035, (11, 3) = 1.2153400964446428, (11, 4) = .9552992408083281, (11, 5) = .3718558392388385, (11, 6) = 3.6243047360166147, (11, 7) = 1.4769469365488954, (11, 8) = 0.7595912211689054e-1, (12, 1) = .2708197137303571, (12, 2) = -.1600634554218884, (12, 3) = 1.4823382823352556, (12, 4) = 1.0538888365598136, (12, 5) = .37003049775688535, (12, 6) = 4.019692806711686, (12, 7) = 1.499207309863791, (12, 8) = 0.9175293789636808e-1, (13, 1) = .22955356513321082, (13, 2) = -.15376655017624774, (13, 3) = 1.771737568613686, (13, 4) = 1.1507687254222438, (13, 5) = .3679982116567567, (13, 6) = 4.4166208604325305, (13, 7) = 1.5254608253960227, (13, 8) = .1084188111357934, (14, 1) = .19082533490993417, (14, 2) = -.14430646057430674, (14, 3) = 2.0826000767466843, (14, 4) = 1.245943366242156, (14, 5) = .36578343902893384, (14, 6) = 4.816160855718664, (14, 7) = 1.555816989411266, (14, 8) = .12576396753467523, (15, 1) = .1553751277762106, (15, 2) = -.13201176794608704, (15, 3) = 2.4137473802608245, (15, 4) = 1.339345748340381, (15, 5) = .36341579280951025, (15, 6) = 5.219031239689751, (15, 7) = 1.590302627188974, (15, 8) = .14357624150955856, (16, 1) = .12386204102729283, (16, 2) = -.11755024367601966, (16, 3) = 2.7630782885466254, (16, 4) = 1.4306932234947345, (16, 5) = .36093354758169927, (16, 6) = 5.624880231600311, (16, 7) = 1.628778496660186, (16, 8) = .16159615167866462, (17, 1) = 0.9660535822960543e-1, (17, 2) = -.1017757389941151, (17, 3) = 3.129486686134902, (17, 4) = 1.5200126345068938, (17, 5) = .35836839869593895, (17, 6) = 6.034545798261897, (17, 7) = 1.6711446595363155, (17, 8) = .17962464210679904, (18, 1) = 0.7367857489109031e-1, (18, 2) = -0.8562488366373487e-1, (18, 3) = 3.512055738361352, (18, 4) = 1.6073685521372294, (18, 5) = .3557501139971933, (18, 6) = 6.448944019154785, (18, 7) = 1.7172737332675954, (18, 8) = .19747921374137573, (19, 1) = 0.54932297215312065e-1, (19, 2) = -0.6998673195550159e-1, (19, 3) = 3.909931726386895, (19, 4) = 1.692827501352813, (19, 5) = .3531065609803749, (19, 6) = 6.868914696313914, (19, 7) = 1.7670034201936595, (19, 8) = .21498974802357024, (20, 1) = 0.4005339598008939e-1, (20, 2) = -0.55610136299587054e-1, (20, 3) = 4.32164450688784, (20, 4) = 1.77632437502917, (20, 5) = .35046725376876914, (20, 6) = 7.294527651516823, (20, 7) = 1.8200532646404195, (20, 8) = .23197376211102866, (21, 1) = 0.28580538470935495e-1, (21, 2) = -0.43000484038105184e-1, (21, 3) = 4.745698402930282, (21, 4) = 1.8578072943415187, (21, 5) = .34785831678559404, (21, 6) = 7.725732483059856, (21, 7) = 1.8760988685224456, (21, 8) = .24826982947943302, (22, 1) = 0.1996278053815402e-1, (22, 2) = -0.3238521326136785e-1, (22, 3) = 5.181353487043006, (22, 4) = 1.9373734562831926, (22, 5) = .34529737977456776, (22, 6) = 8.163122417826008, (22, 7) = 1.9348863621148453, (22, 8) = .26376703841962096, (23, 1) = 0.1365169808933715e-1, (23, 2) = -0.23777175833410786e-1, (23, 3) = 5.6279306071831305, (23, 4) = 2.015116420764514, (23, 5) = .34279810538335065, (23, 6) = 8.60720314062156, (23, 7) = 1.996152613508324, (23, 8) = .2783739405626572, (24, 1) = 0.9141837377667494e-2, (24, 2) = -0.17032577718097307e-1, (24, 3) = 6.084805468966238, (24, 4) = 2.0911257386418485, (24, 5) = .340370194206626, (24, 6) = 9.058397452645558, (24, 7) = 2.059629639205023, (24, 8) = .29201833127085214, (25, 1) = 0.5994108163660374e-2, (25, 2) = -0.11912234609982005e-1, (25, 3) = 6.551523204740028, (25, 4) = 2.165505306248221, (25, 5) = .33801891240256376, (25, 6) = 9.517167898738702, (25, 7) = 2.1250654794952815, (25, 8) = .3046497396204352, (26, 1) = 0.38470588985903055e-2, (26, 2) = -0.8138240294430613e-2, (26, 3) = 7.027670958837816, (26, 4) = 2.238350997284669, (26, 5) = .3357460261587689, (26, 6) = 9.983900741341126, (26, 7) = 2.1922108137474403, (26, 8) = .3162340733370819, (27, 1) = 0.2415525316376395e-2, (27, 2) = -0.5433887636433142e-2, (27, 3) = 7.51276194601149, (27, 4) = 2.3097349632638142, (27, 5) = .33355055765848207, (27, 6) = 10.458803767615885, (27, 7) = 2.2608058123457324, (27, 8) = .32675028982528975, (28, 1) = 0.1482134442049264e-2, (28, 2) = -0.35473836650395138e-2, (28, 3) = 8.006344879280913, (28, 4) = 2.3797246033167165, (28, 5) = .3314285083244437, (28, 6) = 10.942023485632674, (28, 7) = 2.3305985328398995, (28, 8) = .3361925680987284, (29, 1) = 0.8867798277494013e-3, (29, 2) = -0.22649595163979426e-2, (29, 3) = 8.508000609042815, (29, 4) = 2.4483823707573626, (29, 5) = .32937324890833686, (29, 6) = 11.433650368387816, (29, 7) = 2.4013472411799133, (29, 8) = .34456875648665847, (30, 1) = 0.5147830582056192e-3, (30, 2) = -0.14137540243798479e-2, (30, 3) = 9.018079243243903, (30, 4) = 2.515861978503066, (30, 5) = .3273730983678873, (30, 6) = 11.934451666568503, (30, 7) = 2.4729258238550673, (30, 8) = .3519085257409124, (31, 1) = 0.28659669973437794e-3, (31, 2) = -0.8605928820212513e-3, (31, 3) = 9.538856126749963, (31, 4) = 2.582539204272471, (31, 5) = .32540795861125427, (31, 6) = 12.44702875421768, (31, 7) = 2.545481761283621, (31, 8) = .3582667626570985, (32, 1) = 0.1500417202447516e-3, (32, 2) = -0.5106757568196689e-3, (32, 3) = 10.070296337466763, (32, 4) = 2.648460200960687, (32, 5) = .32346579035064904, (32, 6) = 12.971669786325668, (32, 7) = 2.618840629421426, (32, 8) = .36366514670687944, (33, 1) = 0.7037994109756306e-4, (33, 2) = -0.2953327633691435e-3, (33, 3) = 10.612149661123444, (33, 4) = 2.713638344636691, (33, 5) = .3215339926041049, (33, 6) = 13.508402962580126, (33, 7) = 2.692804574171342, (33, 8) = .3681309842732225, (34, 1) = 0.2508902470016854e-4, (34, 2) = -0.16641397198798735e-3, (34, 3) = 11.164172903455626, (34, 4) = 2.778084059250828, (34, 5) = .31959890842541655, (34, 6) = 14.057217972519599, (34, 7) = 2.767185195379349, (34, 8) = .3716992797163207, (35, 1) = .0, (35, 2) = -0.9134248027914396e-4, (35, 3) = 11.726129087316146, (35, 4) = 2.841804712, (35, 5) = .31764623058532726, (35, 6) = 14.618068801887034, (35, 7) = 2.841804712, (35, 8) = .3744112941998848}, datatype = float[8], order = C_order); YP := Matrix(35, 8, {(1, 1) = -.11511620494228465, (1, 2) = -0.21848192814805704e-1, (1, 3) = .0, (1, 4) = .37811799244920324, (1, 5) = .0, (1, 6) = 1.4117113181447536, (1, 7) = .0, (1, 8) = .0, (2, 1) = -.11975318257035834, (2, 2) = -0.2340744045683882e-1, (2, 3) = 0.77409636920803e-1, (2, 4) = .37811352171842283, (2, 5) = -0.6501906335844444e-4, (2, 6) = 1.411746095030339, (2, 7) = 0.5096115493465316e-3, (2, 8) = 0.4978393071034031e-2, (3, 1) = -.12496974762969729, (3, 2) = -0.2472737923936798e-1, (3, 3) = .15925409044318592, (3, 4) = .37807999460677805, (3, 5) = -0.26633217492876086e-3, (3, 6) = 1.4120141336647931, (3, 7) = 0.21567165797040048e-2, (3, 8) = 0.10238889928920546e-1, (4, 1) = -.13078648524102396, (4, 2) = -0.25653205134369778e-1, (4, 3) = .24638626301264996, (4, 4) = .3779809429150307, (4, 5) = -0.6148579022689942e-3, (4, 6) = 1.4128327072652163, (4, 7) = 0.51609615183282375e-2, (4, 8) = 0.15826282713831068e-1, (5, 1) = -.1371916401125017, (5, 2) = -0.25935739559925664e-1, (5, 3) = .33996920774229683, (5, 4) = .37776827912336824, (5, 5) = -0.1124149710447512e-2, (5, 6) = 1.4146572486865054, (5, 7) = 0.9820223828374587e-2, (5, 8) = 0.21793013656706044e-1, (6, 1) = -.14409851939129248, (6, 2) = -0.25166962349877944e-1, (6, 3) = .44161902578753254, (6, 4) = .37737598360935093, (6, 5) = -0.1811204871965437e-2, (6, 6) = 1.4181683376757317, (6, 7) = 0.16551767115543403e-1, (6, 8) = 0.2819908212449082e-1, (7, 1) = -.15082401972104326, (7, 2) = -0.22883345616240332e-1, (7, 3) = .546566995361021, (7, 4) = .3767592394353197, (7, 5) = -0.26379430409376966e-2, (7, 6) = 1.423951238924928, (7, 7) = 0.2530574188627694e-1, (7, 8) = 0.3467874447064803e-1, (8, 1) = -.15662271721966162, (8, 2) = -0.1879263785160887e-1, (8, 3) = .650475986042538, (8, 4) = .3759074764267706, (8, 5) = -0.3543732228642546e-2, (8, 6) = 1.432339477818811, (8, 7) = 0.3574403196512969e-1, (8, 8) = 0.40893604100372564e-1, (9, 1) = -.16097976785337778, (9, 2) = -0.12656020813637847e-1, (9, 3) = .7533024381136638, (9, 4) = .37480724717639446, (9, 5) = -0.4495519532277643e-2, (9, 6) = 1.4437395006677125, (9, 7) = 0.4775839761612408e-1, (9, 8) = 0.4677096408972486e-1, (10, 1) = -.16334348080313163, (10, 2) = -0.4369045779836154e-2, (10, 3) = .8550010473136669, (10, 4) = .3734541277931229, (10, 5) = -0.5462016466357188e-2, (10, 6) = 1.458517002768622, (10, 7) = 0.61223001646425766e-1, (10, 8) = 0.5223392148642055e-1, (11, 1) = -.16317816891693035, (11, 2) = 0.5922044795027756e-2, (11, 3) = .9552992408083281, (11, 4) = .3718558392388385, (11, 5) = -0.6411982626269342e-2, (11, 6) = 1.4769469365488954, (11, 7) = 0.7595912211689054e-1, (11, 8) = 0.57193745442795506e-1, (12, 1) = -.1600634554218884, (12, 2) = 0.17740826720045982e-1, (12, 3) = 1.0538888365598136, (12, 4) = .37003049775688535, (12, 5) = -0.7316860858898448e-2, (12, 6) = 1.499207309863791, (12, 7) = 0.9175293789636808e-1, (12, 8) = 0.6156719989689199e-1, (13, 1) = -.15376655017624774, (13, 2) = 0.30296704807712918e-1, (13, 3) = 1.1507687254222438, (13, 4) = .3679982116567567, (13, 5) = -0.8154721726663258e-2, (13, 6) = 1.5254608253960227, (13, 7) = .1084188111357934, (13, 8) = 0.6529471058639535e-1, (14, 1) = -.14430646057430674, (14, 2) = 0.4250806547922589e-1, (14, 3) = 1.245943366242156, (14, 4) = .36578343902893384, (14, 5) = -0.8907641852239972e-2, (14, 6) = 1.555816989411266, (14, 7) = .12576396753467523, (14, 8) = 0.6832600602649756e-1, (15, 1) = -.13201176794608704, (15, 2) = 0.53137961864251064e-1, (15, 3) = 1.339345748340381, (15, 4) = .36341579280951025, (15, 5) = -0.9561372713284904e-2, (15, 6) = 1.590302627188974, (15, 7) = .14357624150955856, (15, 8) = 0.7062057397986593e-1, (16, 1) = -.11755024367601966, (16, 2) = 0.6102495948240774e-1, (16, 3) = 1.4306932234947345, (16, 4) = .36093354758169927, (16, 5) = -0.10105088797683102e-1, (16, 6) = 1.628778496660186, (16, 7) = .16159615167866462, (16, 8) = 0.7215057669693223e-1, (17, 1) = -.1017757389941151, (17, 2) = 0.6540052175916726e-1, (17, 3) = 1.5200126345068938, (17, 4) = .35836839869593895, (17, 5) = -0.10534973995215179e-1, (17, 6) = 1.6711446595363155, (17, 7) = .17962464210679904, (17, 8) = 0.7291378535787908e-1, (18, 1) = -0.8562488366373487e-1, (18, 2) = 0.6601577799350121e-1, (18, 3) = 1.6073685521372294, (18, 4) = .3557501139971933, (18, 5) = -0.1085154690665931e-1, (18, 6) = 1.7172737332675954, (18, 7) = .19747921374137573, (18, 8) = 0.729227591867127e-1, (19, 1) = -0.6998673195550159e-1, (19, 2) = 0.6316514351336697e-1, (19, 3) = 1.692827501352813, (19, 4) = .3531065609803749, (19, 5) = -0.11059054704056444e-1, (19, 6) = 1.7670034201936595, (19, 7) = .21498974802357024, (19, 8) = 0.7220335350513343e-1, (20, 1) = -0.55610136299587054e-1, (20, 2) = 0.57585436563437925e-1, (20, 3) = 1.77632437502917, (20, 4) = .35046725376876914, (20, 5) = -0.11164970048420729e-1, (20, 6) = 1.8200532646404195, (20, 7) = .23197376211102866, (20, 8) = 0.7079658035527173e-1, (21, 1) = -0.43000484038105184e-1, (21, 2) = 0.50253823099175934e-1, (21, 3) = 1.8578072943415187, (21, 4) = .34785831678559404, (21, 5) = -0.111801623302582e-1, (21, 6) = 1.8760988685224456, (21, 7) = .24826982947943302, (21, 8) = 0.6875838561442682e-1, (22, 1) = -0.3238521326136785e-1, (22, 2) = 0.42146604914204154e-1, (22, 3) = 1.9373734562831926, (22, 4) = .34529737977456776, (22, 5) = -0.11117984320829395e-1, (22, 6) = 1.9348863621148453, (22, 7) = .26376703841962096, (22, 8) = 0.6615191423106347e-1, (23, 1) = -0.23777175833410786e-1, (23, 2) = 0.34085049240114594e-1, (23, 3) = 2.015116420764514, (23, 4) = .34279810538335065, (23, 5) = -0.10993236209989717e-1, (23, 6) = 1.996152613508324, (23, 7) = .2783739405626572, (23, 8) = 0.6304618263872158e-1, (24, 1) = -0.17032577718097307e-1, (24, 2) = 0.2665729331676524e-1, (24, 3) = 2.0911257386418485, (24, 4) = .340370194206626, (24, 5) = -0.10821600556493872e-1, (24, 6) = 2.059629639205023, (24, 7) = .29201833127085214, (24, 8) = 0.59514066560478224e-1, (25, 1) = -0.11912234609982005e-1, (25, 2) = 0.20207684956014358e-1, (25, 3) = 2.165505306248221, (25, 4) = .33801891240256376, (25, 5) = -0.10619047217973444e-1, (25, 6) = 2.1250654794952815, (25, 7) = .3046497396204352, (25, 8) = 0.55629289468927506e-1, (26, 1) = -0.8138240294430613e-2, (26, 2) = 0.14875114888345182e-1, (26, 3) = 2.238350997284669, (26, 4) = .3357460261587689, (26, 5) = -0.10401381660268688e-1, (26, 6) = 2.1922108137474403, (26, 7) = .3162340733370819, (26, 8) = 0.5146542077826284e-1, (27, 1) = -0.5433887636433142e-2, (27, 2) = 0.1064880363610196e-1, (27, 3) = 2.3097349632638142, (27, 4) = .33355055765848207, (27, 5) = -0.10183874373236527e-1, (27, 6) = 2.2608058123457324, (27, 7) = .32675028982528975, (27, 8) = 0.4709533876452156e-1, (28, 1) = -0.35473836650395138e-2, (28, 2) = 0.7422525245840296e-2, (28, 3) = 2.3797246033167165, (28, 4) = .3314285083244437, (28, 5) = -0.9980819151111209e-2, (28, 6) = 2.3305985328398995, (28, 7) = .3361925680987284, (28, 8) = 0.42588832612515365e-1, (29, 1) = -0.22649595163979426e-2, (29, 2) = 0.5042123940643825e-2, (29, 3) = 2.4483823707573626, (29, 4) = .32937324890833686, (29, 5) = -0.9805194239856069e-2, (29, 6) = 2.4013472411799133, (29, 7) = .34456875648665847, (29, 8) = 0.3801127009896496e-1, (30, 1) = -0.14137540243798479e-2, (30, 2) = 0.3338358133232503e-2, (30, 3) = 2.515861978503066, (30, 4) = .3273730983678873, (30, 5) = -0.9668229828749347e-2, (30, 6) = 2.4729258238550673, (30, 7) = .3519085257409124, (30, 8) = 0.33415920177751274e-1, (31, 1) = -0.8605928820212513e-3, (31, 2) = 0.21504697796892285e-2, (31, 3) = 2.582539204272471, (31, 4) = .32540795861125427, (31, 5) = -0.957946473248892e-2, (31, 6) = 2.545481761283621, (31, 7) = .3582667626570985, (31, 8) = 0.2883403707075255e-1, (32, 1) = -0.5106757568196689e-3, (32, 2) = 0.13475415217635602e-2, (32, 3) = 2.648460200960687, (32, 4) = .32346579035064904, (32, 5) = -0.9547805614663327e-2, (32, 6) = 2.618840629421426, (32, 7) = .36366514670687944, (32, 8) = 0.2431324030318291e-1, (33, 1) = -0.2953327633691435e-3, (33, 2) = 0.8213655825998622e-3, (33, 3) = 2.713638344636691, (33, 4) = .3215339926041049, (33, 5) = -0.9580452220455518e-2, (33, 6) = 2.692804574171342, (33, 7) = .3681309842732225, (33, 8) = 0.19897477825029125e-1, (34, 1) = -0.16641397198798735e-3, (34, 2) = 0.4869401833588519e-3, (34, 3) = 2.778084059250828, (34, 4) = .31959890842541655, (34, 5) = -0.9682706793193413e-2, (34, 6) = 2.767185195379349, (34, 7) = .3716992797163207, (34, 8) = 0.15624441579612264e-1, (35, 1) = -0.9134248027914396e-4, (35, 2) = 0.28074210501946773e-3, (35, 3) = 2.841804712, (35, 4) = .31764623058532726, (35, 5) = -0.9857922636655345e-2, (35, 6) = 2.841804712, (35, 7) = .3744112941998848, (35, 8) = 0.11525252201341013e-1}, datatype = float[8], order = C_order); errproc := proc (x_bvp) local outpoint, X, Y, yout, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; Digits := 15; outpoint := evalf(x_bvp); X := Vector(35, {(1) = .0, (2) = .20472410284384834, (3) = .4211863305043777, (4) = .6516720600363566, (5) = .8993212463695047, (6) = 1.1685298486145983, (7) = 1.4468423487039677, (8) = 1.7229359537348594, (9) = 1.9968629039389574, (10) = 2.268673421313649, (11) = 2.5378029414464036, (12) = 2.8035694406371796, (13) = 3.066093306207618, (14) = 3.325490409787653, (15) = 3.581658551212711, (16) = 3.8338699831956804, (17) = 4.08221409418108, (18) = 4.32686351028502, (19) = 4.567978384890087, (20) = 4.805327686982952, (21) = 5.038694055040347, (22) = 5.268271439374476, (23) = 5.494238613721016, (24) = 5.716760727626145, (25) = 5.936046030245326, (26) = 6.152283284474133, (27) = 6.365596166650127, (28) = 6.576100208955955, (29) = 6.783903531026379, (30) = 6.9894017136482445, (31) = 7.1936893054340665, (32) = 7.3968755375272774, (33) = 7.5989780331822505, (34) = 7.80001395061423, (35) = 8.0}, datatype = float[8], order = C_order); Y := Matrix(35, 8, {(1, 1) = 0.897448267109614e-15, (1, 2) = 0.5588167359031321e-15, (1, 3) = .0, (1, 4) = .0, (1, 5) = 0.13864249525943088e-15, (1, 6) = .0, (1, 7) = 0.12119642246901448e-14, (1, 8) = .0, (2, 1) = 0.17195345226360017e-14, (2, 2) = 0.6181167466331716e-15, (2, 3) = 0.20410981819182018e-16, (2, 4) = 0.10601766383125283e-15, (2, 5) = -0.10490636710626889e-15, (2, 6) = 0.5031667156796011e-15, (2, 7) = 0.11996548135741033e-14, (2, 8) = 0.2771969015070949e-19, (3, 1) = 0.1686737254582015e-14, (3, 2) = 0.9567626045906052e-15, (3, 3) = 0.5604460075778757e-16, (3, 4) = 0.10527680167976054e-15, (3, 5) = 0.20005622560643638e-15, (3, 6) = -0.9913001724420674e-16, (3, 7) = 0.1339416454645461e-14, (3, 8) = -0.1444766507242344e-17, (4, 1) = 0.4333011548848769e-14, (4, 2) = 0.17025161949432959e-14, (4, 3) = 0.10025344277919218e-16, (4, 4) = 0.11064429627289256e-15, (4, 5) = 0.2162077879904567e-15, (4, 6) = -0.4402054460277445e-15, (4, 7) = -0.689926374914955e-15, (4, 8) = -0.2826387029976454e-17, (5, 1) = 0.6633681086898639e-14, (5, 2) = 0.375032295134198e-14, (5, 3) = 0.1812909654403e-15, (5, 4) = -0.12070342909717134e-15, (5, 5) = -0.1596142149617371e-15, (5, 6) = -0.10825942697009252e-15, (5, 7) = 0.18103213104082225e-14, (5, 8) = -0.16764369656937747e-16, (6, 1) = 0.13129840358265059e-13, (6, 2) = 0.7277452916946674e-14, (6, 3) = 0.29179991421150325e-15, (6, 4) = 0.6399550172322422e-16, (6, 5) = -0.22594631239149157e-15, (6, 6) = -0.9174305403629006e-16, (6, 7) = 0.19951541475781265e-15, (6, 8) = -0.43537055740415584e-16, (7, 1) = 0.16558247533243953e-13, (7, 2) = 0.10179772597290096e-13, (7, 3) = 0.5878293642247217e-15, (7, 4) = -0.7410342523151938e-16, (7, 5) = -0.15996611253844913e-15, (7, 6) = 0.1692951814608457e-14, (7, 7) = 0.1740069789475928e-16, (7, 8) = -0.31275576634239585e-16, (8, 1) = 0.1212069312549711e-13, (8, 2) = 0.9543541214045693e-14, (8, 3) = 0.6704668328631497e-15, (8, 4) = -0.44521023708016503e-16, (8, 5) = 0.22199060125967257e-15, (8, 6) = -0.6750801329037803e-15, (8, 7) = 0.21656382445432134e-14, (8, 8) = -0.6435827646555829e-16, (9, 1) = -0.3772034753492132e-14, (9, 2) = 0.5759418721910007e-14, (9, 3) = 0.6527662555019791e-15, (9, 4) = 0.441738628379015e-16, (9, 5) = 0.5658548136938054e-15, (9, 6) = 0.3154847106536809e-14, (9, 7) = 0.7858154752173474e-15, (9, 8) = -0.10311351058385951e-15, (10, 1) = -0.2440608209204811e-13, (10, 2) = 0.28469235452884776e-14, (10, 3) = 0.3866914448702218e-15, (10, 4) = -0.9144516798022403e-16, (10, 5) = -0.10145948392816397e-15, (10, 6) = -0.24442421173399023e-14, (10, 7) = 0.6377245986878261e-16, (10, 8) = -0.17205372425145497e-15, (11, 1) = -0.4123657586548479e-13, (11, 2) = 0.47019634354738835e-14, (11, 3) = 0.7390229161834592e-15, (11, 4) = 0.33830363819193296e-15, (11, 5) = -0.49321754692558303e-16, (11, 6) = -0.7883634580987387e-16, (11, 7) = 0.9384901596020932e-15, (11, 8) = -0.252982075836778e-15, (12, 1) = -0.45482420467991964e-13, (12, 2) = 0.10203470081300767e-13, (12, 3) = 0.7534533806982218e-15, (12, 4) = -0.20573415143689883e-15, (12, 5) = 0.10308521674561246e-15, (12, 6) = -0.306193488603141e-14, (12, 7) = 0.11321549203383949e-14, (12, 8) = -0.3982374979919039e-15, (13, 1) = -0.3692752598727219e-13, (13, 2) = 0.13076295718742951e-13, (13, 3) = -0.42293951496931934e-15, (13, 4) = 0.5793784843910567e-15, (13, 5) = 0.1255527766044886e-15, (13, 6) = 0.14631798233506174e-14, (13, 7) = -0.537526963696651e-16, (13, 8) = -0.43906151981417637e-15, (14, 1) = -0.12180528075494553e-13, (14, 2) = 0.67927440842877486e-14, (14, 3) = -0.7751636018193131e-16, (14, 4) = 0.5989904770359435e-15, (14, 5) = -0.5359630097047029e-16, (14, 6) = -0.13487931939540982e-14, (14, 7) = 0.17179524507174635e-14, (14, 8) = -0.4135968388921909e-15, (15, 1) = 0.3685354836152949e-13, (15, 2) = -0.1664738219468053e-13, (15, 3) = -0.1573909843712974e-14, (15, 4) = 0.794295869180883e-15, (15, 5) = -0.35245821132597215e-17, (15, 6) = -0.11581448838991115e-14, (15, 7) = 0.4173536492488085e-15, (15, 8) = -0.5280874496874946e-15, (16, 1) = 0.10366564920219266e-12, (16, 2) = -0.641879285025774e-13, (16, 3) = 0.20566596972943627e-14, (16, 4) = 0.9266548671796218e-16, (16, 5) = 0.2353325946868509e-15, (16, 6) = 0.18284547948529757e-15, (16, 7) = 0.17622934571819217e-14, (16, 8) = -0.4976417588290511e-15, (17, 1) = 0.14484169648891652e-12, (17, 2) = -0.12297441716887176e-12, (17, 3) = -0.1068182350278374e-14, (17, 4) = -0.5854540915281354e-15, (17, 5) = 0.14535461070078002e-15, (17, 6) = 0.4266610794669015e-14, (17, 7) = 0.4607205530424001e-15, (17, 8) = -0.5886742340881105e-15, (18, 1) = 0.10566223147991009e-12, (18, 2) = -0.13820205741801644e-12, (18, 3) = -0.20123078614811413e-14, (18, 4) = -0.7561398183639445e-16, (18, 5) = 0.2140425035665995e-15, (18, 6) = -0.23561554941772816e-14, (18, 7) = 0.19085985864153077e-14, (18, 8) = -0.5917377444519284e-15, (19, 1) = -0.1679773165980789e-13, (19, 2) = -0.5657134915236689e-13, (19, 3) = 0.1360256674443056e-14, (19, 4) = 0.8707809795722639e-15, (19, 5) = 0.21528390503198728e-15, (19, 6) = -0.5127690553955357e-15, (19, 7) = -0.4826901389884211e-15, (19, 8) = -0.5868641866801674e-15, (20, 1) = -0.14894339690033946e-12, (20, 2) = 0.9602247884781634e-13, (20, 3) = 0.26294719195036576e-14, (20, 4) = -0.502638096454554e-15, (20, 5) = 0.32194304936576336e-16, (20, 6) = 0.25628117174786136e-14, (20, 7) = 0.8377380590237005e-15, (20, 8) = -0.7167682554400696e-15, (21, 1) = -0.20361898739374174e-12, (21, 2) = 0.2159454684255011e-12, (21, 3) = -0.18390456690678095e-14, (21, 4) = 0.16085741943765483e-14, (21, 5) = -0.3751395624658827e-15, (21, 6) = 0.68012918504538484e-14, (21, 7) = 0.25431273083692057e-15, (21, 8) = -0.32419369341927803e-15, (22, 1) = -0.15689971156050872e-12, (22, 2) = 0.21942355904154635e-12, (22, 3) = 0.24099783601109427e-14, (22, 4) = -0.9953957508184104e-15, (22, 5) = 0.8621846497603312e-16, (22, 6) = 0.5849807663571661e-14, (22, 7) = -0.11527500167921049e-14, (22, 8) = 0.5354827376431221e-17, (23, 1) = -0.5259760291556636e-13, (23, 2) = 0.11178856094650594e-12, (23, 3) = -0.8417911290913919e-15, (23, 4) = -0.2207954041887918e-14, (23, 5) = -0.2243044830543838e-15, (23, 6) = 0.15023300748706678e-13, (23, 7) = -0.973903527171104e-15, (23, 8) = -0.32331856502436973e-16, (24, 1) = 0.4443374116829714e-13, (24, 2) = -0.32070809165957353e-13, (24, 3) = -0.34880954720513526e-15, (24, 4) = 0.1231856080413119e-14, (24, 5) = 0.55827387662745e-17, (24, 6) = 0.54319152119881845e-14, (24, 7) = -0.36766647288947504e-15, (24, 8) = -0.3464894477365739e-15, (25, 1) = 0.933019806478322e-13, (25, 2) = -0.13384281309083258e-12, (25, 3) = 0.33197903067130842e-14, (25, 4) = -0.3132682814760555e-14, (25, 5) = -0.28711859306736457e-15, (25, 6) = -0.5470120367959728e-14, (25, 7) = -0.13432374782466947e-14, (25, 8) = 0.2039729831139547e-15, (26, 1) = 0.8977989989773004e-13, (26, 2) = -0.15869171973868484e-12, (26, 3) = 0.23278286029344056e-14, (26, 4) = -0.29354266305866873e-15, (26, 5) = 0.230020828715235e-16, (26, 6) = 0.32968730420794027e-14, (26, 7) = 0.12490842693534877e-14, (26, 8) = 0.3964694184561624e-15, (27, 1) = 0.5380760356273936e-13, (27, 2) = -0.11847870856872766e-12, (27, 3) = 0.2688345544666234e-15, (27, 4) = 0.10619582772389209e-14, (27, 5) = -0.12172639957600914e-15, (27, 6) = 0.3185441694869011e-14, (27, 7) = -0.1489879250602313e-14, (27, 8) = 0.6565146261655062e-15, (28, 1) = 0.10742518103279055e-13, (28, 2) = -0.495306438002946e-13, (28, 3) = 0.4310166135267635e-14, (28, 4) = 0.15683143667115227e-14, (28, 5) = 0.3453405106322541e-16, (28, 6) = 0.1018279419881744e-13, (28, 7) = -0.13632661970738383e-14, (28, 8) = 0.4729842715233933e-15, (29, 1) = -0.2151478390347912e-13, (29, 2) = 0.12771727815782967e-13, (29, 3) = 0.5629863069659428e-14, (29, 4) = -0.14434075930994008e-15, (29, 5) = -0.3455164788374167e-15, (29, 6) = 0.1345923386438848e-15, (29, 7) = 0.6628740317227967e-15, (29, 8) = 0.2370286262471212e-15, (30, 1) = -0.36756430829417473e-13, (30, 2) = 0.4915770478845277e-13, (30, 3) = 0.6364093247487674e-15, (30, 4) = 0.2644278305592894e-15, (30, 5) = 0.19990963262100253e-15, (30, 6) = -0.4147202106691808e-14, (30, 7) = -0.13135113472923236e-14, (30, 8) = 0.79220739160263215e-15, (31, 1) = -0.38142291891788485e-13, (31, 2) = 0.5919398917266647e-13, (31, 3) = 0.13925650940938171e-13, (31, 4) = 0.5542574200502359e-15, (31, 5) = -0.15301256420629026e-15, (31, 6) = 0.4509491169458926e-14, (31, 7) = 0.2495446814784076e-15, (31, 8) = 0.8083662326018128e-15, (32, 1) = -0.30039055413759246e-13, (32, 2) = 0.4722520516979542e-13, (32, 3) = 0.5948740452406517e-14, (32, 4) = 0.3314613919766506e-14, (32, 5) = -0.20036994088420754e-15, (32, 6) = 0.14649613744607957e-13, (32, 7) = -0.7728084332522093e-16, (32, 8) = 0.1933770820597525e-15, (33, 1) = -0.18092057280170896e-13, (33, 2) = 0.23205059829259787e-13, (33, 3) = 0.6050533016944145e-14, (33, 4) = 0.28168060491597395e-15, (33, 5) = 0.2339278829021382e-15, (33, 6) = 0.9701926801570967e-14, (33, 7) = 0.18835370879179478e-15, (33, 8) = 0.21984174087752556e-15, (34, 1) = -0.714859442764903e-14, (34, 2) = -0.19154332194589852e-14, (34, 3) = 0.1348765326796076e-13, (34, 4) = -0.9615633283396454e-15, (34, 5) = 0.8312623586890217e-16, (34, 6) = 0.29574319371284083e-14, (34, 7) = -0.30915701787131377e-14, (34, 8) = 0.27524560756785973e-15, (35, 1) = .0, (35, 2) = -0.20166673380620537e-13, (35, 3) = -0.1179663713625192e-14, (35, 4) = .0, (35, 5) = 0.54374029653237e-16, (35, 6) = -0.3047767633518586e-15, (35, 7) = .0, (35, 8) = -0.3103350258003601e-16}, datatype = float[8], order = C_order); if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "right" then return X[35] elif outpoint = "order" then return 8 elif outpoint = "error" then return HFloat(2.1942355904154635e-13) elif outpoint = "errorproc" then error "this is already the error procedure" elif outpoint = "rawdata" then return [8, 35, [T(eta), diff(T(eta), eta), f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), g(eta), diff(g(eta), eta), diff(diff(g(eta), eta), eta)], X, Y] else return ('procname')(x_bvp) end if end if; if outpoint < X[1] or X[35] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[35] end if; V := array([1 = 4, 2 = 0]); if Digits <= trunc(evalhf(Digits)) then L := Vector(4, 'datatype' = 'float'[8]); yout := Vector(8, 'datatype' = 'float'[8]); evalhf(`dsolve/numeric/lagrange`(35, 8, X, Y, outpoint, var(yout), var(L), var(V))) else L := Vector(4, 'datatype' = 'sfloat'); yout := Vector(8, 'datatype' = 'sfloat'); `dsolve/numeric/lagrange`(35, 8, X, Y, outpoint, yout, L, V) end if; [eta = outpoint, seq('[T(eta), diff(T(eta), eta), f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), g(eta), diff(g(eta), eta), diff(diff(g(eta), eta), eta)]'[i] = yout[i], i = 1 .. 8)] end proc; if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "method" then return "bvp" elif outpoint = "right" then return X[35] elif outpoint = "order" then return 8 elif outpoint = "error" then return HFloat(2.1942355904154635e-13) elif outpoint = "errorproc" then return eval(errproc) elif outpoint = "rawdata" then return [8, 35, "depnames", X, Y, YP] else error "non-numeric value" end if end if; if outpoint < X[1] or X[35] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[35] end if; if Digits <= trunc(evalhf(Digits)) and (_EnvInFsolve <> true or _EnvDSNumericSaveDigits <= trunc(evalhf(Digits))) then V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 5 ) = (false), ( 4 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = .0, (1, 2) = .0, (2, 1) = .0, (2, 2) = .0, (3, 1) = .0, (3, 2) = .0, (4, 1) = .0, (4, 2) = .0, (5, 1) = .0, (5, 2) = .0, (6, 1) = .0, (6, 2) = .0, (7, 1) = .0, (7, 2) = .0}, datatype = float[8], order = C_order); yout := Vector(8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8]); evalhf(`dsolve/numeric/hermite`(35, 8, X, Y, YP, outpoint, var(yout), var(L), var(V))) else if _EnvInFsolve = true then Digits := _EnvDSNumericSaveDigits end if; V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 5 ) = (false), ( 4 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = 0., (1, 2) = 0., (2, 1) = 0., (2, 2) = 0., (3, 1) = 0., (3, 2) = 0., (4, 1) = 0., (4, 2) = 0., (5, 1) = 0., (5, 2) = 0., (6, 1) = 0., (6, 2) = 0., (7, 1) = 0., (7, 2) = 0.}, order = C_order); yout := Vector(8, {(1) = 0., (2) = 0., (3) = 0., (4) = 0., (5) = 0., (6) = 0., (7) = 0., (8) = 0.}); `dsolve/numeric/hermite`(35, 8, X, Y, YP, outpoint, yout, L, V) end if; [outpoint, seq(yout[i], i = 1 .. 8)] end proc, (2) = Array(1..9, {(1) = 4365885730, (2) = 4365885922, (3) = 4365886066, (4) = 4365886162, (5) = 4365886258, (6) = 4365886354, (7) = 4365886450, (8) = 4365886546, (9) = 4365886642}), (3) = [eta, T(eta), diff(T(eta), eta), f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), g(eta), diff(g(eta), eta), diff(diff(g(eta), eta), eta)], (4) = 0}); solnproc := data[1]; if not type(outpoint, 'numeric') then if outpoint = "solnprocedure" then return eval(solnproc) elif member(outpoint, ["start", "left", "right", "errorproc", "rawdata", "order", "error"]) then return solnproc(eta) elif outpoint = "sysvars" then return data[3] elif procname <> unknown then return ('procname')(eta) else `D(g)` := pointto(data[2][8]); return ('`D(g)`')(eta) end if end if; try res := solnproc(outpoint); res[8] catch: error  end try end proc, (D@@2)(g) = proc (eta) local res, data, solnproc, `\`@@\`(D,2)(g)`, outpoint; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then outpoint := evalf[_EnvDSNumericSaveDigits](eta) else outpoint := evalf(eta) end if; data := Array(1..4, {(1) = proc (outpoint) local X, Y, YP, yout, errproc, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; X := Vector(35, {(1) = .0, (2) = .20472410284384834, (3) = .4211863305043777, (4) = .6516720600363566, (5) = .8993212463695047, (6) = 1.1685298486145983, (7) = 1.4468423487039677, (8) = 1.7229359537348594, (9) = 1.9968629039389574, (10) = 2.268673421313649, (11) = 2.5378029414464036, (12) = 2.8035694406371796, (13) = 3.066093306207618, (14) = 3.325490409787653, (15) = 3.581658551212711, (16) = 3.8338699831956804, (17) = 4.08221409418108, (18) = 4.32686351028502, (19) = 4.567978384890087, (20) = 4.805327686982952, (21) = 5.038694055040347, (22) = 5.268271439374476, (23) = 5.494238613721016, (24) = 5.716760727626145, (25) = 5.936046030245326, (26) = 6.152283284474133, (27) = 6.365596166650127, (28) = 6.576100208955955, (29) = 6.783903531026379, (30) = 6.9894017136482445, (31) = 7.1936893054340665, (32) = 7.3968755375272774, (33) = 7.5989780331822505, (34) = 7.80001395061423, (35) = 8.0}, datatype = float[8], order = C_order); Y := Matrix(35, 8, {(1, 1) = .6800687881055213, (1, 2) = -.11511620494228465, (1, 3) = .0, (1, 4) = .0, (1, 5) = .37811799244920324, (1, 6) = .0, (1, 7) = 1.4117113181447536, (1, 8) = .0, (2, 1) = .6560325255507624, (2, 2) = -.11975318257035834, (2, 3) = 0.7923823323670406e-2, (2, 4) = 0.77409636920803e-1, (2, 5) = .37811352171842283, (2, 6) = .2890131130048752, (2, 7) = 1.411746095030339, (2, 8) = 0.5096115493465316e-3, (3, 1) = .6295510504863806, (3, 2) = -.12496974762969729, (3, 3) = 0.335383312275963e-1, (3, 4) = .15925409044318592, (3, 5) = .37807999460677805, (3, 6) = .5946253962700148, (3, 7) = 1.4120141336647931, (3, 8) = 0.21567165797040048e-2, (4, 1) = .6000810786889832, (4, 2) = -.13078648524102396, (4, 3) = 0.8028592391087024e-1, (4, 4) = .24638626301264996, (4, 5) = .3779809429150307, (4, 6) = .9201555386630824, (4, 7) = 1.4128327072652163, (4, 8) = 0.51609615183282375e-2, (5, 1) = .5669002581395786, (5, 2) = -.1371916401125017, (5, 3) = .1528922356920777, (5, 4) = .33996920774229683, (5, 5) = .37776827912336824, (5, 6) = 1.27024451829135, (5, 7) = 1.4146572486865054, (5, 8) = 0.9820223828374587e-2, (6, 1) = .5290327802230002, (6, 2) = -.14409851939129248, (6, 3) = .25809973947558784, (6, 4) = .44161902578753254, (6, 5) = .37737598360935093, (6, 6) = 1.651514368911508, (6, 7) = 1.4181683376757317, (6, 8) = 0.16551767115543403e-1, (7, 1) = .48797776231069934, (7, 2) = -.15082401972104326, (7, 3) = .3956159784223351, (7, 4) = .546566995361021, (7, 5) = .3767592394353197, (7, 6) = 2.046956560700791, (7, 7) = 1.423951238924928, (7, 8) = 0.2530574188627694e-1, (8, 1) = .4455097689486867, (8, 2) = -.15662271721966162, (8, 3) = .560869343108844, (8, 4) = .650475986042538, (8, 5) = .3759074764267706, (8, 6) = 2.441192046655901, (8, 7) = 1.432339477818811, (8, 8) = 0.3574403196512969e-1, (9, 1) = .4019714737781167, (9, 2) = -.16097976785337778, (9, 3) = .7531425930170065, (9, 4) = .7533024381136638, (9, 5) = .37480724717639446, (9, 6) = 2.835034683009538, (9, 7) = 1.4437395006677125, (9, 8) = 0.4775839761612408e-1, (10, 1) = .3578432116772004, (10, 2) = -.16334348080313163, (10, 3) = .9717278248653037, (10, 4) = .8550010473136669, (10, 5) = .3734541277931229, (10, 6) = 3.229383694258226, (10, 7) = 1.458517002768622, (10, 8) = 0.61223001646425766e-1, (11, 1) = .3138427499613885, (11, 2) = -.16317816891693035, (11, 3) = 1.2153400964446428, (11, 4) = .9552992408083281, (11, 5) = .3718558392388385, (11, 6) = 3.6243047360166147, (11, 7) = 1.4769469365488954, (11, 8) = 0.7595912211689054e-1, (12, 1) = .2708197137303571, (12, 2) = -.1600634554218884, (12, 3) = 1.4823382823352556, (12, 4) = 1.0538888365598136, (12, 5) = .37003049775688535, (12, 6) = 4.019692806711686, (12, 7) = 1.499207309863791, (12, 8) = 0.9175293789636808e-1, (13, 1) = .22955356513321082, (13, 2) = -.15376655017624774, (13, 3) = 1.771737568613686, (13, 4) = 1.1507687254222438, (13, 5) = .3679982116567567, (13, 6) = 4.4166208604325305, (13, 7) = 1.5254608253960227, (13, 8) = .1084188111357934, (14, 1) = .19082533490993417, (14, 2) = -.14430646057430674, (14, 3) = 2.0826000767466843, (14, 4) = 1.245943366242156, (14, 5) = .36578343902893384, (14, 6) = 4.816160855718664, (14, 7) = 1.555816989411266, (14, 8) = .12576396753467523, (15, 1) = .1553751277762106, (15, 2) = -.13201176794608704, (15, 3) = 2.4137473802608245, (15, 4) = 1.339345748340381, (15, 5) = .36341579280951025, (15, 6) = 5.219031239689751, (15, 7) = 1.590302627188974, (15, 8) = .14357624150955856, (16, 1) = .12386204102729283, (16, 2) = -.11755024367601966, (16, 3) = 2.7630782885466254, (16, 4) = 1.4306932234947345, (16, 5) = .36093354758169927, (16, 6) = 5.624880231600311, (16, 7) = 1.628778496660186, (16, 8) = .16159615167866462, (17, 1) = 0.9660535822960543e-1, (17, 2) = -.1017757389941151, (17, 3) = 3.129486686134902, (17, 4) = 1.5200126345068938, (17, 5) = .35836839869593895, (17, 6) = 6.034545798261897, (17, 7) = 1.6711446595363155, (17, 8) = .17962464210679904, (18, 1) = 0.7367857489109031e-1, (18, 2) = -0.8562488366373487e-1, (18, 3) = 3.512055738361352, (18, 4) = 1.6073685521372294, (18, 5) = .3557501139971933, (18, 6) = 6.448944019154785, (18, 7) = 1.7172737332675954, (18, 8) = .19747921374137573, (19, 1) = 0.54932297215312065e-1, (19, 2) = -0.6998673195550159e-1, (19, 3) = 3.909931726386895, (19, 4) = 1.692827501352813, (19, 5) = .3531065609803749, (19, 6) = 6.868914696313914, (19, 7) = 1.7670034201936595, (19, 8) = .21498974802357024, (20, 1) = 0.4005339598008939e-1, (20, 2) = -0.55610136299587054e-1, (20, 3) = 4.32164450688784, (20, 4) = 1.77632437502917, (20, 5) = .35046725376876914, (20, 6) = 7.294527651516823, (20, 7) = 1.8200532646404195, (20, 8) = .23197376211102866, (21, 1) = 0.28580538470935495e-1, (21, 2) = -0.43000484038105184e-1, (21, 3) = 4.745698402930282, (21, 4) = 1.8578072943415187, (21, 5) = .34785831678559404, (21, 6) = 7.725732483059856, (21, 7) = 1.8760988685224456, (21, 8) = .24826982947943302, (22, 1) = 0.1996278053815402e-1, (22, 2) = -0.3238521326136785e-1, (22, 3) = 5.181353487043006, (22, 4) = 1.9373734562831926, (22, 5) = .34529737977456776, (22, 6) = 8.163122417826008, (22, 7) = 1.9348863621148453, (22, 8) = .26376703841962096, (23, 1) = 0.1365169808933715e-1, (23, 2) = -0.23777175833410786e-1, (23, 3) = 5.6279306071831305, (23, 4) = 2.015116420764514, (23, 5) = .34279810538335065, (23, 6) = 8.60720314062156, (23, 7) = 1.996152613508324, (23, 8) = .2783739405626572, (24, 1) = 0.9141837377667494e-2, (24, 2) = -0.17032577718097307e-1, (24, 3) = 6.084805468966238, (24, 4) = 2.0911257386418485, (24, 5) = .340370194206626, (24, 6) = 9.058397452645558, (24, 7) = 2.059629639205023, (24, 8) = .29201833127085214, (25, 1) = 0.5994108163660374e-2, (25, 2) = -0.11912234609982005e-1, (25, 3) = 6.551523204740028, (25, 4) = 2.165505306248221, (25, 5) = .33801891240256376, (25, 6) = 9.517167898738702, (25, 7) = 2.1250654794952815, (25, 8) = .3046497396204352, (26, 1) = 0.38470588985903055e-2, (26, 2) = -0.8138240294430613e-2, (26, 3) = 7.027670958837816, (26, 4) = 2.238350997284669, (26, 5) = .3357460261587689, (26, 6) = 9.983900741341126, (26, 7) = 2.1922108137474403, (26, 8) = .3162340733370819, (27, 1) = 0.2415525316376395e-2, (27, 2) = -0.5433887636433142e-2, (27, 3) = 7.51276194601149, (27, 4) = 2.3097349632638142, (27, 5) = .33355055765848207, (27, 6) = 10.458803767615885, (27, 7) = 2.2608058123457324, (27, 8) = .32675028982528975, (28, 1) = 0.1482134442049264e-2, (28, 2) = -0.35473836650395138e-2, (28, 3) = 8.006344879280913, (28, 4) = 2.3797246033167165, (28, 5) = .3314285083244437, (28, 6) = 10.942023485632674, (28, 7) = 2.3305985328398995, (28, 8) = .3361925680987284, (29, 1) = 0.8867798277494013e-3, (29, 2) = -0.22649595163979426e-2, (29, 3) = 8.508000609042815, (29, 4) = 2.4483823707573626, (29, 5) = .32937324890833686, (29, 6) = 11.433650368387816, (29, 7) = 2.4013472411799133, (29, 8) = .34456875648665847, (30, 1) = 0.5147830582056192e-3, (30, 2) = -0.14137540243798479e-2, (30, 3) = 9.018079243243903, (30, 4) = 2.515861978503066, (30, 5) = .3273730983678873, (30, 6) = 11.934451666568503, (30, 7) = 2.4729258238550673, (30, 8) = .3519085257409124, (31, 1) = 0.28659669973437794e-3, (31, 2) = -0.8605928820212513e-3, (31, 3) = 9.538856126749963, (31, 4) = 2.582539204272471, (31, 5) = .32540795861125427, (31, 6) = 12.44702875421768, (31, 7) = 2.545481761283621, (31, 8) = .3582667626570985, (32, 1) = 0.1500417202447516e-3, (32, 2) = -0.5106757568196689e-3, (32, 3) = 10.070296337466763, (32, 4) = 2.648460200960687, (32, 5) = .32346579035064904, (32, 6) = 12.971669786325668, (32, 7) = 2.618840629421426, (32, 8) = .36366514670687944, (33, 1) = 0.7037994109756306e-4, (33, 2) = -0.2953327633691435e-3, (33, 3) = 10.612149661123444, (33, 4) = 2.713638344636691, (33, 5) = .3215339926041049, (33, 6) = 13.508402962580126, (33, 7) = 2.692804574171342, (33, 8) = .3681309842732225, (34, 1) = 0.2508902470016854e-4, (34, 2) = -0.16641397198798735e-3, (34, 3) = 11.164172903455626, (34, 4) = 2.778084059250828, (34, 5) = .31959890842541655, (34, 6) = 14.057217972519599, (34, 7) = 2.767185195379349, (34, 8) = .3716992797163207, (35, 1) = .0, (35, 2) = -0.9134248027914396e-4, (35, 3) = 11.726129087316146, (35, 4) = 2.841804712, (35, 5) = .31764623058532726, (35, 6) = 14.618068801887034, (35, 7) = 2.841804712, (35, 8) = .3744112941998848}, datatype = float[8], order = C_order); YP := Matrix(35, 8, {(1, 1) = -.11511620494228465, (1, 2) = -0.21848192814805704e-1, (1, 3) = .0, (1, 4) = .37811799244920324, (1, 5) = .0, (1, 6) = 1.4117113181447536, (1, 7) = .0, (1, 8) = .0, (2, 1) = -.11975318257035834, (2, 2) = -0.2340744045683882e-1, (2, 3) = 0.77409636920803e-1, (2, 4) = .37811352171842283, (2, 5) = -0.6501906335844444e-4, (2, 6) = 1.411746095030339, (2, 7) = 0.5096115493465316e-3, (2, 8) = 0.4978393071034031e-2, (3, 1) = -.12496974762969729, (3, 2) = -0.2472737923936798e-1, (3, 3) = .15925409044318592, (3, 4) = .37807999460677805, (3, 5) = -0.26633217492876086e-3, (3, 6) = 1.4120141336647931, (3, 7) = 0.21567165797040048e-2, (3, 8) = 0.10238889928920546e-1, (4, 1) = -.13078648524102396, (4, 2) = -0.25653205134369778e-1, (4, 3) = .24638626301264996, (4, 4) = .3779809429150307, (4, 5) = -0.6148579022689942e-3, (4, 6) = 1.4128327072652163, (4, 7) = 0.51609615183282375e-2, (4, 8) = 0.15826282713831068e-1, (5, 1) = -.1371916401125017, (5, 2) = -0.25935739559925664e-1, (5, 3) = .33996920774229683, (5, 4) = .37776827912336824, (5, 5) = -0.1124149710447512e-2, (5, 6) = 1.4146572486865054, (5, 7) = 0.9820223828374587e-2, (5, 8) = 0.21793013656706044e-1, (6, 1) = -.14409851939129248, (6, 2) = -0.25166962349877944e-1, (6, 3) = .44161902578753254, (6, 4) = .37737598360935093, (6, 5) = -0.1811204871965437e-2, (6, 6) = 1.4181683376757317, (6, 7) = 0.16551767115543403e-1, (6, 8) = 0.2819908212449082e-1, (7, 1) = -.15082401972104326, (7, 2) = -0.22883345616240332e-1, (7, 3) = .546566995361021, (7, 4) = .3767592394353197, (7, 5) = -0.26379430409376966e-2, (7, 6) = 1.423951238924928, (7, 7) = 0.2530574188627694e-1, (7, 8) = 0.3467874447064803e-1, (8, 1) = -.15662271721966162, (8, 2) = -0.1879263785160887e-1, (8, 3) = .650475986042538, (8, 4) = .3759074764267706, (8, 5) = -0.3543732228642546e-2, (8, 6) = 1.432339477818811, (8, 7) = 0.3574403196512969e-1, (8, 8) = 0.40893604100372564e-1, (9, 1) = -.16097976785337778, (9, 2) = -0.12656020813637847e-1, (9, 3) = .7533024381136638, (9, 4) = .37480724717639446, (9, 5) = -0.4495519532277643e-2, (9, 6) = 1.4437395006677125, (9, 7) = 0.4775839761612408e-1, (9, 8) = 0.4677096408972486e-1, (10, 1) = -.16334348080313163, (10, 2) = -0.4369045779836154e-2, (10, 3) = .8550010473136669, (10, 4) = .3734541277931229, (10, 5) = -0.5462016466357188e-2, (10, 6) = 1.458517002768622, (10, 7) = 0.61223001646425766e-1, (10, 8) = 0.5223392148642055e-1, (11, 1) = -.16317816891693035, (11, 2) = 0.5922044795027756e-2, (11, 3) = .9552992408083281, (11, 4) = .3718558392388385, (11, 5) = -0.6411982626269342e-2, (11, 6) = 1.4769469365488954, (11, 7) = 0.7595912211689054e-1, (11, 8) = 0.57193745442795506e-1, (12, 1) = -.1600634554218884, (12, 2) = 0.17740826720045982e-1, (12, 3) = 1.0538888365598136, (12, 4) = .37003049775688535, (12, 5) = -0.7316860858898448e-2, (12, 6) = 1.499207309863791, (12, 7) = 0.9175293789636808e-1, (12, 8) = 0.6156719989689199e-1, (13, 1) = -.15376655017624774, (13, 2) = 0.30296704807712918e-1, (13, 3) = 1.1507687254222438, (13, 4) = .3679982116567567, (13, 5) = -0.8154721726663258e-2, (13, 6) = 1.5254608253960227, (13, 7) = .1084188111357934, (13, 8) = 0.6529471058639535e-1, (14, 1) = -.14430646057430674, (14, 2) = 0.4250806547922589e-1, (14, 3) = 1.245943366242156, (14, 4) = .36578343902893384, (14, 5) = -0.8907641852239972e-2, (14, 6) = 1.555816989411266, (14, 7) = .12576396753467523, (14, 8) = 0.6832600602649756e-1, (15, 1) = -.13201176794608704, (15, 2) = 0.53137961864251064e-1, (15, 3) = 1.339345748340381, (15, 4) = .36341579280951025, (15, 5) = -0.9561372713284904e-2, (15, 6) = 1.590302627188974, (15, 7) = .14357624150955856, (15, 8) = 0.7062057397986593e-1, (16, 1) = -.11755024367601966, (16, 2) = 0.6102495948240774e-1, (16, 3) = 1.4306932234947345, (16, 4) = .36093354758169927, (16, 5) = -0.10105088797683102e-1, (16, 6) = 1.628778496660186, (16, 7) = .16159615167866462, (16, 8) = 0.7215057669693223e-1, (17, 1) = -.1017757389941151, (17, 2) = 0.6540052175916726e-1, (17, 3) = 1.5200126345068938, (17, 4) = .35836839869593895, (17, 5) = -0.10534973995215179e-1, (17, 6) = 1.6711446595363155, (17, 7) = .17962464210679904, (17, 8) = 0.7291378535787908e-1, (18, 1) = -0.8562488366373487e-1, (18, 2) = 0.6601577799350121e-1, (18, 3) = 1.6073685521372294, (18, 4) = .3557501139971933, (18, 5) = -0.1085154690665931e-1, (18, 6) = 1.7172737332675954, (18, 7) = .19747921374137573, (18, 8) = 0.729227591867127e-1, (19, 1) = -0.6998673195550159e-1, (19, 2) = 0.6316514351336697e-1, (19, 3) = 1.692827501352813, (19, 4) = .3531065609803749, (19, 5) = -0.11059054704056444e-1, (19, 6) = 1.7670034201936595, (19, 7) = .21498974802357024, (19, 8) = 0.7220335350513343e-1, (20, 1) = -0.55610136299587054e-1, (20, 2) = 0.57585436563437925e-1, (20, 3) = 1.77632437502917, (20, 4) = .35046725376876914, (20, 5) = -0.11164970048420729e-1, (20, 6) = 1.8200532646404195, (20, 7) = .23197376211102866, (20, 8) = 0.7079658035527173e-1, (21, 1) = -0.43000484038105184e-1, (21, 2) = 0.50253823099175934e-1, (21, 3) = 1.8578072943415187, (21, 4) = .34785831678559404, (21, 5) = -0.111801623302582e-1, (21, 6) = 1.8760988685224456, (21, 7) = .24826982947943302, (21, 8) = 0.6875838561442682e-1, (22, 1) = -0.3238521326136785e-1, (22, 2) = 0.42146604914204154e-1, (22, 3) = 1.9373734562831926, (22, 4) = .34529737977456776, (22, 5) = -0.11117984320829395e-1, (22, 6) = 1.9348863621148453, (22, 7) = .26376703841962096, (22, 8) = 0.6615191423106347e-1, (23, 1) = -0.23777175833410786e-1, (23, 2) = 0.34085049240114594e-1, (23, 3) = 2.015116420764514, (23, 4) = .34279810538335065, (23, 5) = -0.10993236209989717e-1, (23, 6) = 1.996152613508324, (23, 7) = .2783739405626572, (23, 8) = 0.6304618263872158e-1, (24, 1) = -0.17032577718097307e-1, (24, 2) = 0.2665729331676524e-1, (24, 3) = 2.0911257386418485, (24, 4) = .340370194206626, (24, 5) = -0.10821600556493872e-1, (24, 6) = 2.059629639205023, (24, 7) = .29201833127085214, (24, 8) = 0.59514066560478224e-1, (25, 1) = -0.11912234609982005e-1, (25, 2) = 0.20207684956014358e-1, (25, 3) = 2.165505306248221, (25, 4) = .33801891240256376, (25, 5) = -0.10619047217973444e-1, (25, 6) = 2.1250654794952815, (25, 7) = .3046497396204352, (25, 8) = 0.55629289468927506e-1, (26, 1) = -0.8138240294430613e-2, (26, 2) = 0.14875114888345182e-1, (26, 3) = 2.238350997284669, (26, 4) = .3357460261587689, (26, 5) = -0.10401381660268688e-1, (26, 6) = 2.1922108137474403, (26, 7) = .3162340733370819, (26, 8) = 0.5146542077826284e-1, (27, 1) = -0.5433887636433142e-2, (27, 2) = 0.1064880363610196e-1, (27, 3) = 2.3097349632638142, (27, 4) = .33355055765848207, (27, 5) = -0.10183874373236527e-1, (27, 6) = 2.2608058123457324, (27, 7) = .32675028982528975, (27, 8) = 0.4709533876452156e-1, (28, 1) = -0.35473836650395138e-2, (28, 2) = 0.7422525245840296e-2, (28, 3) = 2.3797246033167165, (28, 4) = .3314285083244437, (28, 5) = -0.9980819151111209e-2, (28, 6) = 2.3305985328398995, (28, 7) = .3361925680987284, (28, 8) = 0.42588832612515365e-1, (29, 1) = -0.22649595163979426e-2, (29, 2) = 0.5042123940643825e-2, (29, 3) = 2.4483823707573626, (29, 4) = .32937324890833686, (29, 5) = -0.9805194239856069e-2, (29, 6) = 2.4013472411799133, (29, 7) = .34456875648665847, (29, 8) = 0.3801127009896496e-1, (30, 1) = -0.14137540243798479e-2, (30, 2) = 0.3338358133232503e-2, (30, 3) = 2.515861978503066, (30, 4) = .3273730983678873, (30, 5) = -0.9668229828749347e-2, (30, 6) = 2.4729258238550673, (30, 7) = .3519085257409124, (30, 8) = 0.33415920177751274e-1, (31, 1) = -0.8605928820212513e-3, (31, 2) = 0.21504697796892285e-2, (31, 3) = 2.582539204272471, (31, 4) = .32540795861125427, (31, 5) = -0.957946473248892e-2, (31, 6) = 2.545481761283621, (31, 7) = .3582667626570985, (31, 8) = 0.2883403707075255e-1, (32, 1) = -0.5106757568196689e-3, (32, 2) = 0.13475415217635602e-2, (32, 3) = 2.648460200960687, (32, 4) = .32346579035064904, (32, 5) = -0.9547805614663327e-2, (32, 6) = 2.618840629421426, (32, 7) = .36366514670687944, (32, 8) = 0.2431324030318291e-1, (33, 1) = -0.2953327633691435e-3, (33, 2) = 0.8213655825998622e-3, (33, 3) = 2.713638344636691, (33, 4) = .3215339926041049, (33, 5) = -0.9580452220455518e-2, (33, 6) = 2.692804574171342, (33, 7) = .3681309842732225, (33, 8) = 0.19897477825029125e-1, (34, 1) = -0.16641397198798735e-3, (34, 2) = 0.4869401833588519e-3, (34, 3) = 2.778084059250828, (34, 4) = .31959890842541655, (34, 5) = -0.9682706793193413e-2, (34, 6) = 2.767185195379349, (34, 7) = .3716992797163207, (34, 8) = 0.15624441579612264e-1, (35, 1) = -0.9134248027914396e-4, (35, 2) = 0.28074210501946773e-3, (35, 3) = 2.841804712, (35, 4) = .31764623058532726, (35, 5) = -0.9857922636655345e-2, (35, 6) = 2.841804712, (35, 7) = .3744112941998848, (35, 8) = 0.11525252201341013e-1}, datatype = float[8], order = C_order); errproc := proc (x_bvp) local outpoint, X, Y, yout, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; Digits := 15; outpoint := evalf(x_bvp); X := Vector(35, {(1) = .0, (2) = .20472410284384834, (3) = .4211863305043777, (4) = .6516720600363566, (5) = .8993212463695047, (6) = 1.1685298486145983, (7) = 1.4468423487039677, (8) = 1.7229359537348594, (9) = 1.9968629039389574, (10) = 2.268673421313649, (11) = 2.5378029414464036, (12) = 2.8035694406371796, (13) = 3.066093306207618, (14) = 3.325490409787653, (15) = 3.581658551212711, (16) = 3.8338699831956804, (17) = 4.08221409418108, (18) = 4.32686351028502, (19) = 4.567978384890087, (20) = 4.805327686982952, (21) = 5.038694055040347, (22) = 5.268271439374476, (23) = 5.494238613721016, (24) = 5.716760727626145, (25) = 5.936046030245326, (26) = 6.152283284474133, (27) = 6.365596166650127, (28) = 6.576100208955955, (29) = 6.783903531026379, (30) = 6.9894017136482445, (31) = 7.1936893054340665, (32) = 7.3968755375272774, (33) = 7.5989780331822505, (34) = 7.80001395061423, (35) = 8.0}, datatype = float[8], order = C_order); Y := Matrix(35, 8, {(1, 1) = 0.897448267109614e-15, (1, 2) = 0.5588167359031321e-15, (1, 3) = .0, (1, 4) = .0, (1, 5) = 0.13864249525943088e-15, (1, 6) = .0, (1, 7) = 0.12119642246901448e-14, (1, 8) = .0, (2, 1) = 0.17195345226360017e-14, (2, 2) = 0.6181167466331716e-15, (2, 3) = 0.20410981819182018e-16, (2, 4) = 0.10601766383125283e-15, (2, 5) = -0.10490636710626889e-15, (2, 6) = 0.5031667156796011e-15, (2, 7) = 0.11996548135741033e-14, (2, 8) = 0.2771969015070949e-19, (3, 1) = 0.1686737254582015e-14, (3, 2) = 0.9567626045906052e-15, (3, 3) = 0.5604460075778757e-16, (3, 4) = 0.10527680167976054e-15, (3, 5) = 0.20005622560643638e-15, (3, 6) = -0.9913001724420674e-16, (3, 7) = 0.1339416454645461e-14, (3, 8) = -0.1444766507242344e-17, (4, 1) = 0.4333011548848769e-14, (4, 2) = 0.17025161949432959e-14, (4, 3) = 0.10025344277919218e-16, (4, 4) = 0.11064429627289256e-15, (4, 5) = 0.2162077879904567e-15, (4, 6) = -0.4402054460277445e-15, (4, 7) = -0.689926374914955e-15, (4, 8) = -0.2826387029976454e-17, (5, 1) = 0.6633681086898639e-14, (5, 2) = 0.375032295134198e-14, (5, 3) = 0.1812909654403e-15, (5, 4) = -0.12070342909717134e-15, (5, 5) = -0.1596142149617371e-15, (5, 6) = -0.10825942697009252e-15, (5, 7) = 0.18103213104082225e-14, (5, 8) = -0.16764369656937747e-16, (6, 1) = 0.13129840358265059e-13, (6, 2) = 0.7277452916946674e-14, (6, 3) = 0.29179991421150325e-15, (6, 4) = 0.6399550172322422e-16, (6, 5) = -0.22594631239149157e-15, (6, 6) = -0.9174305403629006e-16, (6, 7) = 0.19951541475781265e-15, (6, 8) = -0.43537055740415584e-16, (7, 1) = 0.16558247533243953e-13, (7, 2) = 0.10179772597290096e-13, (7, 3) = 0.5878293642247217e-15, (7, 4) = -0.7410342523151938e-16, (7, 5) = -0.15996611253844913e-15, (7, 6) = 0.1692951814608457e-14, (7, 7) = 0.1740069789475928e-16, (7, 8) = -0.31275576634239585e-16, (8, 1) = 0.1212069312549711e-13, (8, 2) = 0.9543541214045693e-14, (8, 3) = 0.6704668328631497e-15, (8, 4) = -0.44521023708016503e-16, (8, 5) = 0.22199060125967257e-15, (8, 6) = -0.6750801329037803e-15, (8, 7) = 0.21656382445432134e-14, (8, 8) = -0.6435827646555829e-16, (9, 1) = -0.3772034753492132e-14, (9, 2) = 0.5759418721910007e-14, (9, 3) = 0.6527662555019791e-15, (9, 4) = 0.441738628379015e-16, (9, 5) = 0.5658548136938054e-15, (9, 6) = 0.3154847106536809e-14, (9, 7) = 0.7858154752173474e-15, (9, 8) = -0.10311351058385951e-15, (10, 1) = -0.2440608209204811e-13, (10, 2) = 0.28469235452884776e-14, (10, 3) = 0.3866914448702218e-15, (10, 4) = -0.9144516798022403e-16, (10, 5) = -0.10145948392816397e-15, (10, 6) = -0.24442421173399023e-14, (10, 7) = 0.6377245986878261e-16, (10, 8) = -0.17205372425145497e-15, (11, 1) = -0.4123657586548479e-13, (11, 2) = 0.47019634354738835e-14, (11, 3) = 0.7390229161834592e-15, (11, 4) = 0.33830363819193296e-15, (11, 5) = -0.49321754692558303e-16, (11, 6) = -0.7883634580987387e-16, (11, 7) = 0.9384901596020932e-15, (11, 8) = -0.252982075836778e-15, (12, 1) = -0.45482420467991964e-13, (12, 2) = 0.10203470081300767e-13, (12, 3) = 0.7534533806982218e-15, (12, 4) = -0.20573415143689883e-15, (12, 5) = 0.10308521674561246e-15, (12, 6) = -0.306193488603141e-14, (12, 7) = 0.11321549203383949e-14, (12, 8) = -0.3982374979919039e-15, (13, 1) = -0.3692752598727219e-13, (13, 2) = 0.13076295718742951e-13, (13, 3) = -0.42293951496931934e-15, (13, 4) = 0.5793784843910567e-15, (13, 5) = 0.1255527766044886e-15, (13, 6) = 0.14631798233506174e-14, (13, 7) = -0.537526963696651e-16, (13, 8) = -0.43906151981417637e-15, (14, 1) = -0.12180528075494553e-13, (14, 2) = 0.67927440842877486e-14, (14, 3) = -0.7751636018193131e-16, (14, 4) = 0.5989904770359435e-15, (14, 5) = -0.5359630097047029e-16, (14, 6) = -0.13487931939540982e-14, (14, 7) = 0.17179524507174635e-14, (14, 8) = -0.4135968388921909e-15, (15, 1) = 0.3685354836152949e-13, (15, 2) = -0.1664738219468053e-13, (15, 3) = -0.1573909843712974e-14, (15, 4) = 0.794295869180883e-15, (15, 5) = -0.35245821132597215e-17, (15, 6) = -0.11581448838991115e-14, (15, 7) = 0.4173536492488085e-15, (15, 8) = -0.5280874496874946e-15, (16, 1) = 0.10366564920219266e-12, (16, 2) = -0.641879285025774e-13, (16, 3) = 0.20566596972943627e-14, (16, 4) = 0.9266548671796218e-16, (16, 5) = 0.2353325946868509e-15, (16, 6) = 0.18284547948529757e-15, (16, 7) = 0.17622934571819217e-14, (16, 8) = -0.4976417588290511e-15, (17, 1) = 0.14484169648891652e-12, (17, 2) = -0.12297441716887176e-12, (17, 3) = -0.1068182350278374e-14, (17, 4) = -0.5854540915281354e-15, (17, 5) = 0.14535461070078002e-15, (17, 6) = 0.4266610794669015e-14, (17, 7) = 0.4607205530424001e-15, (17, 8) = -0.5886742340881105e-15, (18, 1) = 0.10566223147991009e-12, (18, 2) = -0.13820205741801644e-12, (18, 3) = -0.20123078614811413e-14, (18, 4) = -0.7561398183639445e-16, (18, 5) = 0.2140425035665995e-15, (18, 6) = -0.23561554941772816e-14, (18, 7) = 0.19085985864153077e-14, (18, 8) = -0.5917377444519284e-15, (19, 1) = -0.1679773165980789e-13, (19, 2) = -0.5657134915236689e-13, (19, 3) = 0.1360256674443056e-14, (19, 4) = 0.8707809795722639e-15, (19, 5) = 0.21528390503198728e-15, (19, 6) = -0.5127690553955357e-15, (19, 7) = -0.4826901389884211e-15, (19, 8) = -0.5868641866801674e-15, (20, 1) = -0.14894339690033946e-12, (20, 2) = 0.9602247884781634e-13, (20, 3) = 0.26294719195036576e-14, (20, 4) = -0.502638096454554e-15, (20, 5) = 0.32194304936576336e-16, (20, 6) = 0.25628117174786136e-14, (20, 7) = 0.8377380590237005e-15, (20, 8) = -0.7167682554400696e-15, (21, 1) = -0.20361898739374174e-12, (21, 2) = 0.2159454684255011e-12, (21, 3) = -0.18390456690678095e-14, (21, 4) = 0.16085741943765483e-14, (21, 5) = -0.3751395624658827e-15, (21, 6) = 0.68012918504538484e-14, (21, 7) = 0.25431273083692057e-15, (21, 8) = -0.32419369341927803e-15, (22, 1) = -0.15689971156050872e-12, (22, 2) = 0.21942355904154635e-12, (22, 3) = 0.24099783601109427e-14, (22, 4) = -0.9953957508184104e-15, (22, 5) = 0.8621846497603312e-16, (22, 6) = 0.5849807663571661e-14, (22, 7) = -0.11527500167921049e-14, (22, 8) = 0.5354827376431221e-17, (23, 1) = -0.5259760291556636e-13, (23, 2) = 0.11178856094650594e-12, (23, 3) = -0.8417911290913919e-15, (23, 4) = -0.2207954041887918e-14, (23, 5) = -0.2243044830543838e-15, (23, 6) = 0.15023300748706678e-13, (23, 7) = -0.973903527171104e-15, (23, 8) = -0.32331856502436973e-16, (24, 1) = 0.4443374116829714e-13, (24, 2) = -0.32070809165957353e-13, (24, 3) = -0.34880954720513526e-15, (24, 4) = 0.1231856080413119e-14, (24, 5) = 0.55827387662745e-17, (24, 6) = 0.54319152119881845e-14, (24, 7) = -0.36766647288947504e-15, (24, 8) = -0.3464894477365739e-15, (25, 1) = 0.933019806478322e-13, (25, 2) = -0.13384281309083258e-12, (25, 3) = 0.33197903067130842e-14, (25, 4) = -0.3132682814760555e-14, (25, 5) = -0.28711859306736457e-15, (25, 6) = -0.5470120367959728e-14, (25, 7) = -0.13432374782466947e-14, (25, 8) = 0.2039729831139547e-15, (26, 1) = 0.8977989989773004e-13, (26, 2) = -0.15869171973868484e-12, (26, 3) = 0.23278286029344056e-14, (26, 4) = -0.29354266305866873e-15, (26, 5) = 0.230020828715235e-16, (26, 6) = 0.32968730420794027e-14, (26, 7) = 0.12490842693534877e-14, (26, 8) = 0.3964694184561624e-15, (27, 1) = 0.5380760356273936e-13, (27, 2) = -0.11847870856872766e-12, (27, 3) = 0.2688345544666234e-15, (27, 4) = 0.10619582772389209e-14, (27, 5) = -0.12172639957600914e-15, (27, 6) = 0.3185441694869011e-14, (27, 7) = -0.1489879250602313e-14, (27, 8) = 0.6565146261655062e-15, (28, 1) = 0.10742518103279055e-13, (28, 2) = -0.495306438002946e-13, (28, 3) = 0.4310166135267635e-14, (28, 4) = 0.15683143667115227e-14, (28, 5) = 0.3453405106322541e-16, (28, 6) = 0.1018279419881744e-13, (28, 7) = -0.13632661970738383e-14, (28, 8) = 0.4729842715233933e-15, (29, 1) = -0.2151478390347912e-13, (29, 2) = 0.12771727815782967e-13, (29, 3) = 0.5629863069659428e-14, (29, 4) = -0.14434075930994008e-15, (29, 5) = -0.3455164788374167e-15, (29, 6) = 0.1345923386438848e-15, (29, 7) = 0.6628740317227967e-15, (29, 8) = 0.2370286262471212e-15, (30, 1) = -0.36756430829417473e-13, (30, 2) = 0.4915770478845277e-13, (30, 3) = 0.6364093247487674e-15, (30, 4) = 0.2644278305592894e-15, (30, 5) = 0.19990963262100253e-15, (30, 6) = -0.4147202106691808e-14, (30, 7) = -0.13135113472923236e-14, (30, 8) = 0.79220739160263215e-15, (31, 1) = -0.38142291891788485e-13, (31, 2) = 0.5919398917266647e-13, (31, 3) = 0.13925650940938171e-13, (31, 4) = 0.5542574200502359e-15, (31, 5) = -0.15301256420629026e-15, (31, 6) = 0.4509491169458926e-14, (31, 7) = 0.2495446814784076e-15, (31, 8) = 0.8083662326018128e-15, (32, 1) = -0.30039055413759246e-13, (32, 2) = 0.4722520516979542e-13, (32, 3) = 0.5948740452406517e-14, (32, 4) = 0.3314613919766506e-14, (32, 5) = -0.20036994088420754e-15, (32, 6) = 0.14649613744607957e-13, (32, 7) = -0.7728084332522093e-16, (32, 8) = 0.1933770820597525e-15, (33, 1) = -0.18092057280170896e-13, (33, 2) = 0.23205059829259787e-13, (33, 3) = 0.6050533016944145e-14, (33, 4) = 0.28168060491597395e-15, (33, 5) = 0.2339278829021382e-15, (33, 6) = 0.9701926801570967e-14, (33, 7) = 0.18835370879179478e-15, (33, 8) = 0.21984174087752556e-15, (34, 1) = -0.714859442764903e-14, (34, 2) = -0.19154332194589852e-14, (34, 3) = 0.1348765326796076e-13, (34, 4) = -0.9615633283396454e-15, (34, 5) = 0.8312623586890217e-16, (34, 6) = 0.29574319371284083e-14, (34, 7) = -0.30915701787131377e-14, (34, 8) = 0.27524560756785973e-15, (35, 1) = .0, (35, 2) = -0.20166673380620537e-13, (35, 3) = -0.1179663713625192e-14, (35, 4) = .0, (35, 5) = 0.54374029653237e-16, (35, 6) = -0.3047767633518586e-15, (35, 7) = .0, (35, 8) = -0.3103350258003601e-16}, datatype = float[8], order = C_order); if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "right" then return X[35] elif outpoint = "order" then return 8 elif outpoint = "error" then return HFloat(2.1942355904154635e-13) elif outpoint = "errorproc" then error "this is already the error procedure" elif outpoint = "rawdata" then return [8, 35, [T(eta), diff(T(eta), eta), f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), g(eta), diff(g(eta), eta), diff(diff(g(eta), eta), eta)], X, Y] else return ('procname')(x_bvp) end if end if; if outpoint < X[1] or X[35] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[35] end if; V := array([1 = 4, 2 = 0]); if Digits <= trunc(evalhf(Digits)) then L := Vector(4, 'datatype' = 'float'[8]); yout := Vector(8, 'datatype' = 'float'[8]); evalhf(`dsolve/numeric/lagrange`(35, 8, X, Y, outpoint, var(yout), var(L), var(V))) else L := Vector(4, 'datatype' = 'sfloat'); yout := Vector(8, 'datatype' = 'sfloat'); `dsolve/numeric/lagrange`(35, 8, X, Y, outpoint, yout, L, V) end if; [eta = outpoint, seq('[T(eta), diff(T(eta), eta), f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), g(eta), diff(g(eta), eta), diff(diff(g(eta), eta), eta)]'[i] = yout[i], i = 1 .. 8)] end proc; if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "method" then return "bvp" elif outpoint = "right" then return X[35] elif outpoint = "order" then return 8 elif outpoint = "error" then return HFloat(2.1942355904154635e-13) elif outpoint = "errorproc" then return eval(errproc) elif outpoint = "rawdata" then return [8, 35, "depnames", X, Y, YP] else error "non-numeric value" end if end if; if outpoint < X[1] or X[35] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[35] end if; if Digits <= trunc(evalhf(Digits)) and (_EnvInFsolve <> true or _EnvDSNumericSaveDigits <= trunc(evalhf(Digits))) then V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 5 ) = (false), ( 4 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = .0, (1, 2) = .0, (2, 1) = .0, (2, 2) = .0, (3, 1) = .0, (3, 2) = .0, (4, 1) = .0, (4, 2) = .0, (5, 1) = .0, (5, 2) = .0, (6, 1) = .0, (6, 2) = .0, (7, 1) = .0, (7, 2) = .0}, datatype = float[8], order = C_order); yout := Vector(8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8]); evalhf(`dsolve/numeric/hermite`(35, 8, X, Y, YP, outpoint, var(yout), var(L), var(V))) else if _EnvInFsolve = true then Digits := _EnvDSNumericSaveDigits end if; V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 5 ) = (false), ( 4 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = 0., (1, 2) = 0., (2, 1) = 0., (2, 2) = 0., (3, 1) = 0., (3, 2) = 0., (4, 1) = 0., (4, 2) = 0., (5, 1) = 0., (5, 2) = 0., (6, 1) = 0., (6, 2) = 0., (7, 1) = 0., (7, 2) = 0.}, order = C_order); yout := Vector(8, {(1) = 0., (2) = 0., (3) = 0., (4) = 0., (5) = 0., (6) = 0., (7) = 0., (8) = 0.}); `dsolve/numeric/hermite`(35, 8, X, Y, YP, outpoint, yout, L, V) end if; [outpoint, seq(yout[i], i = 1 .. 8)] end proc, (2) = Array(1..9, {(1) = 4365885730, (2) = 4365885922, (3) = 4365886066, (4) = 4365886162, (5) = 4365886258, (6) = 4365886354, (7) = 4365886450, (8) = 4365886546, (9) = 4365886642}), (3) = [eta, T(eta), diff(T(eta), eta), f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), g(eta), diff(g(eta), eta), diff(diff(g(eta), eta), eta)], (4) = 0}); solnproc := data[1]; if not type(outpoint, 'numeric') then if outpoint = "solnprocedure" then return eval(solnproc) elif member(outpoint, ["start", "left", "right", "errorproc", "rawdata", "order", "error"]) then return solnproc(eta) elif outpoint = "sysvars" then return data[3] elif procname <> unknown then return ('procname')(eta) else `\`@@\`(D,2)(g)` := pointto(data[2][9]); return ('`\`@@\`(D,2)(g)`')(eta) end if end if; try res := solnproc(outpoint); res[9] catch: error  end try end proc]

(2)

ics := R(0)[2 .. -1][];

T(0) = HFloat(0.6800687881055208), (D(T))(0) = HFloat(-0.11511620494228457), f(0) = HFloat(0.0), (D(f))(0) = HFloat(0.0), ((D@@2)(f))(0) = HFloat(0.37811799244920297), g(0) = HFloat(0.0), (D(g))(0) = HFloat(1.4117113181447527), ((D@@2)(g))(0) = HFloat(0.0)

(3)

S := dsolve({eq1, eq2, eq3, ics}, fcns, type = series, order = 15):

R_init := dsolve({eq1, eq2, eq3, ics}, numeric, abserr = 0.1e-11, relerr = 0.1e-9, output = operator):

F, F1, F2, G, G1, G2, H, H1 := op(`~`[rhs](R_init[2 .. -1]));

proc (eta) local _res, _dat, _solnproc, _xout, _ndsol, _pars, _i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; if 1 < nargs then error "invalid input: too many arguments" end if; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then _xout := evalf[_EnvDSNumericSaveDigits](eta) else _xout := evalf(eta) end if; _dat := Array(1..4, {(1) = proc (_xin) local _xout, _dtbl, _dat, _vmap, _x0, _y0, _val, _dig, _n, _ne, _nd, _nv, _pars, _ini, _par, _i, _j, _k, _src; option `Copyright (c) 2002 by Waterloo Maple Inc. All rights reserved.`; table( [( "complex" ) = false ] ) _xout := _xin; _pars := []; _dtbl := array( 1 .. 4, [( 1 ) = (array( 1 .. 20, [( 1 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 2 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 3 ) = ([0, 0, 0, Array(1..0, 1..2, {}, datatype = float[8], order = C_order)]), ( 5 ) = (Array(1..28, {(1) = .0, (2) = 0.10e-9, (3) = .0, (4) = 0.500001e-14, (5) = .0, (6) = 0.56668809672174786e-4, (7) = .0, (8) = 0.10e-9, (9) = .0, (10) = .0, (11) = .0, (12) = .0, (13) = 1.0, (14) = .0, (15) = .49999999999999, (16) = .0, (17) = 1.0, (18) = 1.0, (19) = .0, (20) = .0, (21) = 1.0, (22) = 1.0, (23) = .0, (24) = .0, (25) = 0.10e-14, (26) = .0, (27) = .0, (28) = .0}, datatype = float[8], order = C_order)), ( 4 ) = (Array(1..53, {(1) = 8, (2) = 8, (3) = 0, (4) = 0, (5) = 0, (6) = 0, (7) = 1, (8) = 0, (9) = 0, (10) = 0, (11) = 0, (12) = 0, (13) = 0, (14) = 0, (15) = 0, (16) = 0, (17) = 0, (18) = 1, (19) = 30000, (20) = 0, (21) = 0, (22) = 1, (23) = 4, (24) = 0, (25) = 1, (26) = 15, (27) = 1, (28) = 0, (29) = 1, (30) = 3, (31) = 3, (32) = 0, (33) = 1, (34) = 0, (35) = 0, (36) = 0, (37) = 0, (38) = 0, (39) = 0, (40) = 0, (41) = 0, (42) = 0, (43) = 1, (44) = 0, (45) = 0, (46) = 0, (47) = 0, (48) = 0, (49) = 0, (50) = 50, (51) = 1, (52) = 0, (53) = 0}, datatype = integer[4])), ( 7 ) = ([Array(1..4, 1..7, {(1, 1) = .0, (1, 2) = .203125, (1, 3) = .3046875, (1, 4) = .75, (1, 5) = .8125, (1, 6) = .40625, (1, 7) = .8125, (2, 1) = 0.6378173828125e-1, (2, 2) = .0, (2, 3) = .279296875, (2, 4) = .27237892150878906, (2, 5) = -0.9686851501464844e-1, (2, 6) = 0.1956939697265625e-1, (2, 7) = .5381584167480469, (3, 1) = 0.31890869140625e-1, (3, 2) = .0, (3, 3) = -.34375, (3, 4) = -.335235595703125, (3, 5) = .2296142578125, (3, 6) = .41748046875, (3, 7) = 11.480712890625, (4, 1) = 0.9710520505905151e-1, (4, 2) = .0, (4, 3) = .40350341796875, (4, 4) = 0.20297467708587646e-1, (4, 5) = -0.6054282188415527e-2, (4, 6) = -0.4770040512084961e-1, (4, 7) = .77858567237854}, datatype = float[8], order = C_order), Array(1..6, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = 1.0, (2, 1) = .25, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = 1.0, (3, 1) = .1875, (3, 2) = .5625, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = 2.0, (4, 1) = .23583984375, (4, 2) = -.87890625, (4, 3) = .890625, (4, 4) = .0, (4, 5) = .0, (4, 6) = .2681884765625, (5, 1) = .1272735595703125, (5, 2) = -.5009765625, (5, 3) = .44921875, (5, 4) = -0.128936767578125e-1, (5, 5) = .0, (5, 6) = 0.626220703125e-1, (6, 1) = -0.927734375e-1, (6, 2) = .626220703125, (6, 3) = -.4326171875, (6, 4) = .1418304443359375, (6, 5) = -0.861053466796875e-1, (6, 6) = .3131103515625}, datatype = float[8], order = C_order), Array(1..6, {(1) = .0, (2) = .386, (3) = .21, (4) = .63, (5) = 1.0, (6) = 1.0}, datatype = float[8], order = C_order), Array(1..6, {(1) = .25, (2) = -.1043, (3) = .1035, (4) = -0.362e-1, (5) = .0, (6) = .0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 1.544, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = .9466785280815533, (3, 2) = .25570116989825814, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = 3.3148251870684886, (4, 2) = 2.896124015972123, (4, 3) = .9986419139977808, (4, 4) = .0, (4, 5) = .0, (5, 1) = 1.2212245092262748, (5, 2) = 6.019134481287752, (5, 3) = 12.537083329320874, (5, 4) = -.687886036105895, (5, 5) = .0, (6, 1) = 1.2212245092262748, (6, 2) = 6.019134481287752, (6, 3) = 12.537083329320874, (6, 4) = -.687886036105895, (6, 5) = 1.0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = -5.6688, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = -2.4300933568337584, (3, 2) = -.20635991570891224, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = -.10735290581452621, (4, 2) = -9.594562251021896, (4, 3) = -20.470286148096154, (4, 4) = .0, (4, 5) = .0, (5, 1) = 7.496443313968615, (5, 2) = -10.246804314641219, (5, 3) = -33.99990352819906, (5, 4) = 11.708908932061595, (5, 5) = .0, (6, 1) = 8.083246795922411, (6, 2) = -7.981132988062785, (6, 3) = -31.52159432874373, (6, 4) = 16.319305431231363, (6, 5) = -6.0588182388340535}, datatype = float[8], order = C_order), Array(1..3, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 10.126235083446911, (2, 2) = -7.487995877607633, (2, 3) = -34.800918615557414, (2, 4) = -7.9927717075687275, (2, 5) = 1.0251377232956207, (3, 1) = -.6762803392806898, (3, 2) = 6.087714651678606, (3, 3) = 16.43084320892463, (3, 4) = 24.767225114183653, (3, 5) = -6.5943891257167815}, datatype = float[8], order = C_order)]), ( 6 ) = (Array(1..8, {(1) = .6800687881055208, (2) = -.11511620494228457, (3) = .0, (4) = .0, (5) = .37811799244920297, (6) = .0, (7) = 1.4117113181447527, (8) = .0}, datatype = float[8], order = C_order)), ( 10 ) = ([proc (N, X, Y, YP) option `[Y[1] = T(eta), Y[2] = diff(T(eta),eta), Y[3] = f(eta), Y[4] = diff(f(eta),eta), Y[5] = diff(diff(f(eta),eta),eta), Y[6] = g(eta), Y[7] = diff(g(eta),eta), Y[8] = diff(diff(g(eta),eta),eta)]`; YP[2] := (-.5000000000*Y[2]*Y[3]-3.081102216*(.1*Y[1]+1)^2*Y[2]^2)/(.8804858221+1.027034072*(.1*Y[1]+1)^3); YP[5] := -0.22360732220118799324e-1*Y[5]*Y[3]+0.13416439332071279594e-1*Y[8]*Y[6]; YP[8] := -0.45558086560364464692e-1*Y[8]*Y[3]+0.45558086560364464692e-1*Y[5]*Y[6]; YP[1] := Y[2]; YP[3] := Y[4]; YP[4] := Y[5]; YP[6] := Y[7]; YP[7] := Y[8]; 0 end proc, -1, 0, 0, 0, 0, 0, 0]), ( 11 ) = (Array(1..6, 0..8, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (1, 7) = .0, (1, 8) = .0, (2, 0) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (2, 7) = .0, (2, 8) = .0, (3, 0) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (3, 7) = .0, (3, 8) = .0, (4, 0) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (4, 7) = .0, (4, 8) = .0, (5, 0) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (5, 7) = .0, (5, 8) = .0, (6, 0) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (6, 7) = .0, (6, 8) = .0}, datatype = float[8], order = C_order)), ( 8 ) = ([Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = -.11511620494228457, (2) = -0.21848192814805673e-1, (3) = .0, (4) = .37811799244920297, (5) = .0, (6) = 1.4117113181447527, (7) = .0, (8) = .0}, datatype = float[8], order = C_order)]), ( 9 ) = ([Array(1..8, {(1) = 0.1e-1, (2) = 0.1e-1, (3) = 0.1e-1, (4) = 0.1e-1, (5) = 0.1e-1, (6) = 0.1e-1, (7) = 0.1e-1, (8) = 0.1e-1}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, 1..8, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (1, 7) = .0, (1, 8) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (2, 7) = .0, (2, 8) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (3, 7) = .0, (3, 8) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (4, 7) = .0, (4, 8) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (5, 7) = .0, (5, 8) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (6, 7) = .0, (6, 8) = .0, (7, 1) = .0, (7, 2) = .0, (7, 3) = .0, (7, 4) = .0, (7, 5) = .0, (7, 6) = .0, (7, 7) = .0, (7, 8) = .0, (8, 1) = .0, (8, 2) = .0, (8, 3) = .0, (8, 4) = .0, (8, 5) = .0, (8, 6) = .0, (8, 7) = .0, (8, 8) = .0}, datatype = float[8], order = C_order), Array(1..8, 1..8, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (1, 7) = .0, (1, 8) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (2, 7) = .0, (2, 8) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (3, 7) = .0, (3, 8) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (4, 7) = .0, (4, 8) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (5, 7) = .0, (5, 8) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (6, 7) = .0, (6, 8) = .0, (7, 1) = .0, (7, 2) = .0, (7, 3) = .0, (7, 4) = .0, (7, 5) = .0, (7, 6) = .0, (7, 7) = .0, (7, 8) = .0, (8, 1) = .0, (8, 2) = .0, (8, 3) = .0, (8, 4) = .0, (8, 5) = .0, (8, 6) = .0, (8, 7) = .0, (8, 8) = .0}, datatype = float[8], order = C_order), Array(1..8, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (7, 1) = .0, (7, 2) = .0, (7, 3) = .0, (7, 4) = .0, (7, 5) = .0, (7, 6) = .0, (8, 1) = .0, (8, 2) = .0, (8, 3) = .0, (8, 4) = .0, (8, 5) = .0, (8, 6) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = 0, (2) = 0, (3) = 0, (4) = 0, (5) = 0, (6) = 0, (7) = 0, (8) = 0}, datatype = integer[4]), Array(1..8, {(1) = .6800687881055208, (2) = -.11511620494228457, (3) = .0, (4) = .0, (5) = .37811799244920297, (6) = .0, (7) = 1.4117113181447527, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order)]), ( 15 ) = ("rkf45"), ( 14 ) = ([0, 0]), ( 13 ) = (), ( 12 ) = (), ( 20 ) = ([]), ( 16 ) = ([0, 0, 0, []]), ( 17 ) = ([proc (N, X, Y, YP) option `[Y[1] = T(eta), Y[2] = diff(T(eta),eta), Y[3] = f(eta), Y[4] = diff(f(eta),eta), Y[5] = diff(diff(f(eta),eta),eta), Y[6] = g(eta), Y[7] = diff(g(eta),eta), Y[8] = diff(diff(g(eta),eta),eta)]`; YP[2] := (-.5000000000*Y[2]*Y[3]-3.081102216*(.1*Y[1]+1)^2*Y[2]^2)/(.8804858221+1.027034072*(.1*Y[1]+1)^3); YP[5] := -0.22360732220118799324e-1*Y[5]*Y[3]+0.13416439332071279594e-1*Y[8]*Y[6]; YP[8] := -0.45558086560364464692e-1*Y[8]*Y[3]+0.45558086560364464692e-1*Y[5]*Y[6]; YP[1] := Y[2]; YP[3] := Y[4]; YP[4] := Y[5]; YP[6] := Y[7]; YP[7] := Y[8]; 0 end proc, -1, 0, 0, 0, 0, 0, 0]), ( 18 ) = ([]), ( 19 ) = (0)  ] ))  ] ); _y0 := Array(0..8, {(1) = 0., (2) = HFloat(0.6800687881055208), (3) = HFloat(-0.11511620494228457), (4) = HFloat(0.0), (5) = HFloat(0.0), (6) = HFloat(0.37811799244920297), (7) = HFloat(0.0), (8) = HFloat(1.4117113181447527)}); _vmap := array( 1 .. 8, [( 1 ) = (1), ( 2 ) = (2), ( 3 ) = (3), ( 5 ) = (5), ( 4 ) = (4), ( 7 ) = (7), ( 6 ) = (6), ( 8 ) = (8)  ] ); _x0 := _dtbl[1][5][5]; _n := _dtbl[1][4][1]; _ne := _dtbl[1][4][3]; _nd := _dtbl[1][4][4]; _nv := _dtbl[1][4][16]; if not type(_xout, 'numeric') then if member(_xout, ["start", "left", "right"]) then if _Env_smart_dsolve_numeric = true or _dtbl[1][4][10] = 1 then if _xout = "left" then if type(_dtbl[2], 'table') then return _dtbl[2][5][1] end if elif _xout = "right" then if type(_dtbl[3], 'table') then return _dtbl[3][5][1] end if end if end if; return _dtbl[1][5][5] elif _xout = "method" then return _dtbl[1][15] elif _xout = "storage" then return evalb(_dtbl[1][4][10] = 1) elif _xout = "leftdata" then if not type(_dtbl[2], 'array') then return NULL else return eval(_dtbl[2]) end if elif _xout = "rightdata" then if not type(_dtbl[3], 'array') then return NULL else return eval(_dtbl[3]) end if elif _xout = "enginedata" then return eval(_dtbl[1]) elif _xout = "enginereset" then _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); return NULL elif _xout = "initial" then return procname(_y0[0]) elif _xout = "laxtol" then return _dtbl[`if`(member(_dtbl[4], {2, 3}), _dtbl[4], 1)][5][18] elif _xout = "numfun" then return `if`(member(_dtbl[4], {2, 3}), _dtbl[_dtbl[4]][4][18], 0) elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "initial_and_parameters" then return procname(_y0[0]), [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "last" then if _dtbl[4] <> 2 and _dtbl[4] <> 3 or _x0-_dtbl[_dtbl[4]][5][1] = 0. then error "no information is available on last computed point" else _xout := _dtbl[_dtbl[4]][5][1] end if elif _xout = "function" then if _dtbl[1][4][33]-2. = 0 then return eval(_dtbl[1][10], 1) else return eval(_dtbl[1][10][1], 1) end if elif _xout = "map" then return copy(_vmap) elif type(_xin, `=`) and type(rhs(_xin), 'list') and member(lhs(_xin), {"initial", "parameters", "initial_and_parameters"}) then _ini, _par := [], []; if lhs(_xin) = "initial" then _ini := rhs(_xin) elif lhs(_xin) = "parameters" then _par := rhs(_xin) elif select(type, rhs(_xin), `=`) <> [] then _par, _ini := selectremove(type, rhs(_xin), `=`) elif nops(rhs(_xin)) < nops(_pars)+1 then error "insufficient data for specification of initial and parameters" else _par := rhs(_xin)[-nops(_pars) .. -1]; _ini := rhs(_xin)[1 .. -nops(_pars)-1] end if; _xout := lhs(_xout); if _par <> [] then `dsolve/numeric/process_parameters`(_n, _pars, _par, _y0) end if; if _ini <> [] then `dsolve/numeric/process_initial`(_n-_ne, _ini, _y0, _pars, _vmap) end if; `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars); if _Env_smart_dsolve_numeric = true and type(_y0[0], 'numeric') and _dtbl[1][4][10] <> 1 then procname("right") := _y0[0]; procname("left") := _y0[0] end if; if _xout = "initial" then return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)] elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] else return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)], [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] end if elif _xin = "eventstop" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then return 0 end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 10 and 10 <= _dtbl[5-_i][4][9] then _i := 5-_i; _dtbl[4] := _i; _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) elif 10 <= _dtbl[_i][4][9] then _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) else return 0 end if elif _xin = "eventstatus" then if _nv = 0 then error "this solution has no events" end if; _i := [selectremove(proc (a) options operator, arrow; _dtbl[1][3][1][a, 7] = 1 end proc, {seq(_j, _j = 1 .. round(_dtbl[1][3][1][_nv+1, 1]))})]; return ':-enabled' = _i[1], ':-disabled' = _i[2] elif _xin = "eventclear" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then error "no events to clear" end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 10 and 10 < _dtbl[5-_i][4][9] then _dtbl[4] := 5-_i; _i := 5-_i end if; if _dtbl[_i][4][9] < 10 then error "no events to clear" elif _nv < _dtbl[_i][4][9]-10 then error "event error condition cannot be cleared" else _j := _dtbl[_i][4][9]-10; if irem(round(_dtbl[_i][3][1][_j, 4]), 2) = 1 then error "retriggerable events cannot be cleared" end if; _j := round(_dtbl[_i][3][1][_j, 1]); for _k to _nv do if _dtbl[_i][3][1][_k, 1] = _j then if _dtbl[_i][3][1][_k, 2] = 3 then error "range events cannot be cleared" end if; _dtbl[_i][3][1][_k, 8] := _dtbl[_i][3][1][_nv+1, 8] end if end do; _dtbl[_i][4][17] := 0; _dtbl[_i][4][9] := 0; if _dtbl[1][4][10] = 1 then if _i = 2 then try procname(procname("left")) catch:  end try else try procname(procname("right")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and member(lhs(_xin), {"eventdisable", "eventenable"}) then if _nv = 0 then error "this solution has no events" end if; if type(rhs(_xin), {('list')('posint'), ('set')('posint')}) then _i := {op(rhs(_xin))} elif type(rhs(_xin), 'posint') then _i := {rhs(_xin)} else error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; if select(proc (a) options operator, arrow; _nv < a end proc, _i) <> {} then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _k := {}; for _j to _nv do if member(round(_dtbl[1][3][1][_j, 1]), _i) then _k := `union`(_k, {_j}) end if end do; _i := _k; if lhs(_xin) = "eventdisable" then _dtbl[4] := 0; _j := [evalb(assigned(_dtbl[2]) and member(_dtbl[2][4][17], _i)), evalb(assigned(_dtbl[3]) and member(_dtbl[3][4][17], _i))]; for _k in _i do _dtbl[1][3][1][_k, 7] := 0; if assigned(_dtbl[2]) then _dtbl[2][3][1][_k, 7] := 0 end if; if assigned(_dtbl[3]) then _dtbl[3][3][1][_k, 7] := 0 end if end do; if _j[1] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[2][3][4][_k, 1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to defined init `, _dtbl[2][3][4][_k, 1]); _dtbl[2][3][1][_k, 8] := _dtbl[2][3][4][_k, 1] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to rate hysteresis init `, _dtbl[2][5][24]); _dtbl[2][3][1][_k, 8] := _dtbl[2][5][24] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to initial init `, _x0); _dtbl[2][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to fireinitial init `, _x0-1); _dtbl[2][3][1][_k, 8] := _x0-1 end if end do; _dtbl[2][4][17] := 0; _dtbl[2][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("left")) end if end if; if _j[2] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[3][3][4][_k, 2], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to defined init `, _dtbl[3][3][4][_k, 2]); _dtbl[3][3][1][_k, 8] := _dtbl[3][3][4][_k, 2] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to rate hysteresis init `, _dtbl[3][5][24]); _dtbl[3][3][1][_k, 8] := _dtbl[3][5][24] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to initial init `, _x0); _dtbl[3][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to fireinitial init `, _x0+1); _dtbl[3][3][1][_k, 8] := _x0+1 end if end do; _dtbl[3][4][17] := 0; _dtbl[3][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("right")) end if end if else for _k in _i do _dtbl[1][3][1][_k, 7] := 1 end do; _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); _dtbl[4] := 0; if _dtbl[1][4][10] = 1 then if _x0 <= procname("right") then try procname(procname("right")) catch:  end try end if; if procname("left") <= _x0 then try procname(procname("left")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and lhs(_xin) = "eventfired" then if not type(rhs(_xin), 'list') then error "'eventfired' must be specified as a list" end if; if _nv = 0 then error "this solution has no events" end if; if _dtbl[4] <> 2 and _dtbl[4] <> 3 then error "'direction' must be set prior to calling/setting 'eventfired'" end if; _i := _dtbl[4]; _val := NULL; if not assigned(_EnvEventRetriggerWarned) then _EnvEventRetriggerWarned := false end if; for _k in rhs(_xin) do if type(_k, 'integer') then _src := _k elif type(_k, 'integer' = 'anything') and type(evalf(rhs(_k)), 'numeric') then _k := lhs(_k) = evalf[max(Digits, 18)](rhs(_k)); _src := lhs(_k) else error "'eventfired' entry is not valid: %1", _k end if; if _src < 1 or round(_dtbl[1][3][1][_nv+1, 1]) < _src then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _src := {seq(`if`(_dtbl[1][3][1][_j, 1]-_src = 0., _j, NULL), _j = 1 .. _nv)}; if nops(_src) <> 1 then error "'eventfired' can only be set/queried for root-finding events and time/interval events" end if; _src := _src[1]; if _dtbl[1][3][1][_src, 2] <> 0. and _dtbl[1][3][1][_src, 2]-2. <> 0. then error "'eventfired' can only be set/queried for root-finding events and time/interval events" elif irem(round(_dtbl[1][3][1][_src, 4]), 2) = 1 then if _EnvEventRetriggerWarned = false then WARNING(`'eventfired' has no effect on events that retrigger`) end if; _EnvEventRetriggerWarned := true end if; if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then _val := _val, undefined elif type(_dtbl[_i][3][4][_src, _i-1], 'undefined') or _i = 2 and _dtbl[2][3][1][_src, 8] < _dtbl[2][3][4][_src, 1] or _i = 3 and _dtbl[3][3][4][_src, 2] < _dtbl[3][3][1][_src, 8] then _val := _val, _dtbl[_i][3][1][_src, 8] else _val := _val, _dtbl[_i][3][4][_src, _i-1] end if; if type(_k, `=`) then if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then error "cannot set event code for a rate hysteresis event" end if; userinfo(3, {'events', 'eventreset'}, `manual set event code `, _src, ` to value `, rhs(_k)); _dtbl[_i][3][1][_src, 8] := rhs(_k); _dtbl[_i][3][4][_src, _i-1] := rhs(_k) end if end do; return [_val] elif type(_xin, `=`) and lhs(_xin) = "direction" then if not member(rhs(_xin), {-1, 1, ':-left', ':-right'}) then error "'direction' must be specified as either '1' or 'right' (positive) or '-1' or 'left' (negative)" end if; _src := `if`(_dtbl[4] = 2, -1, `if`(_dtbl[4] = 3, 1, undefined)); _i := `if`(member(rhs(_xin), {1, ':-right'}), 3, 2); _dtbl[4] := _i; _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if; return _src elif _xin = "eventcount" then if _dtbl[1][3][1] = 0 or _dtbl[4] <> 2 and _dtbl[4] <> 3 then return 0 else return round(_dtbl[_dtbl[4]][3][1][_nv+1, 12]) end if else return "procname" end if end if; if _xout = _x0 then return [_x0, seq(evalf(_dtbl[1][6][_vmap[_i]]), _i = 1 .. _n-_ne)] end if; _i := `if`(_x0 <= _xout, 3, 2); if _xin = "last" and 0 < _dtbl[_i][4][9] and _dtbl[_i][4][9] < 10 then _dat := eval(_dtbl[_i], 2); _j := _dat[4][20]; return [_dat[11][_j, 0], seq(_dat[11][_j, _vmap[_i]], _i = 1 .. _n-_ne-_nd), seq(_dat[8][1][_vmap[_i]], _i = _n-_ne-_nd+1 .. _n-_ne)] end if; if not type(_dtbl[_i], 'array') then _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if end if; if _xin <> "last" then if 0 < 0 then if `dsolve/numeric/checkglobals`(op(_dtbl[1][14]), _pars, _n, _y0) then `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars, _i) end if end if; if _dtbl[1][4][7] = 0 then error "parameters must be initialized before solution can be computed" end if end if; _dat := eval(_dtbl[_i], 2); _dtbl[4] := _i; try _src := `dsolve/numeric/SC/IVPrun`(_dat, _xout) catch: userinfo(2, `dsolve/debug`, print(`Exception in solnproc:`, [lastexception][2 .. -1])); error  end try; if _src = 0 and 10 < _dat[4][9] then _val := _dat[3][1][_nv+1, 8] else _val := _dat[11][_dat[4][20], 0] end if; if _src <> 0 or _dat[4][9] <= 0 then _dtbl[1][5][1] := _xout else _dtbl[1][5][1] := _val end if; if _i = 3 and _val < _xout then Rounding := -infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further right of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further right of %1, maxfun limit exceeded (see ?dsolve,maxfun for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further right of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further right of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif 10 < _dat[4][9] then if _dat[4][9]-10 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further right of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-10, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further right of %1", evalf[8](_val) end if elif _i = 2 and _xout < _val then Rounding := infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further left of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further left of %1, maxfun limit exceeded (see ?dsolve,maxfun for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further left of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further left of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif 10 < _dat[4][9] then if _dat[4][9]-10 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further left of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-10, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further left of %1", evalf[8](_val) end if end if; if _EnvInFsolve = true then _dig := _dat[4][26]; _dat[4][26] := _EnvDSNumericSaveDigits; _Env_dsolve_SC_native := true; if _dat[4][25] = 1 then _i := 1; _dat[4][25] := 2 else _i := _dat[4][25] end if; _val := `dsolve/numeric/SC/IVPval`(_dat, _xout, _src); _dat[4][25] := _i; _dat[4][26] := _dig; [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] else Digits := _dat[4][26]; _val := `dsolve/numeric/SC/IVPval`(eval(_dat, 2), _xout, _src); [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] end if end proc, (2) = Array(1..9, {(1) = 4366565378, (2) = 4366565474, (3) = 4366565570, (4) = 4366565666, (5) = 4366565762, (6) = 4366565858, (7) = 4366565954, (8) = 4366566050, (9) = 4366566146}), (3) = [eta, T(eta), diff(T(eta), eta), f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), g(eta), diff(g(eta), eta), diff(diff(g(eta), eta), eta)], (4) = []}); _solnproc := _dat[1]; _pars := map(rhs, _dat[4]); if not type(_xout, 'numeric') then if member(eta, ["start", 'start', "method", 'method', "left", 'left', "right", 'right', "leftdata", "rightdata", "enginedata", "eventstop", 'eventstop', "eventclear", 'eventclear', "eventstatus", 'eventstatus', "eventcount", 'eventcount', "laxtol", 'laxtol', "numfun", 'numfun', NULL]) then _res := _solnproc(convert(eta, 'string')); if 1 < nops([_res]) then return _res elif type(_res, 'array') then return eval(_res, 1) elif _res <> "procname" then return _res end if elif member(eta, ["last", 'last', "initial", 'initial', NULL]) then _res := _solnproc(convert(eta, 'string')); if type(_res, 'list') then return _res[2] else return NULL end if elif member(eta, ["parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(eta, 'string'); _res := _solnproc(_xout); if _xout = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] else return [_res[2], seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] end if elif type(_xout, `=`) and member(lhs(_xout), ["initial", 'initial', "parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(lhs(eta), 'string') = rhs(eta); if lhs(_xout) = "initial" then if type(rhs(_xout), 'list') then _res := _solnproc(_xout) else _res := _solnproc("initial" = ["single", 2, rhs(_xout)]) end if elif not type(rhs(_xout), 'list') then error "initial and/or parameter values must be specified in a list" elif lhs(_xout) = "initial_and_parameters" and nops(rhs(_xout)) = nops(_pars)+1 then _res := _solnproc(lhs(_xout) = ["single", 2, op(rhs(_xout))]) else _res := _solnproc(_xout) end if; if lhs(_xout) = "initial" then return _res[2] elif lhs(_xout) = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] else return [_res[2], seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] end if elif type(_xout, `=`) and member(lhs(_xout), ["eventdisable", 'eventdisable', "eventenable", 'eventenable', "eventfired", 'eventfired', "direction", 'direction', NULL]) then return _solnproc(convert(lhs(eta), 'string') = rhs(eta)) elif _xout = "solnprocedure" then return eval(_solnproc) elif _xout = "sysvars" then return _dat[3] end if; if procname <> unknown then return ('procname')(eta) else _ndsol := `tools/gensym`("T"); eval(FromInert(_Inert_FUNCTION(_Inert_NAME("assign"), _Inert_EXPSEQ(ToInert(_ndsol), _Inert_VERBATIM(pointto(_dat[2][2])))))); return FromInert(_Inert_FUNCTION(ToInert(_ndsol), _Inert_EXPSEQ(ToInert(eta)))) end if end if; try _res := _solnproc(_xout); _res[2] catch: error  end try end proc, proc (eta) local _res, _dat, _solnproc, _xout, _ndsol, _pars, _i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; if 1 < nargs then error "invalid input: too many arguments" end if; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then _xout := evalf[_EnvDSNumericSaveDigits](eta) else _xout := evalf(eta) end if; _dat := Array(1..4, {(1) = proc (_xin) local _xout, _dtbl, _dat, _vmap, _x0, _y0, _val, _dig, _n, _ne, _nd, _nv, _pars, _ini, _par, _i, _j, _k, _src; option `Copyright (c) 2002 by Waterloo Maple Inc. All rights reserved.`; table( [( "complex" ) = false ] ) _xout := _xin; _pars := []; _dtbl := array( 1 .. 4, [( 1 ) = (array( 1 .. 20, [( 1 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 2 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 3 ) = ([0, 0, 0, Array(1..0, 1..2, {}, datatype = float[8], order = C_order)]), ( 5 ) = (Array(1..28, {(1) = .0, (2) = 0.10e-9, (3) = .0, (4) = 0.500001e-14, (5) = .0, (6) = 0.56668809672174786e-4, (7) = .0, (8) = 0.10e-9, (9) = .0, (10) = .0, (11) = .0, (12) = .0, (13) = 1.0, (14) = .0, (15) = .49999999999999, (16) = .0, (17) = 1.0, (18) = 1.0, (19) = .0, (20) = .0, (21) = 1.0, (22) = 1.0, (23) = .0, (24) = .0, (25) = 0.10e-14, (26) = .0, (27) = .0, (28) = .0}, datatype = float[8], order = C_order)), ( 4 ) = (Array(1..53, {(1) = 8, (2) = 8, (3) = 0, (4) = 0, (5) = 0, (6) = 0, (7) = 1, (8) = 0, (9) = 0, (10) = 0, (11) = 0, (12) = 0, (13) = 0, (14) = 0, (15) = 0, (16) = 0, (17) = 0, (18) = 1, (19) = 30000, (20) = 0, (21) = 0, (22) = 1, (23) = 4, (24) = 0, (25) = 1, (26) = 15, (27) = 1, (28) = 0, (29) = 1, (30) = 3, (31) = 3, (32) = 0, (33) = 1, (34) = 0, (35) = 0, (36) = 0, (37) = 0, (38) = 0, (39) = 0, (40) = 0, (41) = 0, (42) = 0, (43) = 1, (44) = 0, (45) = 0, (46) = 0, (47) = 0, (48) = 0, (49) = 0, (50) = 50, (51) = 1, (52) = 0, (53) = 0}, datatype = integer[4])), ( 7 ) = ([Array(1..4, 1..7, {(1, 1) = .0, (1, 2) = .203125, (1, 3) = .3046875, (1, 4) = .75, (1, 5) = .8125, (1, 6) = .40625, (1, 7) = .8125, (2, 1) = 0.6378173828125e-1, (2, 2) = .0, (2, 3) = .279296875, (2, 4) = .27237892150878906, (2, 5) = -0.9686851501464844e-1, (2, 6) = 0.1956939697265625e-1, (2, 7) = .5381584167480469, (3, 1) = 0.31890869140625e-1, (3, 2) = .0, (3, 3) = -.34375, (3, 4) = -.335235595703125, (3, 5) = .2296142578125, (3, 6) = .41748046875, (3, 7) = 11.480712890625, (4, 1) = 0.9710520505905151e-1, (4, 2) = .0, (4, 3) = .40350341796875, (4, 4) = 0.20297467708587646e-1, (4, 5) = -0.6054282188415527e-2, (4, 6) = -0.4770040512084961e-1, (4, 7) = .77858567237854}, datatype = float[8], order = C_order), Array(1..6, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = 1.0, (2, 1) = .25, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = 1.0, (3, 1) = .1875, (3, 2) = .5625, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = 2.0, (4, 1) = .23583984375, (4, 2) = -.87890625, (4, 3) = .890625, (4, 4) = .0, (4, 5) = .0, (4, 6) = .2681884765625, (5, 1) = .1272735595703125, (5, 2) = -.5009765625, (5, 3) = .44921875, (5, 4) = -0.128936767578125e-1, (5, 5) = .0, (5, 6) = 0.626220703125e-1, (6, 1) = -0.927734375e-1, (6, 2) = .626220703125, (6, 3) = -.4326171875, (6, 4) = .1418304443359375, (6, 5) = -0.861053466796875e-1, (6, 6) = .3131103515625}, datatype = float[8], order = C_order), Array(1..6, {(1) = .0, (2) = .386, (3) = .21, (4) = .63, (5) = 1.0, (6) = 1.0}, datatype = float[8], order = C_order), Array(1..6, {(1) = .25, (2) = -.1043, (3) = .1035, (4) = -0.362e-1, (5) = .0, (6) = .0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 1.544, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = .9466785280815533, (3, 2) = .25570116989825814, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = 3.3148251870684886, (4, 2) = 2.896124015972123, (4, 3) = .9986419139977808, (4, 4) = .0, (4, 5) = .0, (5, 1) = 1.2212245092262748, (5, 2) = 6.019134481287752, (5, 3) = 12.537083329320874, (5, 4) = -.687886036105895, (5, 5) = .0, (6, 1) = 1.2212245092262748, (6, 2) = 6.019134481287752, (6, 3) = 12.537083329320874, (6, 4) = -.687886036105895, (6, 5) = 1.0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = -5.6688, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = -2.4300933568337584, (3, 2) = -.20635991570891224, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = -.10735290581452621, (4, 2) = -9.594562251021896, (4, 3) = -20.470286148096154, (4, 4) = .0, (4, 5) = .0, (5, 1) = 7.496443313968615, (5, 2) = -10.246804314641219, (5, 3) = -33.99990352819906, (5, 4) = 11.708908932061595, (5, 5) = .0, (6, 1) = 8.083246795922411, (6, 2) = -7.981132988062785, (6, 3) = -31.52159432874373, (6, 4) = 16.319305431231363, (6, 5) = -6.0588182388340535}, datatype = float[8], order = C_order), Array(1..3, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 10.126235083446911, (2, 2) = -7.487995877607633, (2, 3) = -34.800918615557414, (2, 4) = -7.9927717075687275, (2, 5) = 1.0251377232956207, (3, 1) = -.6762803392806898, (3, 2) = 6.087714651678606, (3, 3) = 16.43084320892463, (3, 4) = 24.767225114183653, (3, 5) = -6.5943891257167815}, datatype = float[8], order = C_order)]), ( 6 ) = (Array(1..8, {(1) = .6800687881055208, (2) = -.11511620494228457, (3) = .0, (4) = .0, (5) = .37811799244920297, (6) = .0, (7) = 1.4117113181447527, (8) = .0}, datatype = float[8], order = C_order)), ( 10 ) = ([proc (N, X, Y, YP) option `[Y[1] = T(eta), Y[2] = diff(T(eta),eta), Y[3] = f(eta), Y[4] = diff(f(eta),eta), Y[5] = diff(diff(f(eta),eta),eta), Y[6] = g(eta), Y[7] = diff(g(eta),eta), Y[8] = diff(diff(g(eta),eta),eta)]`; YP[2] := (-.5000000000*Y[2]*Y[3]-3.081102216*(.1*Y[1]+1)^2*Y[2]^2)/(.8804858221+1.027034072*(.1*Y[1]+1)^3); YP[5] := -0.22360732220118799324e-1*Y[5]*Y[3]+0.13416439332071279594e-1*Y[8]*Y[6]; YP[8] := -0.45558086560364464692e-1*Y[8]*Y[3]+0.45558086560364464692e-1*Y[5]*Y[6]; YP[1] := Y[2]; YP[3] := Y[4]; YP[4] := Y[5]; YP[6] := Y[7]; YP[7] := Y[8]; 0 end proc, -1, 0, 0, 0, 0, 0, 0]), ( 11 ) = (Array(1..6, 0..8, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (1, 7) = .0, (1, 8) = .0, (2, 0) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (2, 7) = .0, (2, 8) = .0, (3, 0) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (3, 7) = .0, (3, 8) = .0, (4, 0) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (4, 7) = .0, (4, 8) = .0, (5, 0) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (5, 7) = .0, (5, 8) = .0, (6, 0) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (6, 7) = .0, (6, 8) = .0}, datatype = float[8], order = C_order)), ( 8 ) = ([Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = -.11511620494228457, (2) = -0.21848192814805673e-1, (3) = .0, (4) = .37811799244920297, (5) = .0, (6) = 1.4117113181447527, (7) = .0, (8) = .0}, datatype = float[8], order = C_order)]), ( 9 ) = ([Array(1..8, {(1) = 0.1e-1, (2) = 0.1e-1, (3) = 0.1e-1, (4) = 0.1e-1, (5) = 0.1e-1, (6) = 0.1e-1, (7) = 0.1e-1, (8) = 0.1e-1}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, 1..8, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (1, 7) = .0, (1, 8) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (2, 7) = .0, (2, 8) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (3, 7) = .0, (3, 8) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (4, 7) = .0, (4, 8) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (5, 7) = .0, (5, 8) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (6, 7) = .0, (6, 8) = .0, (7, 1) = .0, (7, 2) = .0, (7, 3) = .0, (7, 4) = .0, (7, 5) = .0, (7, 6) = .0, (7, 7) = .0, (7, 8) = .0, (8, 1) = .0, (8, 2) = .0, (8, 3) = .0, (8, 4) = .0, (8, 5) = .0, (8, 6) = .0, (8, 7) = .0, (8, 8) = .0}, datatype = float[8], order = C_order), Array(1..8, 1..8, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (1, 7) = .0, (1, 8) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (2, 7) = .0, (2, 8) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (3, 7) = .0, (3, 8) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (4, 7) = .0, (4, 8) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (5, 7) = .0, (5, 8) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (6, 7) = .0, (6, 8) = .0, (7, 1) = .0, (7, 2) = .0, (7, 3) = .0, (7, 4) = .0, (7, 5) = .0, (7, 6) = .0, (7, 7) = .0, (7, 8) = .0, (8, 1) = .0, (8, 2) = .0, (8, 3) = .0, (8, 4) = .0, (8, 5) = .0, (8, 6) = .0, (8, 7) = .0, (8, 8) = .0}, datatype = float[8], order = C_order), Array(1..8, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (7, 1) = .0, (7, 2) = .0, (7, 3) = .0, (7, 4) = .0, (7, 5) = .0, (7, 6) = .0, (8, 1) = .0, (8, 2) = .0, (8, 3) = .0, (8, 4) = .0, (8, 5) = .0, (8, 6) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = 0, (2) = 0, (3) = 0, (4) = 0, (5) = 0, (6) = 0, (7) = 0, (8) = 0}, datatype = integer[4]), Array(1..8, {(1) = .6800687881055208, (2) = -.11511620494228457, (3) = .0, (4) = .0, (5) = .37811799244920297, (6) = .0, (7) = 1.4117113181447527, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order)]), ( 15 ) = ("rkf45"), ( 14 ) = ([0, 0]), ( 13 ) = (), ( 12 ) = (), ( 20 ) = ([]), ( 16 ) = ([0, 0, 0, []]), ( 17 ) = ([proc (N, X, Y, YP) option `[Y[1] = T(eta), Y[2] = diff(T(eta),eta), Y[3] = f(eta), Y[4] = diff(f(eta),eta), Y[5] = diff(diff(f(eta),eta),eta), Y[6] = g(eta), Y[7] = diff(g(eta),eta), Y[8] = diff(diff(g(eta),eta),eta)]`; YP[2] := (-.5000000000*Y[2]*Y[3]-3.081102216*(.1*Y[1]+1)^2*Y[2]^2)/(.8804858221+1.027034072*(.1*Y[1]+1)^3); YP[5] := -0.22360732220118799324e-1*Y[5]*Y[3]+0.13416439332071279594e-1*Y[8]*Y[6]; YP[8] := -0.45558086560364464692e-1*Y[8]*Y[3]+0.45558086560364464692e-1*Y[5]*Y[6]; YP[1] := Y[2]; YP[3] := Y[4]; YP[4] := Y[5]; YP[6] := Y[7]; YP[7] := Y[8]; 0 end proc, -1, 0, 0, 0, 0, 0, 0]), ( 18 ) = ([]), ( 19 ) = (0)  ] ))  ] ); _y0 := Array(0..8, {(1) = 0., (2) = HFloat(0.6800687881055208), (3) = HFloat(-0.11511620494228457), (4) = HFloat(0.0), (5) = HFloat(0.0), (6) = HFloat(0.37811799244920297), (7) = HFloat(0.0), (8) = HFloat(1.4117113181447527)}); _vmap := array( 1 .. 8, [( 1 ) = (1), ( 2 ) = (2), ( 3 ) = (3), ( 5 ) = (5), ( 4 ) = (4), ( 7 ) = (7), ( 6 ) = (6), ( 8 ) = (8)  ] ); _x0 := _dtbl[1][5][5]; _n := _dtbl[1][4][1]; _ne := _dtbl[1][4][3]; _nd := _dtbl[1][4][4]; _nv := _dtbl[1][4][16]; if not type(_xout, 'numeric') then if member(_xout, ["start", "left", "right"]) then if _Env_smart_dsolve_numeric = true or _dtbl[1][4][10] = 1 then if _xout = "left" then if type(_dtbl[2], 'table') then return _dtbl[2][5][1] end if elif _xout = "right" then if type(_dtbl[3], 'table') then return _dtbl[3][5][1] end if end if end if; return _dtbl[1][5][5] elif _xout = "method" then return _dtbl[1][15] elif _xout = "storage" then return evalb(_dtbl[1][4][10] = 1) elif _xout = "leftdata" then if not type(_dtbl[2], 'array') then return NULL else return eval(_dtbl[2]) end if elif _xout = "rightdata" then if not type(_dtbl[3], 'array') then return NULL else return eval(_dtbl[3]) end if elif _xout = "enginedata" then return eval(_dtbl[1]) elif _xout = "enginereset" then _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); return NULL elif _xout = "initial" then return procname(_y0[0]) elif _xout = "laxtol" then return _dtbl[`if`(member(_dtbl[4], {2, 3}), _dtbl[4], 1)][5][18] elif _xout = "numfun" then return `if`(member(_dtbl[4], {2, 3}), _dtbl[_dtbl[4]][4][18], 0) elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "initial_and_parameters" then return procname(_y0[0]), [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "last" then if _dtbl[4] <> 2 and _dtbl[4] <> 3 or _x0-_dtbl[_dtbl[4]][5][1] = 0. then error "no information is available on last computed point" else _xout := _dtbl[_dtbl[4]][5][1] end if elif _xout = "function" then if _dtbl[1][4][33]-2. = 0 then return eval(_dtbl[1][10], 1) else return eval(_dtbl[1][10][1], 1) end if elif _xout = "map" then return copy(_vmap) elif type(_xin, `=`) and type(rhs(_xin), 'list') and member(lhs(_xin), {"initial", "parameters", "initial_and_parameters"}) then _ini, _par := [], []; if lhs(_xin) = "initial" then _ini := rhs(_xin) elif lhs(_xin) = "parameters" then _par := rhs(_xin) elif select(type, rhs(_xin), `=`) <> [] then _par, _ini := selectremove(type, rhs(_xin), `=`) elif nops(rhs(_xin)) < nops(_pars)+1 then error "insufficient data for specification of initial and parameters" else _par := rhs(_xin)[-nops(_pars) .. -1]; _ini := rhs(_xin)[1 .. -nops(_pars)-1] end if; _xout := lhs(_xout); if _par <> [] then `dsolve/numeric/process_parameters`(_n, _pars, _par, _y0) end if; if _ini <> [] then `dsolve/numeric/process_initial`(_n-_ne, _ini, _y0, _pars, _vmap) end if; `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars); if _Env_smart_dsolve_numeric = true and type(_y0[0], 'numeric') and _dtbl[1][4][10] <> 1 then procname("right") := _y0[0]; procname("left") := _y0[0] end if; if _xout = "initial" then return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)] elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] else return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)], [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] end if elif _xin = "eventstop" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then return 0 end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 10 and 10 <= _dtbl[5-_i][4][9] then _i := 5-_i; _dtbl[4] := _i; _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) elif 10 <= _dtbl[_i][4][9] then _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) else return 0 end if elif _xin = "eventstatus" then if _nv = 0 then error "this solution has no events" end if; _i := [selectremove(proc (a) options operator, arrow; _dtbl[1][3][1][a, 7] = 1 end proc, {seq(_j, _j = 1 .. round(_dtbl[1][3][1][_nv+1, 1]))})]; return ':-enabled' = _i[1], ':-disabled' = _i[2] elif _xin = "eventclear" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then error "no events to clear" end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 10 and 10 < _dtbl[5-_i][4][9] then _dtbl[4] := 5-_i; _i := 5-_i end if; if _dtbl[_i][4][9] < 10 then error "no events to clear" elif _nv < _dtbl[_i][4][9]-10 then error "event error condition cannot be cleared" else _j := _dtbl[_i][4][9]-10; if irem(round(_dtbl[_i][3][1][_j, 4]), 2) = 1 then error "retriggerable events cannot be cleared" end if; _j := round(_dtbl[_i][3][1][_j, 1]); for _k to _nv do if _dtbl[_i][3][1][_k, 1] = _j then if _dtbl[_i][3][1][_k, 2] = 3 then error "range events cannot be cleared" end if; _dtbl[_i][3][1][_k, 8] := _dtbl[_i][3][1][_nv+1, 8] end if end do; _dtbl[_i][4][17] := 0; _dtbl[_i][4][9] := 0; if _dtbl[1][4][10] = 1 then if _i = 2 then try procname(procname("left")) catch:  end try else try procname(procname("right")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and member(lhs(_xin), {"eventdisable", "eventenable"}) then if _nv = 0 then error "this solution has no events" end if; if type(rhs(_xin), {('list')('posint'), ('set')('posint')}) then _i := {op(rhs(_xin))} elif type(rhs(_xin), 'posint') then _i := {rhs(_xin)} else error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; if select(proc (a) options operator, arrow; _nv < a end proc, _i) <> {} then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _k := {}; for _j to _nv do if member(round(_dtbl[1][3][1][_j, 1]), _i) then _k := `union`(_k, {_j}) end if end do; _i := _k; if lhs(_xin) = "eventdisable" then _dtbl[4] := 0; _j := [evalb(assigned(_dtbl[2]) and member(_dtbl[2][4][17], _i)), evalb(assigned(_dtbl[3]) and member(_dtbl[3][4][17], _i))]; for _k in _i do _dtbl[1][3][1][_k, 7] := 0; if assigned(_dtbl[2]) then _dtbl[2][3][1][_k, 7] := 0 end if; if assigned(_dtbl[3]) then _dtbl[3][3][1][_k, 7] := 0 end if end do; if _j[1] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[2][3][4][_k, 1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to defined init `, _dtbl[2][3][4][_k, 1]); _dtbl[2][3][1][_k, 8] := _dtbl[2][3][4][_k, 1] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to rate hysteresis init `, _dtbl[2][5][24]); _dtbl[2][3][1][_k, 8] := _dtbl[2][5][24] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to initial init `, _x0); _dtbl[2][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to fireinitial init `, _x0-1); _dtbl[2][3][1][_k, 8] := _x0-1 end if end do; _dtbl[2][4][17] := 0; _dtbl[2][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("left")) end if end if; if _j[2] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[3][3][4][_k, 2], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to defined init `, _dtbl[3][3][4][_k, 2]); _dtbl[3][3][1][_k, 8] := _dtbl[3][3][4][_k, 2] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to rate hysteresis init `, _dtbl[3][5][24]); _dtbl[3][3][1][_k, 8] := _dtbl[3][5][24] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to initial init `, _x0); _dtbl[3][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to fireinitial init `, _x0+1); _dtbl[3][3][1][_k, 8] := _x0+1 end if end do; _dtbl[3][4][17] := 0; _dtbl[3][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("right")) end if end if else for _k in _i do _dtbl[1][3][1][_k, 7] := 1 end do; _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); _dtbl[4] := 0; if _dtbl[1][4][10] = 1 then if _x0 <= procname("right") then try procname(procname("right")) catch:  end try end if; if procname("left") <= _x0 then try procname(procname("left")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and lhs(_xin) = "eventfired" then if not type(rhs(_xin), 'list') then error "'eventfired' must be specified as a list" end if; if _nv = 0 then error "this solution has no events" end if; if _dtbl[4] <> 2 and _dtbl[4] <> 3 then error "'direction' must be set prior to calling/setting 'eventfired'" end if; _i := _dtbl[4]; _val := NULL; if not assigned(_EnvEventRetriggerWarned) then _EnvEventRetriggerWarned := false end if; for _k in rhs(_xin) do if type(_k, 'integer') then _src := _k elif type(_k, 'integer' = 'anything') and type(evalf(rhs(_k)), 'numeric') then _k := lhs(_k) = evalf[max(Digits, 18)](rhs(_k)); _src := lhs(_k) else error "'eventfired' entry is not valid: %1", _k end if; if _src < 1 or round(_dtbl[1][3][1][_nv+1, 1]) < _src then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _src := {seq(`if`(_dtbl[1][3][1][_j, 1]-_src = 0., _j, NULL), _j = 1 .. _nv)}; if nops(_src) <> 1 then error "'eventfired' can only be set/queried for root-finding events and time/interval events" end if; _src := _src[1]; if _dtbl[1][3][1][_src, 2] <> 0. and _dtbl[1][3][1][_src, 2]-2. <> 0. then error "'eventfired' can only be set/queried for root-finding events and time/interval events" elif irem(round(_dtbl[1][3][1][_src, 4]), 2) = 1 then if _EnvEventRetriggerWarned = false then WARNING(`'eventfired' has no effect on events that retrigger`) end if; _EnvEventRetriggerWarned := true end if; if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then _val := _val, undefined elif type(_dtbl[_i][3][4][_src, _i-1], 'undefined') or _i = 2 and _dtbl[2][3][1][_src, 8] < _dtbl[2][3][4][_src, 1] or _i = 3 and _dtbl[3][3][4][_src, 2] < _dtbl[3][3][1][_src, 8] then _val := _val, _dtbl[_i][3][1][_src, 8] else _val := _val, _dtbl[_i][3][4][_src, _i-1] end if; if type(_k, `=`) then if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then error "cannot set event code for a rate hysteresis event" end if; userinfo(3, {'events', 'eventreset'}, `manual set event code `, _src, ` to value `, rhs(_k)); _dtbl[_i][3][1][_src, 8] := rhs(_k); _dtbl[_i][3][4][_src, _i-1] := rhs(_k) end if end do; return [_val] elif type(_xin, `=`) and lhs(_xin) = "direction" then if not member(rhs(_xin), {-1, 1, ':-left', ':-right'}) then error "'direction' must be specified as either '1' or 'right' (positive) or '-1' or 'left' (negative)" end if; _src := `if`(_dtbl[4] = 2, -1, `if`(_dtbl[4] = 3, 1, undefined)); _i := `if`(member(rhs(_xin), {1, ':-right'}), 3, 2); _dtbl[4] := _i; _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if; return _src elif _xin = "eventcount" then if _dtbl[1][3][1] = 0 or _dtbl[4] <> 2 and _dtbl[4] <> 3 then return 0 else return round(_dtbl[_dtbl[4]][3][1][_nv+1, 12]) end if else return "procname" end if end if; if _xout = _x0 then return [_x0, seq(evalf(_dtbl[1][6][_vmap[_i]]), _i = 1 .. _n-_ne)] end if; _i := `if`(_x0 <= _xout, 3, 2); if _xin = "last" and 0 < _dtbl[_i][4][9] and _dtbl[_i][4][9] < 10 then _dat := eval(_dtbl[_i], 2); _j := _dat[4][20]; return [_dat[11][_j, 0], seq(_dat[11][_j, _vmap[_i]], _i = 1 .. _n-_ne-_nd), seq(_dat[8][1][_vmap[_i]], _i = _n-_ne-_nd+1 .. _n-_ne)] end if; if not type(_dtbl[_i], 'array') then _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if end if; if _xin <> "last" then if 0 < 0 then if `dsolve/numeric/checkglobals`(op(_dtbl[1][14]), _pars, _n, _y0) then `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars, _i) end if end if; if _dtbl[1][4][7] = 0 then error "parameters must be initialized before solution can be computed" end if end if; _dat := eval(_dtbl[_i], 2); _dtbl[4] := _i; try _src := `dsolve/numeric/SC/IVPrun`(_dat, _xout) catch: userinfo(2, `dsolve/debug`, print(`Exception in solnproc:`, [lastexception][2 .. -1])); error  end try; if _src = 0 and 10 < _dat[4][9] then _val := _dat[3][1][_nv+1, 8] else _val := _dat[11][_dat[4][20], 0] end if; if _src <> 0 or _dat[4][9] <= 0 then _dtbl[1][5][1] := _xout else _dtbl[1][5][1] := _val end if; if _i = 3 and _val < _xout then Rounding := -infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further right of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further right of %1, maxfun limit exceeded (see ?dsolve,maxfun for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further right of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further right of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif 10 < _dat[4][9] then if _dat[4][9]-10 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further right of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-10, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further right of %1", evalf[8](_val) end if elif _i = 2 and _xout < _val then Rounding := infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further left of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further left of %1, maxfun limit exceeded (see ?dsolve,maxfun for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further left of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further left of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif 10 < _dat[4][9] then if _dat[4][9]-10 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further left of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-10, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further left of %1", evalf[8](_val) end if end if; if _EnvInFsolve = true then _dig := _dat[4][26]; _dat[4][26] := _EnvDSNumericSaveDigits; _Env_dsolve_SC_native := true; if _dat[4][25] = 1 then _i := 1; _dat[4][25] := 2 else _i := _dat[4][25] end if; _val := `dsolve/numeric/SC/IVPval`(_dat, _xout, _src); _dat[4][25] := _i; _dat[4][26] := _dig; [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] else Digits := _dat[4][26]; _val := `dsolve/numeric/SC/IVPval`(eval(_dat, 2), _xout, _src); [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] end if end proc, (2) = Array(1..9, {(1) = 4366565378, (2) = 4366565474, (3) = 4366565570, (4) = 4366565666, (5) = 4366565762, (6) = 4366565858, (7) = 4366565954, (8) = 4366566050, (9) = 4366566146}), (3) = [eta, T(eta), diff(T(eta), eta), f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), g(eta), diff(g(eta), eta), diff(diff(g(eta), eta), eta)], (4) = []}); _solnproc := _dat[1]; _pars := map(rhs, _dat[4]); if not type(_xout, 'numeric') then if member(eta, ["start", 'start', "method", 'method', "left", 'left', "right", 'right', "leftdata", "rightdata", "enginedata", "eventstop", 'eventstop', "eventclear", 'eventclear', "eventstatus", 'eventstatus', "eventcount", 'eventcount', "laxtol", 'laxtol', "numfun", 'numfun', NULL]) then _res := _solnproc(convert(eta, 'string')); if 1 < nops([_res]) then return _res elif type(_res, 'array') then return eval(_res, 1) elif _res <> "procname" then return _res end if elif member(eta, ["last", 'last', "initial", 'initial', NULL]) then _res := _solnproc(convert(eta, 'string')); if type(_res, 'list') then return _res[3] else return NULL end if elif member(eta, ["parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(eta, 'string'); _res := _solnproc(_xout); if _xout = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] else return [_res[3], seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] end if elif type(_xout, `=`) and member(lhs(_xout), ["initial", 'initial', "parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(lhs(eta), 'string') = rhs(eta); if lhs(_xout) = "initial" then if type(rhs(_xout), 'list') then _res := _solnproc(_xout) else _res := _solnproc("initial" = ["single", 3, rhs(_xout)]) end if elif not type(rhs(_xout), 'list') then error "initial and/or parameter values must be specified in a list" elif lhs(_xout) = "initial_and_parameters" and nops(rhs(_xout)) = nops(_pars)+1 then _res := _solnproc(lhs(_xout) = ["single", 3, op(rhs(_xout))]) else _res := _solnproc(_xout) end if; if lhs(_xout) = "initial" then return _res[3] elif lhs(_xout) = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] else return [_res[3], seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] end if elif type(_xout, `=`) and member(lhs(_xout), ["eventdisable", 'eventdisable', "eventenable", 'eventenable', "eventfired", 'eventfired', "direction", 'direction', NULL]) then return _solnproc(convert(lhs(eta), 'string') = rhs(eta)) elif _xout = "solnprocedure" then return eval(_solnproc) elif _xout = "sysvars" then return _dat[3] end if; if procname <> unknown then return ('procname')(eta) else _ndsol := `tools/gensym`("D(T)"); eval(FromInert(_Inert_FUNCTION(_Inert_NAME("assign"), _Inert_EXPSEQ(ToInert(_ndsol), _Inert_VERBATIM(pointto(_dat[2][3])))))); return FromInert(_Inert_FUNCTION(ToInert(_ndsol), _Inert_EXPSEQ(ToInert(eta)))) end if end if; try _res := _solnproc(_xout); _res[3] catch: error  end try end proc, proc (eta) local _res, _dat, _solnproc, _xout, _ndsol, _pars, _i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; if 1 < nargs then error "invalid input: too many arguments" end if; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then _xout := evalf[_EnvDSNumericSaveDigits](eta) else _xout := evalf(eta) end if; _dat := Array(1..4, {(1) = proc (_xin) local _xout, _dtbl, _dat, _vmap, _x0, _y0, _val, _dig, _n, _ne, _nd, _nv, _pars, _ini, _par, _i, _j, _k, _src; option `Copyright (c) 2002 by Waterloo Maple Inc. All rights reserved.`; table( [( "complex" ) = false ] ) _xout := _xin; _pars := []; _dtbl := array( 1 .. 4, [( 1 ) = (array( 1 .. 20, [( 1 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 2 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 3 ) = ([0, 0, 0, Array(1..0, 1..2, {}, datatype = float[8], order = C_order)]), ( 5 ) = (Array(1..28, {(1) = .0, (2) = 0.10e-9, (3) = .0, (4) = 0.500001e-14, (5) = .0, (6) = 0.56668809672174786e-4, (7) = .0, (8) = 0.10e-9, (9) = .0, (10) = .0, (11) = .0, (12) = .0, (13) = 1.0, (14) = .0, (15) = .49999999999999, (16) = .0, (17) = 1.0, (18) = 1.0, (19) = .0, (20) = .0, (21) = 1.0, (22) = 1.0, (23) = .0, (24) = .0, (25) = 0.10e-14, (26) = .0, (27) = .0, (28) = .0}, datatype = float[8], order = C_order)), ( 4 ) = (Array(1..53, {(1) = 8, (2) = 8, (3) = 0, (4) = 0, (5) = 0, (6) = 0, (7) = 1, (8) = 0, (9) = 0, (10) = 0, (11) = 0, (12) = 0, (13) = 0, (14) = 0, (15) = 0, (16) = 0, (17) = 0, (18) = 1, (19) = 30000, (20) = 0, (21) = 0, (22) = 1, (23) = 4, (24) = 0, (25) = 1, (26) = 15, (27) = 1, (28) = 0, (29) = 1, (30) = 3, (31) = 3, (32) = 0, (33) = 1, (34) = 0, (35) = 0, (36) = 0, (37) = 0, (38) = 0, (39) = 0, (40) = 0, (41) = 0, (42) = 0, (43) = 1, (44) = 0, (45) = 0, (46) = 0, (47) = 0, (48) = 0, (49) = 0, (50) = 50, (51) = 1, (52) = 0, (53) = 0}, datatype = integer[4])), ( 7 ) = ([Array(1..4, 1..7, {(1, 1) = .0, (1, 2) = .203125, (1, 3) = .3046875, (1, 4) = .75, (1, 5) = .8125, (1, 6) = .40625, (1, 7) = .8125, (2, 1) = 0.6378173828125e-1, (2, 2) = .0, (2, 3) = .279296875, (2, 4) = .27237892150878906, (2, 5) = -0.9686851501464844e-1, (2, 6) = 0.1956939697265625e-1, (2, 7) = .5381584167480469, (3, 1) = 0.31890869140625e-1, (3, 2) = .0, (3, 3) = -.34375, (3, 4) = -.335235595703125, (3, 5) = .2296142578125, (3, 6) = .41748046875, (3, 7) = 11.480712890625, (4, 1) = 0.9710520505905151e-1, (4, 2) = .0, (4, 3) = .40350341796875, (4, 4) = 0.20297467708587646e-1, (4, 5) = -0.6054282188415527e-2, (4, 6) = -0.4770040512084961e-1, (4, 7) = .77858567237854}, datatype = float[8], order = C_order), Array(1..6, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = 1.0, (2, 1) = .25, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = 1.0, (3, 1) = .1875, (3, 2) = .5625, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = 2.0, (4, 1) = .23583984375, (4, 2) = -.87890625, (4, 3) = .890625, (4, 4) = .0, (4, 5) = .0, (4, 6) = .2681884765625, (5, 1) = .1272735595703125, (5, 2) = -.5009765625, (5, 3) = .44921875, (5, 4) = -0.128936767578125e-1, (5, 5) = .0, (5, 6) = 0.626220703125e-1, (6, 1) = -0.927734375e-1, (6, 2) = .626220703125, (6, 3) = -.4326171875, (6, 4) = .1418304443359375, (6, 5) = -0.861053466796875e-1, (6, 6) = .3131103515625}, datatype = float[8], order = C_order), Array(1..6, {(1) = .0, (2) = .386, (3) = .21, (4) = .63, (5) = 1.0, (6) = 1.0}, datatype = float[8], order = C_order), Array(1..6, {(1) = .25, (2) = -.1043, (3) = .1035, (4) = -0.362e-1, (5) = .0, (6) = .0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 1.544, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = .9466785280815533, (3, 2) = .25570116989825814, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = 3.3148251870684886, (4, 2) = 2.896124015972123, (4, 3) = .9986419139977808, (4, 4) = .0, (4, 5) = .0, (5, 1) = 1.2212245092262748, (5, 2) = 6.019134481287752, (5, 3) = 12.537083329320874, (5, 4) = -.687886036105895, (5, 5) = .0, (6, 1) = 1.2212245092262748, (6, 2) = 6.019134481287752, (6, 3) = 12.537083329320874, (6, 4) = -.687886036105895, (6, 5) = 1.0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = -5.6688, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = -2.4300933568337584, (3, 2) = -.20635991570891224, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = -.10735290581452621, (4, 2) = -9.594562251021896, (4, 3) = -20.470286148096154, (4, 4) = .0, (4, 5) = .0, (5, 1) = 7.496443313968615, (5, 2) = -10.246804314641219, (5, 3) = -33.99990352819906, (5, 4) = 11.708908932061595, (5, 5) = .0, (6, 1) = 8.083246795922411, (6, 2) = -7.981132988062785, (6, 3) = -31.52159432874373, (6, 4) = 16.319305431231363, (6, 5) = -6.0588182388340535}, datatype = float[8], order = C_order), Array(1..3, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 10.126235083446911, (2, 2) = -7.487995877607633, (2, 3) = -34.800918615557414, (2, 4) = -7.9927717075687275, (2, 5) = 1.0251377232956207, (3, 1) = -.6762803392806898, (3, 2) = 6.087714651678606, (3, 3) = 16.43084320892463, (3, 4) = 24.767225114183653, (3, 5) = -6.5943891257167815}, datatype = float[8], order = C_order)]), ( 6 ) = (Array(1..8, {(1) = .6800687881055208, (2) = -.11511620494228457, (3) = .0, (4) = .0, (5) = .37811799244920297, (6) = .0, (7) = 1.4117113181447527, (8) = .0}, datatype = float[8], order = C_order)), ( 10 ) = ([proc (N, X, Y, YP) option `[Y[1] = T(eta), Y[2] = diff(T(eta),eta), Y[3] = f(eta), Y[4] = diff(f(eta),eta), Y[5] = diff(diff(f(eta),eta),eta), Y[6] = g(eta), Y[7] = diff(g(eta),eta), Y[8] = diff(diff(g(eta),eta),eta)]`; YP[2] := (-.5000000000*Y[2]*Y[3]-3.081102216*(.1*Y[1]+1)^2*Y[2]^2)/(.8804858221+1.027034072*(.1*Y[1]+1)^3); YP[5] := -0.22360732220118799324e-1*Y[5]*Y[3]+0.13416439332071279594e-1*Y[8]*Y[6]; YP[8] := -0.45558086560364464692e-1*Y[8]*Y[3]+0.45558086560364464692e-1*Y[5]*Y[6]; YP[1] := Y[2]; YP[3] := Y[4]; YP[4] := Y[5]; YP[6] := Y[7]; YP[7] := Y[8]; 0 end proc, -1, 0, 0, 0, 0, 0, 0]), ( 11 ) = (Array(1..6, 0..8, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (1, 7) = .0, (1, 8) = .0, (2, 0) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (2, 7) = .0, (2, 8) = .0, (3, 0) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (3, 7) = .0, (3, 8) = .0, (4, 0) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (4, 7) = .0, (4, 8) = .0, (5, 0) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (5, 7) = .0, (5, 8) = .0, (6, 0) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (6, 7) = .0, (6, 8) = .0}, datatype = float[8], order = C_order)), ( 8 ) = ([Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = -.11511620494228457, (2) = -0.21848192814805673e-1, (3) = .0, (4) = .37811799244920297, (5) = .0, (6) = 1.4117113181447527, (7) = .0, (8) = .0}, datatype = float[8], order = C_order)]), ( 9 ) = ([Array(1..8, {(1) = 0.1e-1, (2) = 0.1e-1, (3) = 0.1e-1, (4) = 0.1e-1, (5) = 0.1e-1, (6) = 0.1e-1, (7) = 0.1e-1, (8) = 0.1e-1}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, 1..8, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (1, 7) = .0, (1, 8) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (2, 7) = .0, (2, 8) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (3, 7) = .0, (3, 8) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (4, 7) = .0, (4, 8) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (5, 7) = .0, (5, 8) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (6, 7) = .0, (6, 8) = .0, (7, 1) = .0, (7, 2) = .0, (7, 3) = .0, (7, 4) = .0, (7, 5) = .0, (7, 6) = .0, (7, 7) = .0, (7, 8) = .0, (8, 1) = .0, (8, 2) = .0, (8, 3) = .0, (8, 4) = .0, (8, 5) = .0, (8, 6) = .0, (8, 7) = .0, (8, 8) = .0}, datatype = float[8], order = C_order), Array(1..8, 1..8, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (1, 7) = .0, (1, 8) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (2, 7) = .0, (2, 8) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (3, 7) = .0, (3, 8) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (4, 7) = .0, (4, 8) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (5, 7) = .0, (5, 8) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (6, 7) = .0, (6, 8) = .0, (7, 1) = .0, (7, 2) = .0, (7, 3) = .0, (7, 4) = .0, (7, 5) = .0, (7, 6) = .0, (7, 7) = .0, (7, 8) = .0, (8, 1) = .0, (8, 2) = .0, (8, 3) = .0, (8, 4) = .0, (8, 5) = .0, (8, 6) = .0, (8, 7) = .0, (8, 8) = .0}, datatype = float[8], order = C_order), Array(1..8, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (7, 1) = .0, (7, 2) = .0, (7, 3) = .0, (7, 4) = .0, (7, 5) = .0, (7, 6) = .0, (8, 1) = .0, (8, 2) = .0, (8, 3) = .0, (8, 4) = .0, (8, 5) = .0, (8, 6) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = 0, (2) = 0, (3) = 0, (4) = 0, (5) = 0, (6) = 0, (7) = 0, (8) = 0}, datatype = integer[4]), Array(1..8, {(1) = .6800687881055208, (2) = -.11511620494228457, (3) = .0, (4) = .0, (5) = .37811799244920297, (6) = .0, (7) = 1.4117113181447527, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order)]), ( 15 ) = ("rkf45"), ( 14 ) = ([0, 0]), ( 13 ) = (), ( 12 ) = (), ( 20 ) = ([]), ( 16 ) = ([0, 0, 0, []]), ( 17 ) = ([proc (N, X, Y, YP) option `[Y[1] = T(eta), Y[2] = diff(T(eta),eta), Y[3] = f(eta), Y[4] = diff(f(eta),eta), Y[5] = diff(diff(f(eta),eta),eta), Y[6] = g(eta), Y[7] = diff(g(eta),eta), Y[8] = diff(diff(g(eta),eta),eta)]`; YP[2] := (-.5000000000*Y[2]*Y[3]-3.081102216*(.1*Y[1]+1)^2*Y[2]^2)/(.8804858221+1.027034072*(.1*Y[1]+1)^3); YP[5] := -0.22360732220118799324e-1*Y[5]*Y[3]+0.13416439332071279594e-1*Y[8]*Y[6]; YP[8] := -0.45558086560364464692e-1*Y[8]*Y[3]+0.45558086560364464692e-1*Y[5]*Y[6]; YP[1] := Y[2]; YP[3] := Y[4]; YP[4] := Y[5]; YP[6] := Y[7]; YP[7] := Y[8]; 0 end proc, -1, 0, 0, 0, 0, 0, 0]), ( 18 ) = ([]), ( 19 ) = (0)  ] ))  ] ); _y0 := Array(0..8, {(1) = 0., (2) = HFloat(0.6800687881055208), (3) = HFloat(-0.11511620494228457), (4) = HFloat(0.0), (5) = HFloat(0.0), (6) = HFloat(0.37811799244920297), (7) = HFloat(0.0), (8) = HFloat(1.4117113181447527)}); _vmap := array( 1 .. 8, [( 1 ) = (1), ( 2 ) = (2), ( 3 ) = (3), ( 5 ) = (5), ( 4 ) = (4), ( 7 ) = (7), ( 6 ) = (6), ( 8 ) = (8)  ] ); _x0 := _dtbl[1][5][5]; _n := _dtbl[1][4][1]; _ne := _dtbl[1][4][3]; _nd := _dtbl[1][4][4]; _nv := _dtbl[1][4][16]; if not type(_xout, 'numeric') then if member(_xout, ["start", "left", "right"]) then if _Env_smart_dsolve_numeric = true or _dtbl[1][4][10] = 1 then if _xout = "left" then if type(_dtbl[2], 'table') then return _dtbl[2][5][1] end if elif _xout = "right" then if type(_dtbl[3], 'table') then return _dtbl[3][5][1] end if end if end if; return _dtbl[1][5][5] elif _xout = "method" then return _dtbl[1][15] elif _xout = "storage" then return evalb(_dtbl[1][4][10] = 1) elif _xout = "leftdata" then if not type(_dtbl[2], 'array') then return NULL else return eval(_dtbl[2]) end if elif _xout = "rightdata" then if not type(_dtbl[3], 'array') then return NULL else return eval(_dtbl[3]) end if elif _xout = "enginedata" then return eval(_dtbl[1]) elif _xout = "enginereset" then _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); return NULL elif _xout = "initial" then return procname(_y0[0]) elif _xout = "laxtol" then return _dtbl[`if`(member(_dtbl[4], {2, 3}), _dtbl[4], 1)][5][18] elif _xout = "numfun" then return `if`(member(_dtbl[4], {2, 3}), _dtbl[_dtbl[4]][4][18], 0) elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "initial_and_parameters" then return procname(_y0[0]), [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "last" then if _dtbl[4] <> 2 and _dtbl[4] <> 3 or _x0-_dtbl[_dtbl[4]][5][1] = 0. then error "no information is available on last computed point" else _xout := _dtbl[_dtbl[4]][5][1] end if elif _xout = "function" then if _dtbl[1][4][33]-2. = 0 then return eval(_dtbl[1][10], 1) else return eval(_dtbl[1][10][1], 1) end if elif _xout = "map" then return copy(_vmap) elif type(_xin, `=`) and type(rhs(_xin), 'list') and member(lhs(_xin), {"initial", "parameters", "initial_and_parameters"}) then _ini, _par := [], []; if lhs(_xin) = "initial" then _ini := rhs(_xin) elif lhs(_xin) = "parameters" then _par := rhs(_xin) elif select(type, rhs(_xin), `=`) <> [] then _par, _ini := selectremove(type, rhs(_xin), `=`) elif nops(rhs(_xin)) < nops(_pars)+1 then error "insufficient data for specification of initial and parameters" else _par := rhs(_xin)[-nops(_pars) .. -1]; _ini := rhs(_xin)[1 .. -nops(_pars)-1] end if; _xout := lhs(_xout); if _par <> [] then `dsolve/numeric/process_parameters`(_n, _pars, _par, _y0) end if; if _ini <> [] then `dsolve/numeric/process_initial`(_n-_ne, _ini, _y0, _pars, _vmap) end if; `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars); if _Env_smart_dsolve_numeric = true and type(_y0[0], 'numeric') and _dtbl[1][4][10] <> 1 then procname("right") := _y0[0]; procname("left") := _y0[0] end if; if _xout = "initial" then return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)] elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] else return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)], [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] end if elif _xin = "eventstop" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then return 0 end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 10 and 10 <= _dtbl[5-_i][4][9] then _i := 5-_i; _dtbl[4] := _i; _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) elif 10 <= _dtbl[_i][4][9] then _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) else return 0 end if elif _xin = "eventstatus" then if _nv = 0 then error "this solution has no events" end if; _i := [selectremove(proc (a) options operator, arrow; _dtbl[1][3][1][a, 7] = 1 end proc, {seq(_j, _j = 1 .. round(_dtbl[1][3][1][_nv+1, 1]))})]; return ':-enabled' = _i[1], ':-disabled' = _i[2] elif _xin = "eventclear" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then error "no events to clear" end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 10 and 10 < _dtbl[5-_i][4][9] then _dtbl[4] := 5-_i; _i := 5-_i end if; if _dtbl[_i][4][9] < 10 then error "no events to clear" elif _nv < _dtbl[_i][4][9]-10 then error "event error condition cannot be cleared" else _j := _dtbl[_i][4][9]-10; if irem(round(_dtbl[_i][3][1][_j, 4]), 2) = 1 then error "retriggerable events cannot be cleared" end if; _j := round(_dtbl[_i][3][1][_j, 1]); for _k to _nv do if _dtbl[_i][3][1][_k, 1] = _j then if _dtbl[_i][3][1][_k, 2] = 3 then error "range events cannot be cleared" end if; _dtbl[_i][3][1][_k, 8] := _dtbl[_i][3][1][_nv+1, 8] end if end do; _dtbl[_i][4][17] := 0; _dtbl[_i][4][9] := 0; if _dtbl[1][4][10] = 1 then if _i = 2 then try procname(procname("left")) catch:  end try else try procname(procname("right")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and member(lhs(_xin), {"eventdisable", "eventenable"}) then if _nv = 0 then error "this solution has no events" end if; if type(rhs(_xin), {('list')('posint'), ('set')('posint')}) then _i := {op(rhs(_xin))} elif type(rhs(_xin), 'posint') then _i := {rhs(_xin)} else error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; if select(proc (a) options operator, arrow; _nv < a end proc, _i) <> {} then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _k := {}; for _j to _nv do if member(round(_dtbl[1][3][1][_j, 1]), _i) then _k := `union`(_k, {_j}) end if end do; _i := _k; if lhs(_xin) = "eventdisable" then _dtbl[4] := 0; _j := [evalb(assigned(_dtbl[2]) and member(_dtbl[2][4][17], _i)), evalb(assigned(_dtbl[3]) and member(_dtbl[3][4][17], _i))]; for _k in _i do _dtbl[1][3][1][_k, 7] := 0; if assigned(_dtbl[2]) then _dtbl[2][3][1][_k, 7] := 0 end if; if assigned(_dtbl[3]) then _dtbl[3][3][1][_k, 7] := 0 end if end do; if _j[1] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[2][3][4][_k, 1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to defined init `, _dtbl[2][3][4][_k, 1]); _dtbl[2][3][1][_k, 8] := _dtbl[2][3][4][_k, 1] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to rate hysteresis init `, _dtbl[2][5][24]); _dtbl[2][3][1][_k, 8] := _dtbl[2][5][24] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to initial init `, _x0); _dtbl[2][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to fireinitial init `, _x0-1); _dtbl[2][3][1][_k, 8] := _x0-1 end if end do; _dtbl[2][4][17] := 0; _dtbl[2][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("left")) end if end if; if _j[2] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[3][3][4][_k, 2], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to defined init `, _dtbl[3][3][4][_k, 2]); _dtbl[3][3][1][_k, 8] := _dtbl[3][3][4][_k, 2] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to rate hysteresis init `, _dtbl[3][5][24]); _dtbl[3][3][1][_k, 8] := _dtbl[3][5][24] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to initial init `, _x0); _dtbl[3][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to fireinitial init `, _x0+1); _dtbl[3][3][1][_k, 8] := _x0+1 end if end do; _dtbl[3][4][17] := 0; _dtbl[3][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("right")) end if end if else for _k in _i do _dtbl[1][3][1][_k, 7] := 1 end do; _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); _dtbl[4] := 0; if _dtbl[1][4][10] = 1 then if _x0 <= procname("right") then try procname(procname("right")) catch:  end try end if; if procname("left") <= _x0 then try procname(procname("left")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and lhs(_xin) = "eventfired" then if not type(rhs(_xin), 'list') then error "'eventfired' must be specified as a list" end if; if _nv = 0 then error "this solution has no events" end if; if _dtbl[4] <> 2 and _dtbl[4] <> 3 then error "'direction' must be set prior to calling/setting 'eventfired'" end if; _i := _dtbl[4]; _val := NULL; if not assigned(_EnvEventRetriggerWarned) then _EnvEventRetriggerWarned := false end if; for _k in rhs(_xin) do if type(_k, 'integer') then _src := _k elif type(_k, 'integer' = 'anything') and type(evalf(rhs(_k)), 'numeric') then _k := lhs(_k) = evalf[max(Digits, 18)](rhs(_k)); _src := lhs(_k) else error "'eventfired' entry is not valid: %1", _k end if; if _src < 1 or round(_dtbl[1][3][1][_nv+1, 1]) < _src then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _src := {seq(`if`(_dtbl[1][3][1][_j, 1]-_src = 0., _j, NULL), _j = 1 .. _nv)}; if nops(_src) <> 1 then error "'eventfired' can only be set/queried for root-finding events and time/interval events" end if; _src := _src[1]; if _dtbl[1][3][1][_src, 2] <> 0. and _dtbl[1][3][1][_src, 2]-2. <> 0. then error "'eventfired' can only be set/queried for root-finding events and time/interval events" elif irem(round(_dtbl[1][3][1][_src, 4]), 2) = 1 then if _EnvEventRetriggerWarned = false then WARNING(`'eventfired' has no effect on events that retrigger`) end if; _EnvEventRetriggerWarned := true end if; if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then _val := _val, undefined elif type(_dtbl[_i][3][4][_src, _i-1], 'undefined') or _i = 2 and _dtbl[2][3][1][_src, 8] < _dtbl[2][3][4][_src, 1] or _i = 3 and _dtbl[3][3][4][_src, 2] < _dtbl[3][3][1][_src, 8] then _val := _val, _dtbl[_i][3][1][_src, 8] else _val := _val, _dtbl[_i][3][4][_src, _i-1] end if; if type(_k, `=`) then if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then error "cannot set event code for a rate hysteresis event" end if; userinfo(3, {'events', 'eventreset'}, `manual set event code `, _src, ` to value `, rhs(_k)); _dtbl[_i][3][1][_src, 8] := rhs(_k); _dtbl[_i][3][4][_src, _i-1] := rhs(_k) end if end do; return [_val] elif type(_xin, `=`) and lhs(_xin) = "direction" then if not member(rhs(_xin), {-1, 1, ':-left', ':-right'}) then error "'direction' must be specified as either '1' or 'right' (positive) or '-1' or 'left' (negative)" end if; _src := `if`(_dtbl[4] = 2, -1, `if`(_dtbl[4] = 3, 1, undefined)); _i := `if`(member(rhs(_xin), {1, ':-right'}), 3, 2); _dtbl[4] := _i; _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if; return _src elif _xin = "eventcount" then if _dtbl[1][3][1] = 0 or _dtbl[4] <> 2 and _dtbl[4] <> 3 then return 0 else return round(_dtbl[_dtbl[4]][3][1][_nv+1, 12]) end if else return "procname" end if end if; if _xout = _x0 then return [_x0, seq(evalf(_dtbl[1][6][_vmap[_i]]), _i = 1 .. _n-_ne)] end if; _i := `if`(_x0 <= _xout, 3, 2); if _xin = "last" and 0 < _dtbl[_i][4][9] and _dtbl[_i][4][9] < 10 then _dat := eval(_dtbl[_i], 2); _j := _dat[4][20]; return [_dat[11][_j, 0], seq(_dat[11][_j, _vmap[_i]], _i = 1 .. _n-_ne-_nd), seq(_dat[8][1][_vmap[_i]], _i = _n-_ne-_nd+1 .. _n-_ne)] end if; if not type(_dtbl[_i], 'array') then _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if end if; if _xin <> "last" then if 0 < 0 then if `dsolve/numeric/checkglobals`(op(_dtbl[1][14]), _pars, _n, _y0) then `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars, _i) end if end if; if _dtbl[1][4][7] = 0 then error "parameters must be initialized before solution can be computed" end if end if; _dat := eval(_dtbl[_i], 2); _dtbl[4] := _i; try _src := `dsolve/numeric/SC/IVPrun`(_dat, _xout) catch: userinfo(2, `dsolve/debug`, print(`Exception in solnproc:`, [lastexception][2 .. -1])); error  end try; if _src = 0 and 10 < _dat[4][9] then _val := _dat[3][1][_nv+1, 8] else _val := _dat[11][_dat[4][20], 0] end if; if _src <> 0 or _dat[4][9] <= 0 then _dtbl[1][5][1] := _xout else _dtbl[1][5][1] := _val end if; if _i = 3 and _val < _xout then Rounding := -infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further right of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further right of %1, maxfun limit exceeded (see ?dsolve,maxfun for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further right of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further right of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif 10 < _dat[4][9] then if _dat[4][9]-10 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further right of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-10, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further right of %1", evalf[8](_val) end if elif _i = 2 and _xout < _val then Rounding := infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further left of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further left of %1, maxfun limit exceeded (see ?dsolve,maxfun for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further left of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further left of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif 10 < _dat[4][9] then if _dat[4][9]-10 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further left of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-10, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further left of %1", evalf[8](_val) end if end if; if _EnvInFsolve = true then _dig := _dat[4][26]; _dat[4][26] := _EnvDSNumericSaveDigits; _Env_dsolve_SC_native := true; if _dat[4][25] = 1 then _i := 1; _dat[4][25] := 2 else _i := _dat[4][25] end if; _val := `dsolve/numeric/SC/IVPval`(_dat, _xout, _src); _dat[4][25] := _i; _dat[4][26] := _dig; [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] else Digits := _dat[4][26]; _val := `dsolve/numeric/SC/IVPval`(eval(_dat, 2), _xout, _src); [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] end if end proc, (2) = Array(1..9, {(1) = 4366565378, (2) = 4366565474, (3) = 4366565570, (4) = 4366565666, (5) = 4366565762, (6) = 4366565858, (7) = 4366565954, (8) = 4366566050, (9) = 4366566146}), (3) = [eta, T(eta), diff(T(eta), eta), f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), g(eta), diff(g(eta), eta), diff(diff(g(eta), eta), eta)], (4) = []}); _solnproc := _dat[1]; _pars := map(rhs, _dat[4]); if not type(_xout, 'numeric') then if member(eta, ["start", 'start', "method", 'method', "left", 'left', "right", 'right', "leftdata", "rightdata", "enginedata", "eventstop", 'eventstop', "eventclear", 'eventclear', "eventstatus", 'eventstatus', "eventcount", 'eventcount', "laxtol", 'laxtol', "numfun", 'numfun', NULL]) then _res := _solnproc(convert(eta, 'string')); if 1 < nops([_res]) then return _res elif type(_res, 'array') then return eval(_res, 1) elif _res <> "procname" then return _res end if elif member(eta, ["last", 'last', "initial", 'initial', NULL]) then _res := _solnproc(convert(eta, 'string')); if type(_res, 'list') then return _res[4] else return NULL end if elif member(eta, ["parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(eta, 'string'); _res := _solnproc(_xout); if _xout = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] else return [_res[4], seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] end if elif type(_xout, `=`) and member(lhs(_xout), ["initial", 'initial', "parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(lhs(eta), 'string') = rhs(eta); if lhs(_xout) = "initial" then if type(rhs(_xout), 'list') then _res := _solnproc(_xout) else _res := _solnproc("initial" = ["single", 4, rhs(_xout)]) end if elif not type(rhs(_xout), 'list') then error "initial and/or parameter values must be specified in a list" elif lhs(_xout) = "initial_and_parameters" and nops(rhs(_xout)) = nops(_pars)+1 then _res := _solnproc(lhs(_xout) = ["single", 4, op(rhs(_xout))]) else _res := _solnproc(_xout) end if; if lhs(_xout) = "initial" then return _res[4] elif lhs(_xout) = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] else return [_res[4], seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] end if elif type(_xout, `=`) and member(lhs(_xout), ["eventdisable", 'eventdisable', "eventenable", 'eventenable', "eventfired", 'eventfired', "direction", 'direction', NULL]) then return _solnproc(convert(lhs(eta), 'string') = rhs(eta)) elif _xout = "solnprocedure" then return eval(_solnproc) elif _xout = "sysvars" then return _dat[3] end if; if procname <> unknown then return ('procname')(eta) else _ndsol := `tools/gensym`("f"); eval(FromInert(_Inert_FUNCTION(_Inert_NAME("assign"), _Inert_EXPSEQ(ToInert(_ndsol), _Inert_VERBATIM(pointto(_dat[2][4])))))); return FromInert(_Inert_FUNCTION(ToInert(_ndsol), _Inert_EXPSEQ(ToInert(eta)))) end if end if; try _res := _solnproc(_xout); _res[4] catch: error  end try end proc, proc (eta) local _res, _dat, _solnproc, _xout, _ndsol, _pars, _i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; if 1 < nargs then error "invalid input: too many arguments" end if; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then _xout := evalf[_EnvDSNumericSaveDigits](eta) else _xout := evalf(eta) end if; _dat := Array(1..4, {(1) = proc (_xin) local _xout, _dtbl, _dat, _vmap, _x0, _y0, _val, _dig, _n, _ne, _nd, _nv, _pars, _ini, _par, _i, _j, _k, _src; option `Copyright (c) 2002 by Waterloo Maple Inc. All rights reserved.`; table( [( "complex" ) = false ] ) _xout := _xin; _pars := []; _dtbl := array( 1 .. 4, [( 1 ) = (array( 1 .. 20, [( 1 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 2 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 3 ) = ([0, 0, 0, Array(1..0, 1..2, {}, datatype = float[8], order = C_order)]), ( 5 ) = (Array(1..28, {(1) = .0, (2) = 0.10e-9, (3) = .0, (4) = 0.500001e-14, (5) = .0, (6) = 0.56668809672174786e-4, (7) = .0, (8) = 0.10e-9, (9) = .0, (10) = .0, (11) = .0, (12) = .0, (13) = 1.0, (14) = .0, (15) = .49999999999999, (16) = .0, (17) = 1.0, (18) = 1.0, (19) = .0, (20) = .0, (21) = 1.0, (22) = 1.0, (23) = .0, (24) = .0, (25) = 0.10e-14, (26) = .0, (27) = .0, (28) = .0}, datatype = float[8], order = C_order)), ( 4 ) = (Array(1..53, {(1) = 8, (2) = 8, (3) = 0, (4) = 0, (5) = 0, (6) = 0, (7) = 1, (8) = 0, (9) = 0, (10) = 0, (11) = 0, (12) = 0, (13) = 0, (14) = 0, (15) = 0, (16) = 0, (17) = 0, (18) = 1, (19) = 30000, (20) = 0, (21) = 0, (22) = 1, (23) = 4, (24) = 0, (25) = 1, (26) = 15, (27) = 1, (28) = 0, (29) = 1, (30) = 3, (31) = 3, (32) = 0, (33) = 1, (34) = 0, (35) = 0, (36) = 0, (37) = 0, (38) = 0, (39) = 0, (40) = 0, (41) = 0, (42) = 0, (43) = 1, (44) = 0, (45) = 0, (46) = 0, (47) = 0, (48) = 0, (49) = 0, (50) = 50, (51) = 1, (52) = 0, (53) = 0}, datatype = integer[4])), ( 7 ) = ([Array(1..4, 1..7, {(1, 1) = .0, (1, 2) = .203125, (1, 3) = .3046875, (1, 4) = .75, (1, 5) = .8125, (1, 6) = .40625, (1, 7) = .8125, (2, 1) = 0.6378173828125e-1, (2, 2) = .0, (2, 3) = .279296875, (2, 4) = .27237892150878906, (2, 5) = -0.9686851501464844e-1, (2, 6) = 0.1956939697265625e-1, (2, 7) = .5381584167480469, (3, 1) = 0.31890869140625e-1, (3, 2) = .0, (3, 3) = -.34375, (3, 4) = -.335235595703125, (3, 5) = .2296142578125, (3, 6) = .41748046875, (3, 7) = 11.480712890625, (4, 1) = 0.9710520505905151e-1, (4, 2) = .0, (4, 3) = .40350341796875, (4, 4) = 0.20297467708587646e-1, (4, 5) = -0.6054282188415527e-2, (4, 6) = -0.4770040512084961e-1, (4, 7) = .77858567237854}, datatype = float[8], order = C_order), Array(1..6, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = 1.0, (2, 1) = .25, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = 1.0, (3, 1) = .1875, (3, 2) = .5625, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = 2.0, (4, 1) = .23583984375, (4, 2) = -.87890625, (4, 3) = .890625, (4, 4) = .0, (4, 5) = .0, (4, 6) = .2681884765625, (5, 1) = .1272735595703125, (5, 2) = -.5009765625, (5, 3) = .44921875, (5, 4) = -0.128936767578125e-1, (5, 5) = .0, (5, 6) = 0.626220703125e-1, (6, 1) = -0.927734375e-1, (6, 2) = .626220703125, (6, 3) = -.4326171875, (6, 4) = .1418304443359375, (6, 5) = -0.861053466796875e-1, (6, 6) = .3131103515625}, datatype = float[8], order = C_order), Array(1..6, {(1) = .0, (2) = .386, (3) = .21, (4) = .63, (5) = 1.0, (6) = 1.0}, datatype = float[8], order = C_order), Array(1..6, {(1) = .25, (2) = -.1043, (3) = .1035, (4) = -0.362e-1, (5) = .0, (6) = .0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 1.544, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = .9466785280815533, (3, 2) = .25570116989825814, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = 3.3148251870684886, (4, 2) = 2.896124015972123, (4, 3) = .9986419139977808, (4, 4) = .0, (4, 5) = .0, (5, 1) = 1.2212245092262748, (5, 2) = 6.019134481287752, (5, 3) = 12.537083329320874, (5, 4) = -.687886036105895, (5, 5) = .0, (6, 1) = 1.2212245092262748, (6, 2) = 6.019134481287752, (6, 3) = 12.537083329320874, (6, 4) = -.687886036105895, (6, 5) = 1.0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = -5.6688, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = -2.4300933568337584, (3, 2) = -.20635991570891224, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = -.10735290581452621, (4, 2) = -9.594562251021896, (4, 3) = -20.470286148096154, (4, 4) = .0, (4, 5) = .0, (5, 1) = 7.496443313968615, (5, 2) = -10.246804314641219, (5, 3) = -33.99990352819906, (5, 4) = 11.708908932061595, (5, 5) = .0, (6, 1) = 8.083246795922411, (6, 2) = -7.981132988062785, (6, 3) = -31.52159432874373, (6, 4) = 16.319305431231363, (6, 5) = -6.0588182388340535}, datatype = float[8], order = C_order), Array(1..3, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 10.126235083446911, (2, 2) = -7.487995877607633, (2, 3) = -34.800918615557414, (2, 4) = -7.9927717075687275, (2, 5) = 1.0251377232956207, (3, 1) = -.6762803392806898, (3, 2) = 6.087714651678606, (3, 3) = 16.43084320892463, (3, 4) = 24.767225114183653, (3, 5) = -6.5943891257167815}, datatype = float[8], order = C_order)]), ( 6 ) = (Array(1..8, {(1) = .6800687881055208, (2) = -.11511620494228457, (3) = .0, (4) = .0, (5) = .37811799244920297, (6) = .0, (7) = 1.4117113181447527, (8) = .0}, datatype = float[8], order = C_order)), ( 10 ) = ([proc (N, X, Y, YP) option `[Y[1] = T(eta), Y[2] = diff(T(eta),eta), Y[3] = f(eta), Y[4] = diff(f(eta),eta), Y[5] = diff(diff(f(eta),eta),eta), Y[6] = g(eta), Y[7] = diff(g(eta),eta), Y[8] = diff(diff(g(eta),eta),eta)]`; YP[2] := (-.5000000000*Y[2]*Y[3]-3.081102216*(.1*Y[1]+1)^2*Y[2]^2)/(.8804858221+1.027034072*(.1*Y[1]+1)^3); YP[5] := -0.22360732220118799324e-1*Y[5]*Y[3]+0.13416439332071279594e-1*Y[8]*Y[6]; YP[8] := -0.45558086560364464692e-1*Y[8]*Y[3]+0.45558086560364464692e-1*Y[5]*Y[6]; YP[1] := Y[2]; YP[3] := Y[4]; YP[4] := Y[5]; YP[6] := Y[7]; YP[7] := Y[8]; 0 end proc, -1, 0, 0, 0, 0, 0, 0]), ( 11 ) = (Array(1..6, 0..8, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (1, 7) = .0, (1, 8) = .0, (2, 0) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (2, 7) = .0, (2, 8) = .0, (3, 0) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (3, 7) = .0, (3, 8) = .0, (4, 0) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (4, 7) = .0, (4, 8) = .0, (5, 0) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (5, 7) = .0, (5, 8) = .0, (6, 0) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (6, 7) = .0, (6, 8) = .0}, datatype = float[8], order = C_order)), ( 8 ) = ([Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = -.11511620494228457, (2) = -0.21848192814805673e-1, (3) = .0, (4) = .37811799244920297, (5) = .0, (6) = 1.4117113181447527, (7) = .0, (8) = .0}, datatype = float[8], order = C_order)]), ( 9 ) = ([Array(1..8, {(1) = 0.1e-1, (2) = 0.1e-1, (3) = 0.1e-1, (4) = 0.1e-1, (5) = 0.1e-1, (6) = 0.1e-1, (7) = 0.1e-1, (8) = 0.1e-1}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, 1..8, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (1, 7) = .0, (1, 8) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (2, 7) = .0, (2, 8) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (3, 7) = .0, (3, 8) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (4, 7) = .0, (4, 8) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (5, 7) = .0, (5, 8) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (6, 7) = .0, (6, 8) = .0, (7, 1) = .0, (7, 2) = .0, (7, 3) = .0, (7, 4) = .0, (7, 5) = .0, (7, 6) = .0, (7, 7) = .0, (7, 8) = .0, (8, 1) = .0, (8, 2) = .0, (8, 3) = .0, (8, 4) = .0, (8, 5) = .0, (8, 6) = .0, (8, 7) = .0, (8, 8) = .0}, datatype = float[8], order = C_order), Array(1..8, 1..8, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (1, 7) = .0, (1, 8) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (2, 7) = .0, (2, 8) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (3, 7) = .0, (3, 8) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (4, 7) = .0, (4, 8) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (5, 7) = .0, (5, 8) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (6, 7) = .0, (6, 8) = .0, (7, 1) = .0, (7, 2) = .0, (7, 3) = .0, (7, 4) = .0, (7, 5) = .0, (7, 6) = .0, (7, 7) = .0, (7, 8) = .0, (8, 1) = .0, (8, 2) = .0, (8, 3) = .0, (8, 4) = .0, (8, 5) = .0, (8, 6) = .0, (8, 7) = .0, (8, 8) = .0}, datatype = float[8], order = C_order), Array(1..8, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (7, 1) = .0, (7, 2) = .0, (7, 3) = .0, (7, 4) = .0, (7, 5) = .0, (7, 6) = .0, (8, 1) = .0, (8, 2) = .0, (8, 3) = .0, (8, 4) = .0, (8, 5) = .0, (8, 6) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = 0, (2) = 0, (3) = 0, (4) = 0, (5) = 0, (6) = 0, (7) = 0, (8) = 0}, datatype = integer[4]), Array(1..8, {(1) = .6800687881055208, (2) = -.11511620494228457, (3) = .0, (4) = .0, (5) = .37811799244920297, (6) = .0, (7) = 1.4117113181447527, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order)]), ( 15 ) = ("rkf45"), ( 14 ) = ([0, 0]), ( 13 ) = (), ( 12 ) = (), ( 20 ) = ([]), ( 16 ) = ([0, 0, 0, []]), ( 17 ) = ([proc (N, X, Y, YP) option `[Y[1] = T(eta), Y[2] = diff(T(eta),eta), Y[3] = f(eta), Y[4] = diff(f(eta),eta), Y[5] = diff(diff(f(eta),eta),eta), Y[6] = g(eta), Y[7] = diff(g(eta),eta), Y[8] = diff(diff(g(eta),eta),eta)]`; YP[2] := (-.5000000000*Y[2]*Y[3]-3.081102216*(.1*Y[1]+1)^2*Y[2]^2)/(.8804858221+1.027034072*(.1*Y[1]+1)^3); YP[5] := -0.22360732220118799324e-1*Y[5]*Y[3]+0.13416439332071279594e-1*Y[8]*Y[6]; YP[8] := -0.45558086560364464692e-1*Y[8]*Y[3]+0.45558086560364464692e-1*Y[5]*Y[6]; YP[1] := Y[2]; YP[3] := Y[4]; YP[4] := Y[5]; YP[6] := Y[7]; YP[7] := Y[8]; 0 end proc, -1, 0, 0, 0, 0, 0, 0]), ( 18 ) = ([]), ( 19 ) = (0)  ] ))  ] ); _y0 := Array(0..8, {(1) = 0., (2) = HFloat(0.6800687881055208), (3) = HFloat(-0.11511620494228457), (4) = HFloat(0.0), (5) = HFloat(0.0), (6) = HFloat(0.37811799244920297), (7) = HFloat(0.0), (8) = HFloat(1.4117113181447527)}); _vmap := array( 1 .. 8, [( 1 ) = (1), ( 2 ) = (2), ( 3 ) = (3), ( 5 ) = (5), ( 4 ) = (4), ( 7 ) = (7), ( 6 ) = (6), ( 8 ) = (8)  ] ); _x0 := _dtbl[1][5][5]; _n := _dtbl[1][4][1]; _ne := _dtbl[1][4][3]; _nd := _dtbl[1][4][4]; _nv := _dtbl[1][4][16]; if not type(_xout, 'numeric') then if member(_xout, ["start", "left", "right"]) then if _Env_smart_dsolve_numeric = true or _dtbl[1][4][10] = 1 then if _xout = "left" then if type(_dtbl[2], 'table') then return _dtbl[2][5][1] end if elif _xout = "right" then if type(_dtbl[3], 'table') then return _dtbl[3][5][1] end if end if end if; return _dtbl[1][5][5] elif _xout = "method" then return _dtbl[1][15] elif _xout = "storage" then return evalb(_dtbl[1][4][10] = 1) elif _xout = "leftdata" then if not type(_dtbl[2], 'array') then return NULL else return eval(_dtbl[2]) end if elif _xout = "rightdata" then if not type(_dtbl[3], 'array') then return NULL else return eval(_dtbl[3]) end if elif _xout = "enginedata" then return eval(_dtbl[1]) elif _xout = "enginereset" then _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); return NULL elif _xout = "initial" then return procname(_y0[0]) elif _xout = "laxtol" then return _dtbl[`if`(member(_dtbl[4], {2, 3}), _dtbl[4], 1)][5][18] elif _xout = "numfun" then return `if`(member(_dtbl[4], {2, 3}), _dtbl[_dtbl[4]][4][18], 0) elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "initial_and_parameters" then return procname(_y0[0]), [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "last" then if _dtbl[4] <> 2 and _dtbl[4] <> 3 or _x0-_dtbl[_dtbl[4]][5][1] = 0. then error "no information is available on last computed point" else _xout := _dtbl[_dtbl[4]][5][1] end if elif _xout = "function" then if _dtbl[1][4][33]-2. = 0 then return eval(_dtbl[1][10], 1) else return eval(_dtbl[1][10][1], 1) end if elif _xout = "map" then return copy(_vmap) elif type(_xin, `=`) and type(rhs(_xin), 'list') and member(lhs(_xin), {"initial", "parameters", "initial_and_parameters"}) then _ini, _par := [], []; if lhs(_xin) = "initial" then _ini := rhs(_xin) elif lhs(_xin) = "parameters" then _par := rhs(_xin) elif select(type, rhs(_xin), `=`) <> [] then _par, _ini := selectremove(type, rhs(_xin), `=`) elif nops(rhs(_xin)) < nops(_pars)+1 then error "insufficient data for specification of initial and parameters" else _par := rhs(_xin)[-nops(_pars) .. -1]; _ini := rhs(_xin)[1 .. -nops(_pars)-1] end if; _xout := lhs(_xout); if _par <> [] then `dsolve/numeric/process_parameters`(_n, _pars, _par, _y0) end if; if _ini <> [] then `dsolve/numeric/process_initial`(_n-_ne, _ini, _y0, _pars, _vmap) end if; `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars); if _Env_smart_dsolve_numeric = true and type(_y0[0], 'numeric') and _dtbl[1][4][10] <> 1 then procname("right") := _y0[0]; procname("left") := _y0[0] end if; if _xout = "initial" then return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)] elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] else return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)], [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] end if elif _xin = "eventstop" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then return 0 end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 10 and 10 <= _dtbl[5-_i][4][9] then _i := 5-_i; _dtbl[4] := _i; _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) elif 10 <= _dtbl[_i][4][9] then _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) else return 0 end if elif _xin = "eventstatus" then if _nv = 0 then error "this solution has no events" end if; _i := [selectremove(proc (a) options operator, arrow; _dtbl[1][3][1][a, 7] = 1 end proc, {seq(_j, _j = 1 .. round(_dtbl[1][3][1][_nv+1, 1]))})]; return ':-enabled' = _i[1], ':-disabled' = _i[2] elif _xin = "eventclear" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then error "no events to clear" end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 10 and 10 < _dtbl[5-_i][4][9] then _dtbl[4] := 5-_i; _i := 5-_i end if; if _dtbl[_i][4][9] < 10 then error "no events to clear" elif _nv < _dtbl[_i][4][9]-10 then error "event error condition cannot be cleared" else _j := _dtbl[_i][4][9]-10; if irem(round(_dtbl[_i][3][1][_j, 4]), 2) = 1 then error "retriggerable events cannot be cleared" end if; _j := round(_dtbl[_i][3][1][_j, 1]); for _k to _nv do if _dtbl[_i][3][1][_k, 1] = _j then if _dtbl[_i][3][1][_k, 2] = 3 then error "range events cannot be cleared" end if; _dtbl[_i][3][1][_k, 8] := _dtbl[_i][3][1][_nv+1, 8] end if end do; _dtbl[_i][4][17] := 0; _dtbl[_i][4][9] := 0; if _dtbl[1][4][10] = 1 then if _i = 2 then try procname(procname("left")) catch:  end try else try procname(procname("right")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and member(lhs(_xin), {"eventdisable", "eventenable"}) then if _nv = 0 then error "this solution has no events" end if; if type(rhs(_xin), {('list')('posint'), ('set')('posint')}) then _i := {op(rhs(_xin))} elif type(rhs(_xin), 'posint') then _i := {rhs(_xin)} else error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; if select(proc (a) options operator, arrow; _nv < a end proc, _i) <> {} then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _k := {}; for _j to _nv do if member(round(_dtbl[1][3][1][_j, 1]), _i) then _k := `union`(_k, {_j}) end if end do; _i := _k; if lhs(_xin) = "eventdisable" then _dtbl[4] := 0; _j := [evalb(assigned(_dtbl[2]) and member(_dtbl[2][4][17], _i)), evalb(assigned(_dtbl[3]) and member(_dtbl[3][4][17], _i))]; for _k in _i do _dtbl[1][3][1][_k, 7] := 0; if assigned(_dtbl[2]) then _dtbl[2][3][1][_k, 7] := 0 end if; if assigned(_dtbl[3]) then _dtbl[3][3][1][_k, 7] := 0 end if end do; if _j[1] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[2][3][4][_k, 1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to defined init `, _dtbl[2][3][4][_k, 1]); _dtbl[2][3][1][_k, 8] := _dtbl[2][3][4][_k, 1] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to rate hysteresis init `, _dtbl[2][5][24]); _dtbl[2][3][1][_k, 8] := _dtbl[2][5][24] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to initial init `, _x0); _dtbl[2][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to fireinitial init `, _x0-1); _dtbl[2][3][1][_k, 8] := _x0-1 end if end do; _dtbl[2][4][17] := 0; _dtbl[2][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("left")) end if end if; if _j[2] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[3][3][4][_k, 2], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to defined init `, _dtbl[3][3][4][_k, 2]); _dtbl[3][3][1][_k, 8] := _dtbl[3][3][4][_k, 2] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to rate hysteresis init `, _dtbl[3][5][24]); _dtbl[3][3][1][_k, 8] := _dtbl[3][5][24] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to initial init `, _x0); _dtbl[3][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to fireinitial init `, _x0+1); _dtbl[3][3][1][_k, 8] := _x0+1 end if end do; _dtbl[3][4][17] := 0; _dtbl[3][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("right")) end if end if else for _k in _i do _dtbl[1][3][1][_k, 7] := 1 end do; _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); _dtbl[4] := 0; if _dtbl[1][4][10] = 1 then if _x0 <= procname("right") then try procname(procname("right")) catch:  end try end if; if procname("left") <= _x0 then try procname(procname("left")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and lhs(_xin) = "eventfired" then if not type(rhs(_xin), 'list') then error "'eventfired' must be specified as a list" end if; if _nv = 0 then error "this solution has no events" end if; if _dtbl[4] <> 2 and _dtbl[4] <> 3 then error "'direction' must be set prior to calling/setting 'eventfired'" end if; _i := _dtbl[4]; _val := NULL; if not assigned(_EnvEventRetriggerWarned) then _EnvEventRetriggerWarned := false end if; for _k in rhs(_xin) do if type(_k, 'integer') then _src := _k elif type(_k, 'integer' = 'anything') and type(evalf(rhs(_k)), 'numeric') then _k := lhs(_k) = evalf[max(Digits, 18)](rhs(_k)); _src := lhs(_k) else error "'eventfired' entry is not valid: %1", _k end if; if _src < 1 or round(_dtbl[1][3][1][_nv+1, 1]) < _src then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _src := {seq(`if`(_dtbl[1][3][1][_j, 1]-_src = 0., _j, NULL), _j = 1 .. _nv)}; if nops(_src) <> 1 then error "'eventfired' can only be set/queried for root-finding events and time/interval events" end if; _src := _src[1]; if _dtbl[1][3][1][_src, 2] <> 0. and _dtbl[1][3][1][_src, 2]-2. <> 0. then error "'eventfired' can only be set/queried for root-finding events and time/interval events" elif irem(round(_dtbl[1][3][1][_src, 4]), 2) = 1 then if _EnvEventRetriggerWarned = false then WARNING(`'eventfired' has no effect on events that retrigger`) end if; _EnvEventRetriggerWarned := true end if; if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then _val := _val, undefined elif type(_dtbl[_i][3][4][_src, _i-1], 'undefined') or _i = 2 and _dtbl[2][3][1][_src, 8] < _dtbl[2][3][4][_src, 1] or _i = 3 and _dtbl[3][3][4][_src, 2] < _dtbl[3][3][1][_src, 8] then _val := _val, _dtbl[_i][3][1][_src, 8] else _val := _val, _dtbl[_i][3][4][_src, _i-1] end if; if type(_k, `=`) then if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then error "cannot set event code for a rate hysteresis event" end if; userinfo(3, {'events', 'eventreset'}, `manual set event code `, _src, ` to value `, rhs(_k)); _dtbl[_i][3][1][_src, 8] := rhs(_k); _dtbl[_i][3][4][_src, _i-1] := rhs(_k) end if end do; return [_val] elif type(_xin, `=`) and lhs(_xin) = "direction" then if not member(rhs(_xin), {-1, 1, ':-left', ':-right'}) then error "'direction' must be specified as either '1' or 'right' (positive) or '-1' or 'left' (negative)" end if; _src := `if`(_dtbl[4] = 2, -1, `if`(_dtbl[4] = 3, 1, undefined)); _i := `if`(member(rhs(_xin), {1, ':-right'}), 3, 2); _dtbl[4] := _i; _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if; return _src elif _xin = "eventcount" then if _dtbl[1][3][1] = 0 or _dtbl[4] <> 2 and _dtbl[4] <> 3 then return 0 else return round(_dtbl[_dtbl[4]][3][1][_nv+1, 12]) end if else return "procname" end if end if; if _xout = _x0 then return [_x0, seq(evalf(_dtbl[1][6][_vmap[_i]]), _i = 1 .. _n-_ne)] end if; _i := `if`(_x0 <= _xout, 3, 2); if _xin = "last" and 0 < _dtbl[_i][4][9] and _dtbl[_i][4][9] < 10 then _dat := eval(_dtbl[_i], 2); _j := _dat[4][20]; return [_dat[11][_j, 0], seq(_dat[11][_j, _vmap[_i]], _i = 1 .. _n-_ne-_nd), seq(_dat[8][1][_vmap[_i]], _i = _n-_ne-_nd+1 .. _n-_ne)] end if; if not type(_dtbl[_i], 'array') then _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if end if; if _xin <> "last" then if 0 < 0 then if `dsolve/numeric/checkglobals`(op(_dtbl[1][14]), _pars, _n, _y0) then `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars, _i) end if end if; if _dtbl[1][4][7] = 0 then error "parameters must be initialized before solution can be computed" end if end if; _dat := eval(_dtbl[_i], 2); _dtbl[4] := _i; try _src := `dsolve/numeric/SC/IVPrun`(_dat, _xout) catch: userinfo(2, `dsolve/debug`, print(`Exception in solnproc:`, [lastexception][2 .. -1])); error  end try; if _src = 0 and 10 < _dat[4][9] then _val := _dat[3][1][_nv+1, 8] else _val := _dat[11][_dat[4][20], 0] end if; if _src <> 0 or _dat[4][9] <= 0 then _dtbl[1][5][1] := _xout else _dtbl[1][5][1] := _val end if; if _i = 3 and _val < _xout then Rounding := -infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further right of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further right of %1, maxfun limit exceeded (see ?dsolve,maxfun for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further right of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further right of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif 10 < _dat[4][9] then if _dat[4][9]-10 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further right of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-10, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further right of %1", evalf[8](_val) end if elif _i = 2 and _xout < _val then Rounding := infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further left of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further left of %1, maxfun limit exceeded (see ?dsolve,maxfun for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further left of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further left of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif 10 < _dat[4][9] then if _dat[4][9]-10 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further left of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-10, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further left of %1", evalf[8](_val) end if end if; if _EnvInFsolve = true then _dig := _dat[4][26]; _dat[4][26] := _EnvDSNumericSaveDigits; _Env_dsolve_SC_native := true; if _dat[4][25] = 1 then _i := 1; _dat[4][25] := 2 else _i := _dat[4][25] end if; _val := `dsolve/numeric/SC/IVPval`(_dat, _xout, _src); _dat[4][25] := _i; _dat[4][26] := _dig; [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] else Digits := _dat[4][26]; _val := `dsolve/numeric/SC/IVPval`(eval(_dat, 2), _xout, _src); [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] end if end proc, (2) = Array(1..9, {(1) = 4366565378, (2) = 4366565474, (3) = 4366565570, (4) = 4366565666, (5) = 4366565762, (6) = 4366565858, (7) = 4366565954, (8) = 4366566050, (9) = 4366566146}), (3) = [eta, T(eta), diff(T(eta), eta), f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), g(eta), diff(g(eta), eta), diff(diff(g(eta), eta), eta)], (4) = []}); _solnproc := _dat[1]; _pars := map(rhs, _dat[4]); if not type(_xout, 'numeric') then if member(eta, ["start", 'start', "method", 'method', "left", 'left', "right", 'right', "leftdata", "rightdata", "enginedata", "eventstop", 'eventstop', "eventclear", 'eventclear', "eventstatus", 'eventstatus', "eventcount", 'eventcount', "laxtol", 'laxtol', "numfun", 'numfun', NULL]) then _res := _solnproc(convert(eta, 'string')); if 1 < nops([_res]) then return _res elif type(_res, 'array') then return eval(_res, 1) elif _res <> "procname" then return _res end if elif member(eta, ["last", 'last', "initial", 'initial', NULL]) then _res := _solnproc(convert(eta, 'string')); if type(_res, 'list') then return _res[5] else return NULL end if elif member(eta, ["parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(eta, 'string'); _res := _solnproc(_xout); if _xout = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] else return [_res[5], seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] end if elif type(_xout, `=`) and member(lhs(_xout), ["initial", 'initial', "parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(lhs(eta), 'string') = rhs(eta); if lhs(_xout) = "initial" then if type(rhs(_xout), 'list') then _res := _solnproc(_xout) else _res := _solnproc("initial" = ["single", 5, rhs(_xout)]) end if elif not type(rhs(_xout), 'list') then error "initial and/or parameter values must be specified in a list" elif lhs(_xout) = "initial_and_parameters" and nops(rhs(_xout)) = nops(_pars)+1 then _res := _solnproc(lhs(_xout) = ["single", 5, op(rhs(_xout))]) else _res := _solnproc(_xout) end if; if lhs(_xout) = "initial" then return _res[5] elif lhs(_xout) = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] else return [_res[5], seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] end if elif type(_xout, `=`) and member(lhs(_xout), ["eventdisable", 'eventdisable', "eventenable", 'eventenable', "eventfired", 'eventfired', "direction", 'direction', NULL]) then return _solnproc(convert(lhs(eta), 'string') = rhs(eta)) elif _xout = "solnprocedure" then return eval(_solnproc) elif _xout = "sysvars" then return _dat[3] end if; if procname <> unknown then return ('procname')(eta) else _ndsol := `tools/gensym`("D(f)"); eval(FromInert(_Inert_FUNCTION(_Inert_NAME("assign"), _Inert_EXPSEQ(ToInert(_ndsol), _Inert_VERBATIM(pointto(_dat[2][5])))))); return FromInert(_Inert_FUNCTION(ToInert(_ndsol), _Inert_EXPSEQ(ToInert(eta)))) end if end if; try _res := _solnproc(_xout); _res[5] catch: error  end try end proc, proc (eta) local _res, _dat, _solnproc, _xout, _ndsol, _pars, _i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; if 1 < nargs then error "invalid input: too many arguments" end if; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then _xout := evalf[_EnvDSNumericSaveDigits](eta) else _xout := evalf(eta) end if; _dat := Array(1..4, {(1) = proc (_xin) local _xout, _dtbl, _dat, _vmap, _x0, _y0, _val, _dig, _n, _ne, _nd, _nv, _pars, _ini, _par, _i, _j, _k, _src; option `Copyright (c) 2002 by Waterloo Maple Inc. All rights reserved.`; table( [( "complex" ) = false ] ) _xout := _xin; _pars := []; _dtbl := array( 1 .. 4, [( 1 ) = (array( 1 .. 20, [( 1 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 2 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 3 ) = ([0, 0, 0, Array(1..0, 1..2, {}, datatype = float[8], order = C_order)]), ( 5 ) = (Array(1..28, {(1) = .0, (2) = 0.10e-9, (3) = .0, (4) = 0.500001e-14, (5) = .0, (6) = 0.56668809672174786e-4, (7) = .0, (8) = 0.10e-9, (9) = .0, (10) = .0, (11) = .0, (12) = .0, (13) = 1.0, (14) = .0, (15) = .49999999999999, (16) = .0, (17) = 1.0, (18) = 1.0, (19) = .0, (20) = .0, (21) = 1.0, (22) = 1.0, (23) = .0, (24) = .0, (25) = 0.10e-14, (26) = .0, (27) = .0, (28) = .0}, datatype = float[8], order = C_order)), ( 4 ) = (Array(1..53, {(1) = 8, (2) = 8, (3) = 0, (4) = 0, (5) = 0, (6) = 0, (7) = 1, (8) = 0, (9) = 0, (10) = 0, (11) = 0, (12) = 0, (13) = 0, (14) = 0, (15) = 0, (16) = 0, (17) = 0, (18) = 1, (19) = 30000, (20) = 0, (21) = 0, (22) = 1, (23) = 4, (24) = 0, (25) = 1, (26) = 15, (27) = 1, (28) = 0, (29) = 1, (30) = 3, (31) = 3, (32) = 0, (33) = 1, (34) = 0, (35) = 0, (36) = 0, (37) = 0, (38) = 0, (39) = 0, (40) = 0, (41) = 0, (42) = 0, (43) = 1, (44) = 0, (45) = 0, (46) = 0, (47) = 0, (48) = 0, (49) = 0, (50) = 50, (51) = 1, (52) = 0, (53) = 0}, datatype = integer[4])), ( 7 ) = ([Array(1..4, 1..7, {(1, 1) = .0, (1, 2) = .203125, (1, 3) = .3046875, (1, 4) = .75, (1, 5) = .8125, (1, 6) = .40625, (1, 7) = .8125, (2, 1) = 0.6378173828125e-1, (2, 2) = .0, (2, 3) = .279296875, (2, 4) = .27237892150878906, (2, 5) = -0.9686851501464844e-1, (2, 6) = 0.1956939697265625e-1, (2, 7) = .5381584167480469, (3, 1) = 0.31890869140625e-1, (3, 2) = .0, (3, 3) = -.34375, (3, 4) = -.335235595703125, (3, 5) = .2296142578125, (3, 6) = .41748046875, (3, 7) = 11.480712890625, (4, 1) = 0.9710520505905151e-1, (4, 2) = .0, (4, 3) = .40350341796875, (4, 4) = 0.20297467708587646e-1, (4, 5) = -0.6054282188415527e-2, (4, 6) = -0.4770040512084961e-1, (4, 7) = .77858567237854}, datatype = float[8], order = C_order), Array(1..6, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = 1.0, (2, 1) = .25, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = 1.0, (3, 1) = .1875, (3, 2) = .5625, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = 2.0, (4, 1) = .23583984375, (4, 2) = -.87890625, (4, 3) = .890625, (4, 4) = .0, (4, 5) = .0, (4, 6) = .2681884765625, (5, 1) = .1272735595703125, (5, 2) = -.5009765625, (5, 3) = .44921875, (5, 4) = -0.128936767578125e-1, (5, 5) = .0, (5, 6) = 0.626220703125e-1, (6, 1) = -0.927734375e-1, (6, 2) = .626220703125, (6, 3) = -.4326171875, (6, 4) = .1418304443359375, (6, 5) = -0.861053466796875e-1, (6, 6) = .3131103515625}, datatype = float[8], order = C_order), Array(1..6, {(1) = .0, (2) = .386, (3) = .21, (4) = .63, (5) = 1.0, (6) = 1.0}, datatype = float[8], order = C_order), Array(1..6, {(1) = .25, (2) = -.1043, (3) = .1035, (4) = -0.362e-1, (5) = .0, (6) = .0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 1.544, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = .9466785280815533, (3, 2) = .25570116989825814, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = 3.3148251870684886, (4, 2) = 2.896124015972123, (4, 3) = .9986419139977808, (4, 4) = .0, (4, 5) = .0, (5, 1) = 1.2212245092262748, (5, 2) = 6.019134481287752, (5, 3) = 12.537083329320874, (5, 4) = -.687886036105895, (5, 5) = .0, (6, 1) = 1.2212245092262748, (6, 2) = 6.019134481287752, (6, 3) = 12.537083329320874, (6, 4) = -.687886036105895, (6, 5) = 1.0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = -5.6688, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = -2.4300933568337584, (3, 2) = -.20635991570891224, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = -.10735290581452621, (4, 2) = -9.594562251021896, (4, 3) = -20.470286148096154, (4, 4) = .0, (4, 5) = .0, (5, 1) = 7.496443313968615, (5, 2) = -10.246804314641219, (5, 3) = -33.99990352819906, (5, 4) = 11.708908932061595, (5, 5) = .0, (6, 1) = 8.083246795922411, (6, 2) = -7.981132988062785, (6, 3) = -31.52159432874373, (6, 4) = 16.319305431231363, (6, 5) = -6.0588182388340535}, datatype = float[8], order = C_order), Array(1..3, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 10.126235083446911, (2, 2) = -7.487995877607633, (2, 3) = -34.800918615557414, (2, 4) = -7.9927717075687275, (2, 5) = 1.0251377232956207, (3, 1) = -.6762803392806898, (3, 2) = 6.087714651678606, (3, 3) = 16.43084320892463, (3, 4) = 24.767225114183653, (3, 5) = -6.5943891257167815}, datatype = float[8], order = C_order)]), ( 6 ) = (Array(1..8, {(1) = .6800687881055208, (2) = -.11511620494228457, (3) = .0, (4) = .0, (5) = .37811799244920297, (6) = .0, (7) = 1.4117113181447527, (8) = .0}, datatype = float[8], order = C_order)), ( 10 ) = ([proc (N, X, Y, YP) option `[Y[1] = T(eta), Y[2] = diff(T(eta),eta), Y[3] = f(eta), Y[4] = diff(f(eta),eta), Y[5] = diff(diff(f(eta),eta),eta), Y[6] = g(eta), Y[7] = diff(g(eta),eta), Y[8] = diff(diff(g(eta),eta),eta)]`; YP[2] := (-.5000000000*Y[2]*Y[3]-3.081102216*(.1*Y[1]+1)^2*Y[2]^2)/(.8804858221+1.027034072*(.1*Y[1]+1)^3); YP[5] := -0.22360732220118799324e-1*Y[5]*Y[3]+0.13416439332071279594e-1*Y[8]*Y[6]; YP[8] := -0.45558086560364464692e-1*Y[8]*Y[3]+0.45558086560364464692e-1*Y[5]*Y[6]; YP[1] := Y[2]; YP[3] := Y[4]; YP[4] := Y[5]; YP[6] := Y[7]; YP[7] := Y[8]; 0 end proc, -1, 0, 0, 0, 0, 0, 0]), ( 11 ) = (Array(1..6, 0..8, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (1, 7) = .0, (1, 8) = .0, (2, 0) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (2, 7) = .0, (2, 8) = .0, (3, 0) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (3, 7) = .0, (3, 8) = .0, (4, 0) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (4, 7) = .0, (4, 8) = .0, (5, 0) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (5, 7) = .0, (5, 8) = .0, (6, 0) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (6, 7) = .0, (6, 8) = .0}, datatype = float[8], order = C_order)), ( 8 ) = ([Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = -.11511620494228457, (2) = -0.21848192814805673e-1, (3) = .0, (4) = .37811799244920297, (5) = .0, (6) = 1.4117113181447527, (7) = .0, (8) = .0}, datatype = float[8], order = C_order)]), ( 9 ) = ([Array(1..8, {(1) = 0.1e-1, (2) = 0.1e-1, (3) = 0.1e-1, (4) = 0.1e-1, (5) = 0.1e-1, (6) = 0.1e-1, (7) = 0.1e-1, (8) = 0.1e-1}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, 1..8, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (1, 7) = .0, (1, 8) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (2, 7) = .0, (2, 8) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (3, 7) = .0, (3, 8) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (4, 7) = .0, (4, 8) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (5, 7) = .0, (5, 8) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (6, 7) = .0, (6, 8) = .0, (7, 1) = .0, (7, 2) = .0, (7, 3) = .0, (7, 4) = .0, (7, 5) = .0, (7, 6) = .0, (7, 7) = .0, (7, 8) = .0, (8, 1) = .0, (8, 2) = .0, (8, 3) = .0, (8, 4) = .0, (8, 5) = .0, (8, 6) = .0, (8, 7) = .0, (8, 8) = .0}, datatype = float[8], order = C_order), Array(1..8, 1..8, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (1, 7) = .0, (1, 8) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (2, 7) = .0, (2, 8) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (3, 7) = .0, (3, 8) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (4, 7) = .0, (4, 8) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (5, 7) = .0, (5, 8) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (6, 7) = .0, (6, 8) = .0, (7, 1) = .0, (7, 2) = .0, (7, 3) = .0, (7, 4) = .0, (7, 5) = .0, (7, 6) = .0, (7, 7) = .0, (7, 8) = .0, (8, 1) = .0, (8, 2) = .0, (8, 3) = .0, (8, 4) = .0, (8, 5) = .0, (8, 6) = .0, (8, 7) = .0, (8, 8) = .0}, datatype = float[8], order = C_order), Array(1..8, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (7, 1) = .0, (7, 2) = .0, (7, 3) = .0, (7, 4) = .0, (7, 5) = .0, (7, 6) = .0, (8, 1) = .0, (8, 2) = .0, (8, 3) = .0, (8, 4) = .0, (8, 5) = .0, (8, 6) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = 0, (2) = 0, (3) = 0, (4) = 0, (5) = 0, (6) = 0, (7) = 0, (8) = 0}, datatype = integer[4]), Array(1..8, {(1) = .6800687881055208, (2) = -.11511620494228457, (3) = .0, (4) = .0, (5) = .37811799244920297, (6) = .0, (7) = 1.4117113181447527, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order)]), ( 15 ) = ("rkf45"), ( 14 ) = ([0, 0]), ( 13 ) = (), ( 12 ) = (), ( 20 ) = ([]), ( 16 ) = ([0, 0, 0, []]), ( 17 ) = ([proc (N, X, Y, YP) option `[Y[1] = T(eta), Y[2] = diff(T(eta),eta), Y[3] = f(eta), Y[4] = diff(f(eta),eta), Y[5] = diff(diff(f(eta),eta),eta), Y[6] = g(eta), Y[7] = diff(g(eta),eta), Y[8] = diff(diff(g(eta),eta),eta)]`; YP[2] := (-.5000000000*Y[2]*Y[3]-3.081102216*(.1*Y[1]+1)^2*Y[2]^2)/(.8804858221+1.027034072*(.1*Y[1]+1)^3); YP[5] := -0.22360732220118799324e-1*Y[5]*Y[3]+0.13416439332071279594e-1*Y[8]*Y[6]; YP[8] := -0.45558086560364464692e-1*Y[8]*Y[3]+0.45558086560364464692e-1*Y[5]*Y[6]; YP[1] := Y[2]; YP[3] := Y[4]; YP[4] := Y[5]; YP[6] := Y[7]; YP[7] := Y[8]; 0 end proc, -1, 0, 0, 0, 0, 0, 0]), ( 18 ) = ([]), ( 19 ) = (0)  ] ))  ] ); _y0 := Array(0..8, {(1) = 0., (2) = HFloat(0.6800687881055208), (3) = HFloat(-0.11511620494228457), (4) = HFloat(0.0), (5) = HFloat(0.0), (6) = HFloat(0.37811799244920297), (7) = HFloat(0.0), (8) = HFloat(1.4117113181447527)}); _vmap := array( 1 .. 8, [( 1 ) = (1), ( 2 ) = (2), ( 3 ) = (3), ( 5 ) = (5), ( 4 ) = (4), ( 7 ) = (7), ( 6 ) = (6), ( 8 ) = (8)  ] ); _x0 := _dtbl[1][5][5]; _n := _dtbl[1][4][1]; _ne := _dtbl[1][4][3]; _nd := _dtbl[1][4][4]; _nv := _dtbl[1][4][16]; if not type(_xout, 'numeric') then if member(_xout, ["start", "left", "right"]) then if _Env_smart_dsolve_numeric = true or _dtbl[1][4][10] = 1 then if _xout = "left" then if type(_dtbl[2], 'table') then return _dtbl[2][5][1] end if elif _xout = "right" then if type(_dtbl[3], 'table') then return _dtbl[3][5][1] end if end if end if; return _dtbl[1][5][5] elif _xout = "method" then return _dtbl[1][15] elif _xout = "storage" then return evalb(_dtbl[1][4][10] = 1) elif _xout = "leftdata" then if not type(_dtbl[2], 'array') then return NULL else return eval(_dtbl[2]) end if elif _xout = "rightdata" then if not type(_dtbl[3], 'array') then return NULL else return eval(_dtbl[3]) end if elif _xout = "enginedata" then return eval(_dtbl[1]) elif _xout = "enginereset" then _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); return NULL elif _xout = "initial" then return procname(_y0[0]) elif _xout = "laxtol" then return _dtbl[`if`(member(_dtbl[4], {2, 3}), _dtbl[4], 1)][5][18] elif _xout = "numfun" then return `if`(member(_dtbl[4], {2, 3}), _dtbl[_dtbl[4]][4][18], 0) elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "initial_and_parameters" then return procname(_y0[0]), [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "last" then if _dtbl[4] <> 2 and _dtbl[4] <> 3 or _x0-_dtbl[_dtbl[4]][5][1] = 0. then error "no information is available on last computed point" else _xout := _dtbl[_dtbl[4]][5][1] end if elif _xout = "function" then if _dtbl[1][4][33]-2. = 0 then return eval(_dtbl[1][10], 1) else return eval(_dtbl[1][10][1], 1) end if elif _xout = "map" then return copy(_vmap) elif type(_xin, `=`) and type(rhs(_xin), 'list') and member(lhs(_xin), {"initial", "parameters", "initial_and_parameters"}) then _ini, _par := [], []; if lhs(_xin) = "initial" then _ini := rhs(_xin) elif lhs(_xin) = "parameters" then _par := rhs(_xin) elif select(type, rhs(_xin), `=`) <> [] then _par, _ini := selectremove(type, rhs(_xin), `=`) elif nops(rhs(_xin)) < nops(_pars)+1 then error "insufficient data for specification of initial and parameters" else _par := rhs(_xin)[-nops(_pars) .. -1]; _ini := rhs(_xin)[1 .. -nops(_pars)-1] end if; _xout := lhs(_xout); if _par <> [] then `dsolve/numeric/process_parameters`(_n, _pars, _par, _y0) end if; if _ini <> [] then `dsolve/numeric/process_initial`(_n-_ne, _ini, _y0, _pars, _vmap) end if; `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars); if _Env_smart_dsolve_numeric = true and type(_y0[0], 'numeric') and _dtbl[1][4][10] <> 1 then procname("right") := _y0[0]; procname("left") := _y0[0] end if; if _xout = "initial" then return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)] elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] else return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)], [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] end if elif _xin = "eventstop" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then return 0 end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 10 and 10 <= _dtbl[5-_i][4][9] then _i := 5-_i; _dtbl[4] := _i; _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) elif 10 <= _dtbl[_i][4][9] then _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) else return 0 end if elif _xin = "eventstatus" then if _nv = 0 then error "this solution has no events" end if; _i := [selectremove(proc (a) options operator, arrow; _dtbl[1][3][1][a, 7] = 1 end proc, {seq(_j, _j = 1 .. round(_dtbl[1][3][1][_nv+1, 1]))})]; return ':-enabled' = _i[1], ':-disabled' = _i[2] elif _xin = "eventclear" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then error "no events to clear" end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 10 and 10 < _dtbl[5-_i][4][9] then _dtbl[4] := 5-_i; _i := 5-_i end if; if _dtbl[_i][4][9] < 10 then error "no events to clear" elif _nv < _dtbl[_i][4][9]-10 then error "event error condition cannot be cleared" else _j := _dtbl[_i][4][9]-10; if irem(round(_dtbl[_i][3][1][_j, 4]), 2) = 1 then error "retriggerable events cannot be cleared" end if; _j := round(_dtbl[_i][3][1][_j, 1]); for _k to _nv do if _dtbl[_i][3][1][_k, 1] = _j then if _dtbl[_i][3][1][_k, 2] = 3 then error "range events cannot be cleared" end if; _dtbl[_i][3][1][_k, 8] := _dtbl[_i][3][1][_nv+1, 8] end if end do; _dtbl[_i][4][17] := 0; _dtbl[_i][4][9] := 0; if _dtbl[1][4][10] = 1 then if _i = 2 then try procname(procname("left")) catch:  end try else try procname(procname("right")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and member(lhs(_xin), {"eventdisable", "eventenable"}) then if _nv = 0 then error "this solution has no events" end if; if type(rhs(_xin), {('list')('posint'), ('set')('posint')}) then _i := {op(rhs(_xin))} elif type(rhs(_xin), 'posint') then _i := {rhs(_xin)} else error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; if select(proc (a) options operator, arrow; _nv < a end proc, _i) <> {} then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _k := {}; for _j to _nv do if member(round(_dtbl[1][3][1][_j, 1]), _i) then _k := `union`(_k, {_j}) end if end do; _i := _k; if lhs(_xin) = "eventdisable" then _dtbl[4] := 0; _j := [evalb(assigned(_dtbl[2]) and member(_dtbl[2][4][17], _i)), evalb(assigned(_dtbl[3]) and member(_dtbl[3][4][17], _i))]; for _k in _i do _dtbl[1][3][1][_k, 7] := 0; if assigned(_dtbl[2]) then _dtbl[2][3][1][_k, 7] := 0 end if; if assigned(_dtbl[3]) then _dtbl[3][3][1][_k, 7] := 0 end if end do; if _j[1] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[2][3][4][_k, 1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to defined init `, _dtbl[2][3][4][_k, 1]); _dtbl[2][3][1][_k, 8] := _dtbl[2][3][4][_k, 1] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to rate hysteresis init `, _dtbl[2][5][24]); _dtbl[2][3][1][_k, 8] := _dtbl[2][5][24] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to initial init `, _x0); _dtbl[2][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to fireinitial init `, _x0-1); _dtbl[2][3][1][_k, 8] := _x0-1 end if end do; _dtbl[2][4][17] := 0; _dtbl[2][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("left")) end if end if; if _j[2] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[3][3][4][_k, 2], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to defined init `, _dtbl[3][3][4][_k, 2]); _dtbl[3][3][1][_k, 8] := _dtbl[3][3][4][_k, 2] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to rate hysteresis init `, _dtbl[3][5][24]); _dtbl[3][3][1][_k, 8] := _dtbl[3][5][24] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to initial init `, _x0); _dtbl[3][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to fireinitial init `, _x0+1); _dtbl[3][3][1][_k, 8] := _x0+1 end if end do; _dtbl[3][4][17] := 0; _dtbl[3][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("right")) end if end if else for _k in _i do _dtbl[1][3][1][_k, 7] := 1 end do; _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); _dtbl[4] := 0; if _dtbl[1][4][10] = 1 then if _x0 <= procname("right") then try procname(procname("right")) catch:  end try end if; if procname("left") <= _x0 then try procname(procname("left")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and lhs(_xin) = "eventfired" then if not type(rhs(_xin), 'list') then error "'eventfired' must be specified as a list" end if; if _nv = 0 then error "this solution has no events" end if; if _dtbl[4] <> 2 and _dtbl[4] <> 3 then error "'direction' must be set prior to calling/setting 'eventfired'" end if; _i := _dtbl[4]; _val := NULL; if not assigned(_EnvEventRetriggerWarned) then _EnvEventRetriggerWarned := false end if; for _k in rhs(_xin) do if type(_k, 'integer') then _src := _k elif type(_k, 'integer' = 'anything') and type(evalf(rhs(_k)), 'numeric') then _k := lhs(_k) = evalf[max(Digits, 18)](rhs(_k)); _src := lhs(_k) else error "'eventfired' entry is not valid: %1", _k end if; if _src < 1 or round(_dtbl[1][3][1][_nv+1, 1]) < _src then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _src := {seq(`if`(_dtbl[1][3][1][_j, 1]-_src = 0., _j, NULL), _j = 1 .. _nv)}; if nops(_src) <> 1 then error "'eventfired' can only be set/queried for root-finding events and time/interval events" end if; _src := _src[1]; if _dtbl[1][3][1][_src, 2] <> 0. and _dtbl[1][3][1][_src, 2]-2. <> 0. then error "'eventfired' can only be set/queried for root-finding events and time/interval events" elif irem(round(_dtbl[1][3][1][_src, 4]), 2) = 1 then if _EnvEventRetriggerWarned = false then WARNING(`'eventfired' has no effect on events that retrigger`) end if; _EnvEventRetriggerWarned := true end if; if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then _val := _val, undefined elif type(_dtbl[_i][3][4][_src, _i-1], 'undefined') or _i = 2 and _dtbl[2][3][1][_src, 8] < _dtbl[2][3][4][_src, 1] or _i = 3 and _dtbl[3][3][4][_src, 2] < _dtbl[3][3][1][_src, 8] then _val := _val, _dtbl[_i][3][1][_src, 8] else _val := _val, _dtbl[_i][3][4][_src, _i-1] end if; if type(_k, `=`) then if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then error "cannot set event code for a rate hysteresis event" end if; userinfo(3, {'events', 'eventreset'}, `manual set event code `, _src, ` to value `, rhs(_k)); _dtbl[_i][3][1][_src, 8] := rhs(_k); _dtbl[_i][3][4][_src, _i-1] := rhs(_k) end if end do; return [_val] elif type(_xin, `=`) and lhs(_xin) = "direction" then if not member(rhs(_xin), {-1, 1, ':-left', ':-right'}) then error "'direction' must be specified as either '1' or 'right' (positive) or '-1' or 'left' (negative)" end if; _src := `if`(_dtbl[4] = 2, -1, `if`(_dtbl[4] = 3, 1, undefined)); _i := `if`(member(rhs(_xin), {1, ':-right'}), 3, 2); _dtbl[4] := _i; _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if; return _src elif _xin = "eventcount" then if _dtbl[1][3][1] = 0 or _dtbl[4] <> 2 and _dtbl[4] <> 3 then return 0 else return round(_dtbl[_dtbl[4]][3][1][_nv+1, 12]) end if else return "procname" end if end if; if _xout = _x0 then return [_x0, seq(evalf(_dtbl[1][6][_vmap[_i]]), _i = 1 .. _n-_ne)] end if; _i := `if`(_x0 <= _xout, 3, 2); if _xin = "last" and 0 < _dtbl[_i][4][9] and _dtbl[_i][4][9] < 10 then _dat := eval(_dtbl[_i], 2); _j := _dat[4][20]; return [_dat[11][_j, 0], seq(_dat[11][_j, _vmap[_i]], _i = 1 .. _n-_ne-_nd), seq(_dat[8][1][_vmap[_i]], _i = _n-_ne-_nd+1 .. _n-_ne)] end if; if not type(_dtbl[_i], 'array') then _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if end if; if _xin <> "last" then if 0 < 0 then if `dsolve/numeric/checkglobals`(op(_dtbl[1][14]), _pars, _n, _y0) then `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars, _i) end if end if; if _dtbl[1][4][7] = 0 then error "parameters must be initialized before solution can be computed" end if end if; _dat := eval(_dtbl[_i], 2); _dtbl[4] := _i; try _src := `dsolve/numeric/SC/IVPrun`(_dat, _xout) catch: userinfo(2, `dsolve/debug`, print(`Exception in solnproc:`, [lastexception][2 .. -1])); error  end try; if _src = 0 and 10 < _dat[4][9] then _val := _dat[3][1][_nv+1, 8] else _val := _dat[11][_dat[4][20], 0] end if; if _src <> 0 or _dat[4][9] <= 0 then _dtbl[1][5][1] := _xout else _dtbl[1][5][1] := _val end if; if _i = 3 and _val < _xout then Rounding := -infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further right of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further right of %1, maxfun limit exceeded (see ?dsolve,maxfun for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further right of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further right of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif 10 < _dat[4][9] then if _dat[4][9]-10 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further right of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-10, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further right of %1", evalf[8](_val) end if elif _i = 2 and _xout < _val then Rounding := infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further left of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further left of %1, maxfun limit exceeded (see ?dsolve,maxfun for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further left of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further left of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif 10 < _dat[4][9] then if _dat[4][9]-10 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further left of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-10, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further left of %1", evalf[8](_val) end if end if; if _EnvInFsolve = true then _dig := _dat[4][26]; _dat[4][26] := _EnvDSNumericSaveDigits; _Env_dsolve_SC_native := true; if _dat[4][25] = 1 then _i := 1; _dat[4][25] := 2 else _i := _dat[4][25] end if; _val := `dsolve/numeric/SC/IVPval`(_dat, _xout, _src); _dat[4][25] := _i; _dat[4][26] := _dig; [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] else Digits := _dat[4][26]; _val := `dsolve/numeric/SC/IVPval`(eval(_dat, 2), _xout, _src); [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] end if end proc, (2) = Array(1..9, {(1) = 4366565378, (2) = 4366565474, (3) = 4366565570, (4) = 4366565666, (5) = 4366565762, (6) = 4366565858, (7) = 4366565954, (8) = 4366566050, (9) = 4366566146}), (3) = [eta, T(eta), diff(T(eta), eta), f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), g(eta), diff(g(eta), eta), diff(diff(g(eta), eta), eta)], (4) = []}); _solnproc := _dat[1]; _pars := map(rhs, _dat[4]); if not type(_xout, 'numeric') then if member(eta, ["start", 'start', "method", 'method', "left", 'left', "right", 'right', "leftdata", "rightdata", "enginedata", "eventstop", 'eventstop', "eventclear", 'eventclear', "eventstatus", 'eventstatus', "eventcount", 'eventcount', "laxtol", 'laxtol', "numfun", 'numfun', NULL]) then _res := _solnproc(convert(eta, 'string')); if 1 < nops([_res]) then return _res elif type(_res, 'array') then return eval(_res, 1) elif _res <> "procname" then return _res end if elif member(eta, ["last", 'last', "initial", 'initial', NULL]) then _res := _solnproc(convert(eta, 'string')); if type(_res, 'list') then return _res[6] else return NULL end if elif member(eta, ["parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(eta, 'string'); _res := _solnproc(_xout); if _xout = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] else return [_res[6], seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] end if elif type(_xout, `=`) and member(lhs(_xout), ["initial", 'initial', "parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(lhs(eta), 'string') = rhs(eta); if lhs(_xout) = "initial" then if type(rhs(_xout), 'list') then _res := _solnproc(_xout) else _res := _solnproc("initial" = ["single", 6, rhs(_xout)]) end if elif not type(rhs(_xout), 'list') then error "initial and/or parameter values must be specified in a list" elif lhs(_xout) = "initial_and_parameters" and nops(rhs(_xout)) = nops(_pars)+1 then _res := _solnproc(lhs(_xout) = ["single", 6, op(rhs(_xout))]) else _res := _solnproc(_xout) end if; if lhs(_xout) = "initial" then return _res[6] elif lhs(_xout) = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] else return [_res[6], seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] end if elif type(_xout, `=`) and member(lhs(_xout), ["eventdisable", 'eventdisable', "eventenable", 'eventenable', "eventfired", 'eventfired', "direction", 'direction', NULL]) then return _solnproc(convert(lhs(eta), 'string') = rhs(eta)) elif _xout = "solnprocedure" then return eval(_solnproc) elif _xout = "sysvars" then return _dat[3] end if; if procname <> unknown then return ('procname')(eta) else _ndsol := `tools/gensym`("`@@`(D,2)(f)"); eval(FromInert(_Inert_FUNCTION(_Inert_NAME("assign"), _Inert_EXPSEQ(ToInert(_ndsol), _Inert_VERBATIM(pointto(_dat[2][6])))))); return FromInert(_Inert_FUNCTION(ToInert(_ndsol), _Inert_EXPSEQ(ToInert(eta)))) end if end if; try _res := _solnproc(_xout); _res[6] catch: error  end try end proc, proc (eta) local _res, _dat, _solnproc, _xout, _ndsol, _pars, _i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; if 1 < nargs then error "invalid input: too many arguments" end if; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then _xout := evalf[_EnvDSNumericSaveDigits](eta) else _xout := evalf(eta) end if; _dat := Array(1..4, {(1) = proc (_xin) local _xout, _dtbl, _dat, _vmap, _x0, _y0, _val, _dig, _n, _ne, _nd, _nv, _pars, _ini, _par, _i, _j, _k, _src; option `Copyright (c) 2002 by Waterloo Maple Inc. All rights reserved.`; table( [( "complex" ) = false ] ) _xout := _xin; _pars := []; _dtbl := array( 1 .. 4, [( 1 ) = (array( 1 .. 20, [( 1 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 2 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 3 ) = ([0, 0, 0, Array(1..0, 1..2, {}, datatype = float[8], order = C_order)]), ( 5 ) = (Array(1..28, {(1) = .0, (2) = 0.10e-9, (3) = .0, (4) = 0.500001e-14, (5) = .0, (6) = 0.56668809672174786e-4, (7) = .0, (8) = 0.10e-9, (9) = .0, (10) = .0, (11) = .0, (12) = .0, (13) = 1.0, (14) = .0, (15) = .49999999999999, (16) = .0, (17) = 1.0, (18) = 1.0, (19) = .0, (20) = .0, (21) = 1.0, (22) = 1.0, (23) = .0, (24) = .0, (25) = 0.10e-14, (26) = .0, (27) = .0, (28) = .0}, datatype = float[8], order = C_order)), ( 4 ) = (Array(1..53, {(1) = 8, (2) = 8, (3) = 0, (4) = 0, (5) = 0, (6) = 0, (7) = 1, (8) = 0, (9) = 0, (10) = 0, (11) = 0, (12) = 0, (13) = 0, (14) = 0, (15) = 0, (16) = 0, (17) = 0, (18) = 1, (19) = 30000, (20) = 0, (21) = 0, (22) = 1, (23) = 4, (24) = 0, (25) = 1, (26) = 15, (27) = 1, (28) = 0, (29) = 1, (30) = 3, (31) = 3, (32) = 0, (33) = 1, (34) = 0, (35) = 0, (36) = 0, (37) = 0, (38) = 0, (39) = 0, (40) = 0, (41) = 0, (42) = 0, (43) = 1, (44) = 0, (45) = 0, (46) = 0, (47) = 0, (48) = 0, (49) = 0, (50) = 50, (51) = 1, (52) = 0, (53) = 0}, datatype = integer[4])), ( 7 ) = ([Array(1..4, 1..7, {(1, 1) = .0, (1, 2) = .203125, (1, 3) = .3046875, (1, 4) = .75, (1, 5) = .8125, (1, 6) = .40625, (1, 7) = .8125, (2, 1) = 0.6378173828125e-1, (2, 2) = .0, (2, 3) = .279296875, (2, 4) = .27237892150878906, (2, 5) = -0.9686851501464844e-1, (2, 6) = 0.1956939697265625e-1, (2, 7) = .5381584167480469, (3, 1) = 0.31890869140625e-1, (3, 2) = .0, (3, 3) = -.34375, (3, 4) = -.335235595703125, (3, 5) = .2296142578125, (3, 6) = .41748046875, (3, 7) = 11.480712890625, (4, 1) = 0.9710520505905151e-1, (4, 2) = .0, (4, 3) = .40350341796875, (4, 4) = 0.20297467708587646e-1, (4, 5) = -0.6054282188415527e-2, (4, 6) = -0.4770040512084961e-1, (4, 7) = .77858567237854}, datatype = float[8], order = C_order), Array(1..6, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = 1.0, (2, 1) = .25, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = 1.0, (3, 1) = .1875, (3, 2) = .5625, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = 2.0, (4, 1) = .23583984375, (4, 2) = -.87890625, (4, 3) = .890625, (4, 4) = .0, (4, 5) = .0, (4, 6) = .2681884765625, (5, 1) = .1272735595703125, (5, 2) = -.5009765625, (5, 3) = .44921875, (5, 4) = -0.128936767578125e-1, (5, 5) = .0, (5, 6) = 0.626220703125e-1, (6, 1) = -0.927734375e-1, (6, 2) = .626220703125, (6, 3) = -.4326171875, (6, 4) = .1418304443359375, (6, 5) = -0.861053466796875e-1, (6, 6) = .3131103515625}, datatype = float[8], order = C_order), Array(1..6, {(1) = .0, (2) = .386, (3) = .21, (4) = .63, (5) = 1.0, (6) = 1.0}, datatype = float[8], order = C_order), Array(1..6, {(1) = .25, (2) = -.1043, (3) = .1035, (4) = -0.362e-1, (5) = .0, (6) = .0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 1.544, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = .9466785280815533, (3, 2) = .25570116989825814, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = 3.3148251870684886, (4, 2) = 2.896124015972123, (4, 3) = .9986419139977808, (4, 4) = .0, (4, 5) = .0, (5, 1) = 1.2212245092262748, (5, 2) = 6.019134481287752, (5, 3) = 12.537083329320874, (5, 4) = -.687886036105895, (5, 5) = .0, (6, 1) = 1.2212245092262748, (6, 2) = 6.019134481287752, (6, 3) = 12.537083329320874, (6, 4) = -.687886036105895, (6, 5) = 1.0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = -5.6688, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = -2.4300933568337584, (3, 2) = -.20635991570891224, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = -.10735290581452621, (4, 2) = -9.594562251021896, (4, 3) = -20.470286148096154, (4, 4) = .0, (4, 5) = .0, (5, 1) = 7.496443313968615, (5, 2) = -10.246804314641219, (5, 3) = -33.99990352819906, (5, 4) = 11.708908932061595, (5, 5) = .0, (6, 1) = 8.083246795922411, (6, 2) = -7.981132988062785, (6, 3) = -31.52159432874373, (6, 4) = 16.319305431231363, (6, 5) = -6.0588182388340535}, datatype = float[8], order = C_order), Array(1..3, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 10.126235083446911, (2, 2) = -7.487995877607633, (2, 3) = -34.800918615557414, (2, 4) = -7.9927717075687275, (2, 5) = 1.0251377232956207, (3, 1) = -.6762803392806898, (3, 2) = 6.087714651678606, (3, 3) = 16.43084320892463, (3, 4) = 24.767225114183653, (3, 5) = -6.5943891257167815}, datatype = float[8], order = C_order)]), ( 6 ) = (Array(1..8, {(1) = .6800687881055208, (2) = -.11511620494228457, (3) = .0, (4) = .0, (5) = .37811799244920297, (6) = .0, (7) = 1.4117113181447527, (8) = .0}, datatype = float[8], order = C_order)), ( 10 ) = ([proc (N, X, Y, YP) option `[Y[1] = T(eta), Y[2] = diff(T(eta),eta), Y[3] = f(eta), Y[4] = diff(f(eta),eta), Y[5] = diff(diff(f(eta),eta),eta), Y[6] = g(eta), Y[7] = diff(g(eta),eta), Y[8] = diff(diff(g(eta),eta),eta)]`; YP[2] := (-.5000000000*Y[2]*Y[3]-3.081102216*(.1*Y[1]+1)^2*Y[2]^2)/(.8804858221+1.027034072*(.1*Y[1]+1)^3); YP[5] := -0.22360732220118799324e-1*Y[5]*Y[3]+0.13416439332071279594e-1*Y[8]*Y[6]; YP[8] := -0.45558086560364464692e-1*Y[8]*Y[3]+0.45558086560364464692e-1*Y[5]*Y[6]; YP[1] := Y[2]; YP[3] := Y[4]; YP[4] := Y[5]; YP[6] := Y[7]; YP[7] := Y[8]; 0 end proc, -1, 0, 0, 0, 0, 0, 0]), ( 11 ) = (Array(1..6, 0..8, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (1, 7) = .0, (1, 8) = .0, (2, 0) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (2, 7) = .0, (2, 8) = .0, (3, 0) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (3, 7) = .0, (3, 8) = .0, (4, 0) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (4, 7) = .0, (4, 8) = .0, (5, 0) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (5, 7) = .0, (5, 8) = .0, (6, 0) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (6, 7) = .0, (6, 8) = .0}, datatype = float[8], order = C_order)), ( 8 ) = ([Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = -.11511620494228457, (2) = -0.21848192814805673e-1, (3) = .0, (4) = .37811799244920297, (5) = .0, (6) = 1.4117113181447527, (7) = .0, (8) = .0}, datatype = float[8], order = C_order)]), ( 9 ) = ([Array(1..8, {(1) = 0.1e-1, (2) = 0.1e-1, (3) = 0.1e-1, (4) = 0.1e-1, (5) = 0.1e-1, (6) = 0.1e-1, (7) = 0.1e-1, (8) = 0.1e-1}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, 1..8, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (1, 7) = .0, (1, 8) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (2, 7) = .0, (2, 8) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (3, 7) = .0, (3, 8) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (4, 7) = .0, (4, 8) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (5, 7) = .0, (5, 8) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (6, 7) = .0, (6, 8) = .0, (7, 1) = .0, (7, 2) = .0, (7, 3) = .0, (7, 4) = .0, (7, 5) = .0, (7, 6) = .0, (7, 7) = .0, (7, 8) = .0, (8, 1) = .0, (8, 2) = .0, (8, 3) = .0, (8, 4) = .0, (8, 5) = .0, (8, 6) = .0, (8, 7) = .0, (8, 8) = .0}, datatype = float[8], order = C_order), Array(1..8, 1..8, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (1, 7) = .0, (1, 8) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (2, 7) = .0, (2, 8) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (3, 7) = .0, (3, 8) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (4, 7) = .0, (4, 8) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (5, 7) = .0, (5, 8) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (6, 7) = .0, (6, 8) = .0, (7, 1) = .0, (7, 2) = .0, (7, 3) = .0, (7, 4) = .0, (7, 5) = .0, (7, 6) = .0, (7, 7) = .0, (7, 8) = .0, (8, 1) = .0, (8, 2) = .0, (8, 3) = .0, (8, 4) = .0, (8, 5) = .0, (8, 6) = .0, (8, 7) = .0, (8, 8) = .0}, datatype = float[8], order = C_order), Array(1..8, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (7, 1) = .0, (7, 2) = .0, (7, 3) = .0, (7, 4) = .0, (7, 5) = .0, (7, 6) = .0, (8, 1) = .0, (8, 2) = .0, (8, 3) = .0, (8, 4) = .0, (8, 5) = .0, (8, 6) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = 0, (2) = 0, (3) = 0, (4) = 0, (5) = 0, (6) = 0, (7) = 0, (8) = 0}, datatype = integer[4]), Array(1..8, {(1) = .6800687881055208, (2) = -.11511620494228457, (3) = .0, (4) = .0, (5) = .37811799244920297, (6) = .0, (7) = 1.4117113181447527, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order)]), ( 15 ) = ("rkf45"), ( 14 ) = ([0, 0]), ( 13 ) = (), ( 12 ) = (), ( 20 ) = ([]), ( 16 ) = ([0, 0, 0, []]), ( 17 ) = ([proc (N, X, Y, YP) option `[Y[1] = T(eta), Y[2] = diff(T(eta),eta), Y[3] = f(eta), Y[4] = diff(f(eta),eta), Y[5] = diff(diff(f(eta),eta),eta), Y[6] = g(eta), Y[7] = diff(g(eta),eta), Y[8] = diff(diff(g(eta),eta),eta)]`; YP[2] := (-.5000000000*Y[2]*Y[3]-3.081102216*(.1*Y[1]+1)^2*Y[2]^2)/(.8804858221+1.027034072*(.1*Y[1]+1)^3); YP[5] := -0.22360732220118799324e-1*Y[5]*Y[3]+0.13416439332071279594e-1*Y[8]*Y[6]; YP[8] := -0.45558086560364464692e-1*Y[8]*Y[3]+0.45558086560364464692e-1*Y[5]*Y[6]; YP[1] := Y[2]; YP[3] := Y[4]; YP[4] := Y[5]; YP[6] := Y[7]; YP[7] := Y[8]; 0 end proc, -1, 0, 0, 0, 0, 0, 0]), ( 18 ) = ([]), ( 19 ) = (0)  ] ))  ] ); _y0 := Array(0..8, {(1) = 0., (2) = HFloat(0.6800687881055208), (3) = HFloat(-0.11511620494228457), (4) = HFloat(0.0), (5) = HFloat(0.0), (6) = HFloat(0.37811799244920297), (7) = HFloat(0.0), (8) = HFloat(1.4117113181447527)}); _vmap := array( 1 .. 8, [( 1 ) = (1), ( 2 ) = (2), ( 3 ) = (3), ( 5 ) = (5), ( 4 ) = (4), ( 7 ) = (7), ( 6 ) = (6), ( 8 ) = (8)  ] ); _x0 := _dtbl[1][5][5]; _n := _dtbl[1][4][1]; _ne := _dtbl[1][4][3]; _nd := _dtbl[1][4][4]; _nv := _dtbl[1][4][16]; if not type(_xout, 'numeric') then if member(_xout, ["start", "left", "right"]) then if _Env_smart_dsolve_numeric = true or _dtbl[1][4][10] = 1 then if _xout = "left" then if type(_dtbl[2], 'table') then return _dtbl[2][5][1] end if elif _xout = "right" then if type(_dtbl[3], 'table') then return _dtbl[3][5][1] end if end if end if; return _dtbl[1][5][5] elif _xout = "method" then return _dtbl[1][15] elif _xout = "storage" then return evalb(_dtbl[1][4][10] = 1) elif _xout = "leftdata" then if not type(_dtbl[2], 'array') then return NULL else return eval(_dtbl[2]) end if elif _xout = "rightdata" then if not type(_dtbl[3], 'array') then return NULL else return eval(_dtbl[3]) end if elif _xout = "enginedata" then return eval(_dtbl[1]) elif _xout = "enginereset" then _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); return NULL elif _xout = "initial" then return procname(_y0[0]) elif _xout = "laxtol" then return _dtbl[`if`(member(_dtbl[4], {2, 3}), _dtbl[4], 1)][5][18] elif _xout = "numfun" then return `if`(member(_dtbl[4], {2, 3}), _dtbl[_dtbl[4]][4][18], 0) elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "initial_and_parameters" then return procname(_y0[0]), [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "last" then if _dtbl[4] <> 2 and _dtbl[4] <> 3 or _x0-_dtbl[_dtbl[4]][5][1] = 0. then error "no information is available on last computed point" else _xout := _dtbl[_dtbl[4]][5][1] end if elif _xout = "function" then if _dtbl[1][4][33]-2. = 0 then return eval(_dtbl[1][10], 1) else return eval(_dtbl[1][10][1], 1) end if elif _xout = "map" then return copy(_vmap) elif type(_xin, `=`) and type(rhs(_xin), 'list') and member(lhs(_xin), {"initial", "parameters", "initial_and_parameters"}) then _ini, _par := [], []; if lhs(_xin) = "initial" then _ini := rhs(_xin) elif lhs(_xin) = "parameters" then _par := rhs(_xin) elif select(type, rhs(_xin), `=`) <> [] then _par, _ini := selectremove(type, rhs(_xin), `=`) elif nops(rhs(_xin)) < nops(_pars)+1 then error "insufficient data for specification of initial and parameters" else _par := rhs(_xin)[-nops(_pars) .. -1]; _ini := rhs(_xin)[1 .. -nops(_pars)-1] end if; _xout := lhs(_xout); if _par <> [] then `dsolve/numeric/process_parameters`(_n, _pars, _par, _y0) end if; if _ini <> [] then `dsolve/numeric/process_initial`(_n-_ne, _ini, _y0, _pars, _vmap) end if; `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars); if _Env_smart_dsolve_numeric = true and type(_y0[0], 'numeric') and _dtbl[1][4][10] <> 1 then procname("right") := _y0[0]; procname("left") := _y0[0] end if; if _xout = "initial" then return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)] elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] else return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)], [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] end if elif _xin = "eventstop" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then return 0 end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 10 and 10 <= _dtbl[5-_i][4][9] then _i := 5-_i; _dtbl[4] := _i; _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) elif 10 <= _dtbl[_i][4][9] then _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) else return 0 end if elif _xin = "eventstatus" then if _nv = 0 then error "this solution has no events" end if; _i := [selectremove(proc (a) options operator, arrow; _dtbl[1][3][1][a, 7] = 1 end proc, {seq(_j, _j = 1 .. round(_dtbl[1][3][1][_nv+1, 1]))})]; return ':-enabled' = _i[1], ':-disabled' = _i[2] elif _xin = "eventclear" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then error "no events to clear" end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 10 and 10 < _dtbl[5-_i][4][9] then _dtbl[4] := 5-_i; _i := 5-_i end if; if _dtbl[_i][4][9] < 10 then error "no events to clear" elif _nv < _dtbl[_i][4][9]-10 then error "event error condition cannot be cleared" else _j := _dtbl[_i][4][9]-10; if irem(round(_dtbl[_i][3][1][_j, 4]), 2) = 1 then error "retriggerable events cannot be cleared" end if; _j := round(_dtbl[_i][3][1][_j, 1]); for _k to _nv do if _dtbl[_i][3][1][_k, 1] = _j then if _dtbl[_i][3][1][_k, 2] = 3 then error "range events cannot be cleared" end if; _dtbl[_i][3][1][_k, 8] := _dtbl[_i][3][1][_nv+1, 8] end if end do; _dtbl[_i][4][17] := 0; _dtbl[_i][4][9] := 0; if _dtbl[1][4][10] = 1 then if _i = 2 then try procname(procname("left")) catch:  end try else try procname(procname("right")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and member(lhs(_xin), {"eventdisable", "eventenable"}) then if _nv = 0 then error "this solution has no events" end if; if type(rhs(_xin), {('list')('posint'), ('set')('posint')}) then _i := {op(rhs(_xin))} elif type(rhs(_xin), 'posint') then _i := {rhs(_xin)} else error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; if select(proc (a) options operator, arrow; _nv < a end proc, _i) <> {} then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _k := {}; for _j to _nv do if member(round(_dtbl[1][3][1][_j, 1]), _i) then _k := `union`(_k, {_j}) end if end do; _i := _k; if lhs(_xin) = "eventdisable" then _dtbl[4] := 0; _j := [evalb(assigned(_dtbl[2]) and member(_dtbl[2][4][17], _i)), evalb(assigned(_dtbl[3]) and member(_dtbl[3][4][17], _i))]; for _k in _i do _dtbl[1][3][1][_k, 7] := 0; if assigned(_dtbl[2]) then _dtbl[2][3][1][_k, 7] := 0 end if; if assigned(_dtbl[3]) then _dtbl[3][3][1][_k, 7] := 0 end if end do; if _j[1] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[2][3][4][_k, 1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to defined init `, _dtbl[2][3][4][_k, 1]); _dtbl[2][3][1][_k, 8] := _dtbl[2][3][4][_k, 1] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to rate hysteresis init `, _dtbl[2][5][24]); _dtbl[2][3][1][_k, 8] := _dtbl[2][5][24] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to initial init `, _x0); _dtbl[2][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to fireinitial init `, _x0-1); _dtbl[2][3][1][_k, 8] := _x0-1 end if end do; _dtbl[2][4][17] := 0; _dtbl[2][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("left")) end if end if; if _j[2] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[3][3][4][_k, 2], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to defined init `, _dtbl[3][3][4][_k, 2]); _dtbl[3][3][1][_k, 8] := _dtbl[3][3][4][_k, 2] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to rate hysteresis init `, _dtbl[3][5][24]); _dtbl[3][3][1][_k, 8] := _dtbl[3][5][24] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to initial init `, _x0); _dtbl[3][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to fireinitial init `, _x0+1); _dtbl[3][3][1][_k, 8] := _x0+1 end if end do; _dtbl[3][4][17] := 0; _dtbl[3][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("right")) end if end if else for _k in _i do _dtbl[1][3][1][_k, 7] := 1 end do; _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); _dtbl[4] := 0; if _dtbl[1][4][10] = 1 then if _x0 <= procname("right") then try procname(procname("right")) catch:  end try end if; if procname("left") <= _x0 then try procname(procname("left")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and lhs(_xin) = "eventfired" then if not type(rhs(_xin), 'list') then error "'eventfired' must be specified as a list" end if; if _nv = 0 then error "this solution has no events" end if; if _dtbl[4] <> 2 and _dtbl[4] <> 3 then error "'direction' must be set prior to calling/setting 'eventfired'" end if; _i := _dtbl[4]; _val := NULL; if not assigned(_EnvEventRetriggerWarned) then _EnvEventRetriggerWarned := false end if; for _k in rhs(_xin) do if type(_k, 'integer') then _src := _k elif type(_k, 'integer' = 'anything') and type(evalf(rhs(_k)), 'numeric') then _k := lhs(_k) = evalf[max(Digits, 18)](rhs(_k)); _src := lhs(_k) else error "'eventfired' entry is not valid: %1", _k end if; if _src < 1 or round(_dtbl[1][3][1][_nv+1, 1]) < _src then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _src := {seq(`if`(_dtbl[1][3][1][_j, 1]-_src = 0., _j, NULL), _j = 1 .. _nv)}; if nops(_src) <> 1 then error "'eventfired' can only be set/queried for root-finding events and time/interval events" end if; _src := _src[1]; if _dtbl[1][3][1][_src, 2] <> 0. and _dtbl[1][3][1][_src, 2]-2. <> 0. then error "'eventfired' can only be set/queried for root-finding events and time/interval events" elif irem(round(_dtbl[1][3][1][_src, 4]), 2) = 1 then if _EnvEventRetriggerWarned = false then WARNING(`'eventfired' has no effect on events that retrigger`) end if; _EnvEventRetriggerWarned := true end if; if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then _val := _val, undefined elif type(_dtbl[_i][3][4][_src, _i-1], 'undefined') or _i = 2 and _dtbl[2][3][1][_src, 8] < _dtbl[2][3][4][_src, 1] or _i = 3 and _dtbl[3][3][4][_src, 2] < _dtbl[3][3][1][_src, 8] then _val := _val, _dtbl[_i][3][1][_src, 8] else _val := _val, _dtbl[_i][3][4][_src, _i-1] end if; if type(_k, `=`) then if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then error "cannot set event code for a rate hysteresis event" end if; userinfo(3, {'events', 'eventreset'}, `manual set event code `, _src, ` to value `, rhs(_k)); _dtbl[_i][3][1][_src, 8] := rhs(_k); _dtbl[_i][3][4][_src, _i-1] := rhs(_k) end if end do; return [_val] elif type(_xin, `=`) and lhs(_xin) = "direction" then if not member(rhs(_xin), {-1, 1, ':-left', ':-right'}) then error "'direction' must be specified as either '1' or 'right' (positive) or '-1' or 'left' (negative)" end if; _src := `if`(_dtbl[4] = 2, -1, `if`(_dtbl[4] = 3, 1, undefined)); _i := `if`(member(rhs(_xin), {1, ':-right'}), 3, 2); _dtbl[4] := _i; _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if; return _src elif _xin = "eventcount" then if _dtbl[1][3][1] = 0 or _dtbl[4] <> 2 and _dtbl[4] <> 3 then return 0 else return round(_dtbl[_dtbl[4]][3][1][_nv+1, 12]) end if else return "procname" end if end if; if _xout = _x0 then return [_x0, seq(evalf(_dtbl[1][6][_vmap[_i]]), _i = 1 .. _n-_ne)] end if; _i := `if`(_x0 <= _xout, 3, 2); if _xin = "last" and 0 < _dtbl[_i][4][9] and _dtbl[_i][4][9] < 10 then _dat := eval(_dtbl[_i], 2); _j := _dat[4][20]; return [_dat[11][_j, 0], seq(_dat[11][_j, _vmap[_i]], _i = 1 .. _n-_ne-_nd), seq(_dat[8][1][_vmap[_i]], _i = _n-_ne-_nd+1 .. _n-_ne)] end if; if not type(_dtbl[_i], 'array') then _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if end if; if _xin <> "last" then if 0 < 0 then if `dsolve/numeric/checkglobals`(op(_dtbl[1][14]), _pars, _n, _y0) then `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars, _i) end if end if; if _dtbl[1][4][7] = 0 then error "parameters must be initialized before solution can be computed" end if end if; _dat := eval(_dtbl[_i], 2); _dtbl[4] := _i; try _src := `dsolve/numeric/SC/IVPrun`(_dat, _xout) catch: userinfo(2, `dsolve/debug`, print(`Exception in solnproc:`, [lastexception][2 .. -1])); error  end try; if _src = 0 and 10 < _dat[4][9] then _val := _dat[3][1][_nv+1, 8] else _val := _dat[11][_dat[4][20], 0] end if; if _src <> 0 or _dat[4][9] <= 0 then _dtbl[1][5][1] := _xout else _dtbl[1][5][1] := _val end if; if _i = 3 and _val < _xout then Rounding := -infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further right of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further right of %1, maxfun limit exceeded (see ?dsolve,maxfun for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further right of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further right of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif 10 < _dat[4][9] then if _dat[4][9]-10 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further right of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-10, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further right of %1", evalf[8](_val) end if elif _i = 2 and _xout < _val then Rounding := infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further left of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further left of %1, maxfun limit exceeded (see ?dsolve,maxfun for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further left of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further left of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif 10 < _dat[4][9] then if _dat[4][9]-10 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further left of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-10, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further left of %1", evalf[8](_val) end if end if; if _EnvInFsolve = true then _dig := _dat[4][26]; _dat[4][26] := _EnvDSNumericSaveDigits; _Env_dsolve_SC_native := true; if _dat[4][25] = 1 then _i := 1; _dat[4][25] := 2 else _i := _dat[4][25] end if; _val := `dsolve/numeric/SC/IVPval`(_dat, _xout, _src); _dat[4][25] := _i; _dat[4][26] := _dig; [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] else Digits := _dat[4][26]; _val := `dsolve/numeric/SC/IVPval`(eval(_dat, 2), _xout, _src); [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] end if end proc, (2) = Array(1..9, {(1) = 4366565378, (2) = 4366565474, (3) = 4366565570, (4) = 4366565666, (5) = 4366565762, (6) = 4366565858, (7) = 4366565954, (8) = 4366566050, (9) = 4366566146}), (3) = [eta, T(eta), diff(T(eta), eta), f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), g(eta), diff(g(eta), eta), diff(diff(g(eta), eta), eta)], (4) = []}); _solnproc := _dat[1]; _pars := map(rhs, _dat[4]); if not type(_xout, 'numeric') then if member(eta, ["start", 'start', "method", 'method', "left", 'left', "right", 'right', "leftdata", "rightdata", "enginedata", "eventstop", 'eventstop', "eventclear", 'eventclear', "eventstatus", 'eventstatus', "eventcount", 'eventcount', "laxtol", 'laxtol', "numfun", 'numfun', NULL]) then _res := _solnproc(convert(eta, 'string')); if 1 < nops([_res]) then return _res elif type(_res, 'array') then return eval(_res, 1) elif _res <> "procname" then return _res end if elif member(eta, ["last", 'last', "initial", 'initial', NULL]) then _res := _solnproc(convert(eta, 'string')); if type(_res, 'list') then return _res[7] else return NULL end if elif member(eta, ["parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(eta, 'string'); _res := _solnproc(_xout); if _xout = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] else return [_res[7], seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] end if elif type(_xout, `=`) and member(lhs(_xout), ["initial", 'initial', "parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(lhs(eta), 'string') = rhs(eta); if lhs(_xout) = "initial" then if type(rhs(_xout), 'list') then _res := _solnproc(_xout) else _res := _solnproc("initial" = ["single", 7, rhs(_xout)]) end if elif not type(rhs(_xout), 'list') then error "initial and/or parameter values must be specified in a list" elif lhs(_xout) = "initial_and_parameters" and nops(rhs(_xout)) = nops(_pars)+1 then _res := _solnproc(lhs(_xout) = ["single", 7, op(rhs(_xout))]) else _res := _solnproc(_xout) end if; if lhs(_xout) = "initial" then return _res[7] elif lhs(_xout) = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] else return [_res[7], seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] end if elif type(_xout, `=`) and member(lhs(_xout), ["eventdisable", 'eventdisable', "eventenable", 'eventenable', "eventfired", 'eventfired', "direction", 'direction', NULL]) then return _solnproc(convert(lhs(eta), 'string') = rhs(eta)) elif _xout = "solnprocedure" then return eval(_solnproc) elif _xout = "sysvars" then return _dat[3] end if; if procname <> unknown then return ('procname')(eta) else _ndsol := `tools/gensym`("g"); eval(FromInert(_Inert_FUNCTION(_Inert_NAME("assign"), _Inert_EXPSEQ(ToInert(_ndsol), _Inert_VERBATIM(pointto(_dat[2][7])))))); return FromInert(_Inert_FUNCTION(ToInert(_ndsol), _Inert_EXPSEQ(ToInert(eta)))) end if end if; try _res := _solnproc(_xout); _res[7] catch: error  end try end proc, proc (eta) local _res, _dat, _solnproc, _xout, _ndsol, _pars, _i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; if 1 < nargs then error "invalid input: too many arguments" end if; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then _xout := evalf[_EnvDSNumericSaveDigits](eta) else _xout := evalf(eta) end if; _dat := Array(1..4, {(1) = proc (_xin) local _xout, _dtbl, _dat, _vmap, _x0, _y0, _val, _dig, _n, _ne, _nd, _nv, _pars, _ini, _par, _i, _j, _k, _src; option `Copyright (c) 2002 by Waterloo Maple Inc. All rights reserved.`; table( [( "complex" ) = false ] ) _xout := _xin; _pars := []; _dtbl := array( 1 .. 4, [( 1 ) = (array( 1 .. 20, [( 1 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 2 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 3 ) = ([0, 0, 0, Array(1..0, 1..2, {}, datatype = float[8], order = C_order)]), ( 5 ) = (Array(1..28, {(1) = .0, (2) = 0.10e-9, (3) = .0, (4) = 0.500001e-14, (5) = .0, (6) = 0.56668809672174786e-4, (7) = .0, (8) = 0.10e-9, (9) = .0, (10) = .0, (11) = .0, (12) = .0, (13) = 1.0, (14) = .0, (15) = .49999999999999, (16) = .0, (17) = 1.0, (18) = 1.0, (19) = .0, (20) = .0, (21) = 1.0, (22) = 1.0, (23) = .0, (24) = .0, (25) = 0.10e-14, (26) = .0, (27) = .0, (28) = .0}, datatype = float[8], order = C_order)), ( 4 ) = (Array(1..53, {(1) = 8, (2) = 8, (3) = 0, (4) = 0, (5) = 0, (6) = 0, (7) = 1, (8) = 0, (9) = 0, (10) = 0, (11) = 0, (12) = 0, (13) = 0, (14) = 0, (15) = 0, (16) = 0, (17) = 0, (18) = 1, (19) = 30000, (20) = 0, (21) = 0, (22) = 1, (23) = 4, (24) = 0, (25) = 1, (26) = 15, (27) = 1, (28) = 0, (29) = 1, (30) = 3, (31) = 3, (32) = 0, (33) = 1, (34) = 0, (35) = 0, (36) = 0, (37) = 0, (38) = 0, (39) = 0, (40) = 0, (41) = 0, (42) = 0, (43) = 1, (44) = 0, (45) = 0, (46) = 0, (47) = 0, (48) = 0, (49) = 0, (50) = 50, (51) = 1, (52) = 0, (53) = 0}, datatype = integer[4])), ( 7 ) = ([Array(1..4, 1..7, {(1, 1) = .0, (1, 2) = .203125, (1, 3) = .3046875, (1, 4) = .75, (1, 5) = .8125, (1, 6) = .40625, (1, 7) = .8125, (2, 1) = 0.6378173828125e-1, (2, 2) = .0, (2, 3) = .279296875, (2, 4) = .27237892150878906, (2, 5) = -0.9686851501464844e-1, (2, 6) = 0.1956939697265625e-1, (2, 7) = .5381584167480469, (3, 1) = 0.31890869140625e-1, (3, 2) = .0, (3, 3) = -.34375, (3, 4) = -.335235595703125, (3, 5) = .2296142578125, (3, 6) = .41748046875, (3, 7) = 11.480712890625, (4, 1) = 0.9710520505905151e-1, (4, 2) = .0, (4, 3) = .40350341796875, (4, 4) = 0.20297467708587646e-1, (4, 5) = -0.6054282188415527e-2, (4, 6) = -0.4770040512084961e-1, (4, 7) = .77858567237854}, datatype = float[8], order = C_order), Array(1..6, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = 1.0, (2, 1) = .25, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = 1.0, (3, 1) = .1875, (3, 2) = .5625, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = 2.0, (4, 1) = .23583984375, (4, 2) = -.87890625, (4, 3) = .890625, (4, 4) = .0, (4, 5) = .0, (4, 6) = .2681884765625, (5, 1) = .1272735595703125, (5, 2) = -.5009765625, (5, 3) = .44921875, (5, 4) = -0.128936767578125e-1, (5, 5) = .0, (5, 6) = 0.626220703125e-1, (6, 1) = -0.927734375e-1, (6, 2) = .626220703125, (6, 3) = -.4326171875, (6, 4) = .1418304443359375, (6, 5) = -0.861053466796875e-1, (6, 6) = .3131103515625}, datatype = float[8], order = C_order), Array(1..6, {(1) = .0, (2) = .386, (3) = .21, (4) = .63, (5) = 1.0, (6) = 1.0}, datatype = float[8], order = C_order), Array(1..6, {(1) = .25, (2) = -.1043, (3) = .1035, (4) = -0.362e-1, (5) = .0, (6) = .0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 1.544, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = .9466785280815533, (3, 2) = .25570116989825814, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = 3.3148251870684886, (4, 2) = 2.896124015972123, (4, 3) = .9986419139977808, (4, 4) = .0, (4, 5) = .0, (5, 1) = 1.2212245092262748, (5, 2) = 6.019134481287752, (5, 3) = 12.537083329320874, (5, 4) = -.687886036105895, (5, 5) = .0, (6, 1) = 1.2212245092262748, (6, 2) = 6.019134481287752, (6, 3) = 12.537083329320874, (6, 4) = -.687886036105895, (6, 5) = 1.0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = -5.6688, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = -2.4300933568337584, (3, 2) = -.20635991570891224, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = -.10735290581452621, (4, 2) = -9.594562251021896, (4, 3) = -20.470286148096154, (4, 4) = .0, (4, 5) = .0, (5, 1) = 7.496443313968615, (5, 2) = -10.246804314641219, (5, 3) = -33.99990352819906, (5, 4) = 11.708908932061595, (5, 5) = .0, (6, 1) = 8.083246795922411, (6, 2) = -7.981132988062785, (6, 3) = -31.52159432874373, (6, 4) = 16.319305431231363, (6, 5) = -6.0588182388340535}, datatype = float[8], order = C_order), Array(1..3, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 10.126235083446911, (2, 2) = -7.487995877607633, (2, 3) = -34.800918615557414, (2, 4) = -7.9927717075687275, (2, 5) = 1.0251377232956207, (3, 1) = -.6762803392806898, (3, 2) = 6.087714651678606, (3, 3) = 16.43084320892463, (3, 4) = 24.767225114183653, (3, 5) = -6.5943891257167815}, datatype = float[8], order = C_order)]), ( 6 ) = (Array(1..8, {(1) = .6800687881055208, (2) = -.11511620494228457, (3) = .0, (4) = .0, (5) = .37811799244920297, (6) = .0, (7) = 1.4117113181447527, (8) = .0}, datatype = float[8], order = C_order)), ( 10 ) = ([proc (N, X, Y, YP) option `[Y[1] = T(eta), Y[2] = diff(T(eta),eta), Y[3] = f(eta), Y[4] = diff(f(eta),eta), Y[5] = diff(diff(f(eta),eta),eta), Y[6] = g(eta), Y[7] = diff(g(eta),eta), Y[8] = diff(diff(g(eta),eta),eta)]`; YP[2] := (-.5000000000*Y[2]*Y[3]-3.081102216*(.1*Y[1]+1)^2*Y[2]^2)/(.8804858221+1.027034072*(.1*Y[1]+1)^3); YP[5] := -0.22360732220118799324e-1*Y[5]*Y[3]+0.13416439332071279594e-1*Y[8]*Y[6]; YP[8] := -0.45558086560364464692e-1*Y[8]*Y[3]+0.45558086560364464692e-1*Y[5]*Y[6]; YP[1] := Y[2]; YP[3] := Y[4]; YP[4] := Y[5]; YP[6] := Y[7]; YP[7] := Y[8]; 0 end proc, -1, 0, 0, 0, 0, 0, 0]), ( 11 ) = (Array(1..6, 0..8, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (1, 7) = .0, (1, 8) = .0, (2, 0) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (2, 7) = .0, (2, 8) = .0, (3, 0) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (3, 7) = .0, (3, 8) = .0, (4, 0) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (4, 7) = .0, (4, 8) = .0, (5, 0) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (5, 7) = .0, (5, 8) = .0, (6, 0) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (6, 7) = .0, (6, 8) = .0}, datatype = float[8], order = C_order)), ( 8 ) = ([Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = -.11511620494228457, (2) = -0.21848192814805673e-1, (3) = .0, (4) = .37811799244920297, (5) = .0, (6) = 1.4117113181447527, (7) = .0, (8) = .0}, datatype = float[8], order = C_order)]), ( 9 ) = ([Array(1..8, {(1) = 0.1e-1, (2) = 0.1e-1, (3) = 0.1e-1, (4) = 0.1e-1, (5) = 0.1e-1, (6) = 0.1e-1, (7) = 0.1e-1, (8) = 0.1e-1}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, 1..8, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (1, 7) = .0, (1, 8) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (2, 7) = .0, (2, 8) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (3, 7) = .0, (3, 8) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (4, 7) = .0, (4, 8) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (5, 7) = .0, (5, 8) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (6, 7) = .0, (6, 8) = .0, (7, 1) = .0, (7, 2) = .0, (7, 3) = .0, (7, 4) = .0, (7, 5) = .0, (7, 6) = .0, (7, 7) = .0, (7, 8) = .0, (8, 1) = .0, (8, 2) = .0, (8, 3) = .0, (8, 4) = .0, (8, 5) = .0, (8, 6) = .0, (8, 7) = .0, (8, 8) = .0}, datatype = float[8], order = C_order), Array(1..8, 1..8, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (1, 7) = .0, (1, 8) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (2, 7) = .0, (2, 8) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (3, 7) = .0, (3, 8) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (4, 7) = .0, (4, 8) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (5, 7) = .0, (5, 8) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (6, 7) = .0, (6, 8) = .0, (7, 1) = .0, (7, 2) = .0, (7, 3) = .0, (7, 4) = .0, (7, 5) = .0, (7, 6) = .0, (7, 7) = .0, (7, 8) = .0, (8, 1) = .0, (8, 2) = .0, (8, 3) = .0, (8, 4) = .0, (8, 5) = .0, (8, 6) = .0, (8, 7) = .0, (8, 8) = .0}, datatype = float[8], order = C_order), Array(1..8, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (7, 1) = .0, (7, 2) = .0, (7, 3) = .0, (7, 4) = .0, (7, 5) = .0, (7, 6) = .0, (8, 1) = .0, (8, 2) = .0, (8, 3) = .0, (8, 4) = .0, (8, 5) = .0, (8, 6) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = 0, (2) = 0, (3) = 0, (4) = 0, (5) = 0, (6) = 0, (7) = 0, (8) = 0}, datatype = integer[4]), Array(1..8, {(1) = .6800687881055208, (2) = -.11511620494228457, (3) = .0, (4) = .0, (5) = .37811799244920297, (6) = .0, (7) = 1.4117113181447527, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order)]), ( 15 ) = ("rkf45"), ( 14 ) = ([0, 0]), ( 13 ) = (), ( 12 ) = (), ( 20 ) = ([]), ( 16 ) = ([0, 0, 0, []]), ( 17 ) = ([proc (N, X, Y, YP) option `[Y[1] = T(eta), Y[2] = diff(T(eta),eta), Y[3] = f(eta), Y[4] = diff(f(eta),eta), Y[5] = diff(diff(f(eta),eta),eta), Y[6] = g(eta), Y[7] = diff(g(eta),eta), Y[8] = diff(diff(g(eta),eta),eta)]`; YP[2] := (-.5000000000*Y[2]*Y[3]-3.081102216*(.1*Y[1]+1)^2*Y[2]^2)/(.8804858221+1.027034072*(.1*Y[1]+1)^3); YP[5] := -0.22360732220118799324e-1*Y[5]*Y[3]+0.13416439332071279594e-1*Y[8]*Y[6]; YP[8] := -0.45558086560364464692e-1*Y[8]*Y[3]+0.45558086560364464692e-1*Y[5]*Y[6]; YP[1] := Y[2]; YP[3] := Y[4]; YP[4] := Y[5]; YP[6] := Y[7]; YP[7] := Y[8]; 0 end proc, -1, 0, 0, 0, 0, 0, 0]), ( 18 ) = ([]), ( 19 ) = (0)  ] ))  ] ); _y0 := Array(0..8, {(1) = 0., (2) = HFloat(0.6800687881055208), (3) = HFloat(-0.11511620494228457), (4) = HFloat(0.0), (5) = HFloat(0.0), (6) = HFloat(0.37811799244920297), (7) = HFloat(0.0), (8) = HFloat(1.4117113181447527)}); _vmap := array( 1 .. 8, [( 1 ) = (1), ( 2 ) = (2), ( 3 ) = (3), ( 5 ) = (5), ( 4 ) = (4), ( 7 ) = (7), ( 6 ) = (6), ( 8 ) = (8)  ] ); _x0 := _dtbl[1][5][5]; _n := _dtbl[1][4][1]; _ne := _dtbl[1][4][3]; _nd := _dtbl[1][4][4]; _nv := _dtbl[1][4][16]; if not type(_xout, 'numeric') then if member(_xout, ["start", "left", "right"]) then if _Env_smart_dsolve_numeric = true or _dtbl[1][4][10] = 1 then if _xout = "left" then if type(_dtbl[2], 'table') then return _dtbl[2][5][1] end if elif _xout = "right" then if type(_dtbl[3], 'table') then return _dtbl[3][5][1] end if end if end if; return _dtbl[1][5][5] elif _xout = "method" then return _dtbl[1][15] elif _xout = "storage" then return evalb(_dtbl[1][4][10] = 1) elif _xout = "leftdata" then if not type(_dtbl[2], 'array') then return NULL else return eval(_dtbl[2]) end if elif _xout = "rightdata" then if not type(_dtbl[3], 'array') then return NULL else return eval(_dtbl[3]) end if elif _xout = "enginedata" then return eval(_dtbl[1]) elif _xout = "enginereset" then _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); return NULL elif _xout = "initial" then return procname(_y0[0]) elif _xout = "laxtol" then return _dtbl[`if`(member(_dtbl[4], {2, 3}), _dtbl[4], 1)][5][18] elif _xout = "numfun" then return `if`(member(_dtbl[4], {2, 3}), _dtbl[_dtbl[4]][4][18], 0) elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "initial_and_parameters" then return procname(_y0[0]), [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "last" then if _dtbl[4] <> 2 and _dtbl[4] <> 3 or _x0-_dtbl[_dtbl[4]][5][1] = 0. then error "no information is available on last computed point" else _xout := _dtbl[_dtbl[4]][5][1] end if elif _xout = "function" then if _dtbl[1][4][33]-2. = 0 then return eval(_dtbl[1][10], 1) else return eval(_dtbl[1][10][1], 1) end if elif _xout = "map" then return copy(_vmap) elif type(_xin, `=`) and type(rhs(_xin), 'list') and member(lhs(_xin), {"initial", "parameters", "initial_and_parameters"}) then _ini, _par := [], []; if lhs(_xin) = "initial" then _ini := rhs(_xin) elif lhs(_xin) = "parameters" then _par := rhs(_xin) elif select(type, rhs(_xin), `=`) <> [] then _par, _ini := selectremove(type, rhs(_xin), `=`) elif nops(rhs(_xin)) < nops(_pars)+1 then error "insufficient data for specification of initial and parameters" else _par := rhs(_xin)[-nops(_pars) .. -1]; _ini := rhs(_xin)[1 .. -nops(_pars)-1] end if; _xout := lhs(_xout); if _par <> [] then `dsolve/numeric/process_parameters`(_n, _pars, _par, _y0) end if; if _ini <> [] then `dsolve/numeric/process_initial`(_n-_ne, _ini, _y0, _pars, _vmap) end if; `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars); if _Env_smart_dsolve_numeric = true and type(_y0[0], 'numeric') and _dtbl[1][4][10] <> 1 then procname("right") := _y0[0]; procname("left") := _y0[0] end if; if _xout = "initial" then return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)] elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] else return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)], [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] end if elif _xin = "eventstop" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then return 0 end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 10 and 10 <= _dtbl[5-_i][4][9] then _i := 5-_i; _dtbl[4] := _i; _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) elif 10 <= _dtbl[_i][4][9] then _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) else return 0 end if elif _xin = "eventstatus" then if _nv = 0 then error "this solution has no events" end if; _i := [selectremove(proc (a) options operator, arrow; _dtbl[1][3][1][a, 7] = 1 end proc, {seq(_j, _j = 1 .. round(_dtbl[1][3][1][_nv+1, 1]))})]; return ':-enabled' = _i[1], ':-disabled' = _i[2] elif _xin = "eventclear" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then error "no events to clear" end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 10 and 10 < _dtbl[5-_i][4][9] then _dtbl[4] := 5-_i; _i := 5-_i end if; if _dtbl[_i][4][9] < 10 then error "no events to clear" elif _nv < _dtbl[_i][4][9]-10 then error "event error condition cannot be cleared" else _j := _dtbl[_i][4][9]-10; if irem(round(_dtbl[_i][3][1][_j, 4]), 2) = 1 then error "retriggerable events cannot be cleared" end if; _j := round(_dtbl[_i][3][1][_j, 1]); for _k to _nv do if _dtbl[_i][3][1][_k, 1] = _j then if _dtbl[_i][3][1][_k, 2] = 3 then error "range events cannot be cleared" end if; _dtbl[_i][3][1][_k, 8] := _dtbl[_i][3][1][_nv+1, 8] end if end do; _dtbl[_i][4][17] := 0; _dtbl[_i][4][9] := 0; if _dtbl[1][4][10] = 1 then if _i = 2 then try procname(procname("left")) catch:  end try else try procname(procname("right")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and member(lhs(_xin), {"eventdisable", "eventenable"}) then if _nv = 0 then error "this solution has no events" end if; if type(rhs(_xin), {('list')('posint'), ('set')('posint')}) then _i := {op(rhs(_xin))} elif type(rhs(_xin), 'posint') then _i := {rhs(_xin)} else error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; if select(proc (a) options operator, arrow; _nv < a end proc, _i) <> {} then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _k := {}; for _j to _nv do if member(round(_dtbl[1][3][1][_j, 1]), _i) then _k := `union`(_k, {_j}) end if end do; _i := _k; if lhs(_xin) = "eventdisable" then _dtbl[4] := 0; _j := [evalb(assigned(_dtbl[2]) and member(_dtbl[2][4][17], _i)), evalb(assigned(_dtbl[3]) and member(_dtbl[3][4][17], _i))]; for _k in _i do _dtbl[1][3][1][_k, 7] := 0; if assigned(_dtbl[2]) then _dtbl[2][3][1][_k, 7] := 0 end if; if assigned(_dtbl[3]) then _dtbl[3][3][1][_k, 7] := 0 end if end do; if _j[1] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[2][3][4][_k, 1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to defined init `, _dtbl[2][3][4][_k, 1]); _dtbl[2][3][1][_k, 8] := _dtbl[2][3][4][_k, 1] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to rate hysteresis init `, _dtbl[2][5][24]); _dtbl[2][3][1][_k, 8] := _dtbl[2][5][24] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to initial init `, _x0); _dtbl[2][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to fireinitial init `, _x0-1); _dtbl[2][3][1][_k, 8] := _x0-1 end if end do; _dtbl[2][4][17] := 0; _dtbl[2][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("left")) end if end if; if _j[2] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[3][3][4][_k, 2], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to defined init `, _dtbl[3][3][4][_k, 2]); _dtbl[3][3][1][_k, 8] := _dtbl[3][3][4][_k, 2] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to rate hysteresis init `, _dtbl[3][5][24]); _dtbl[3][3][1][_k, 8] := _dtbl[3][5][24] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to initial init `, _x0); _dtbl[3][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to fireinitial init `, _x0+1); _dtbl[3][3][1][_k, 8] := _x0+1 end if end do; _dtbl[3][4][17] := 0; _dtbl[3][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("right")) end if end if else for _k in _i do _dtbl[1][3][1][_k, 7] := 1 end do; _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); _dtbl[4] := 0; if _dtbl[1][4][10] = 1 then if _x0 <= procname("right") then try procname(procname("right")) catch:  end try end if; if procname("left") <= _x0 then try procname(procname("left")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and lhs(_xin) = "eventfired" then if not type(rhs(_xin), 'list') then error "'eventfired' must be specified as a list" end if; if _nv = 0 then error "this solution has no events" end if; if _dtbl[4] <> 2 and _dtbl[4] <> 3 then error "'direction' must be set prior to calling/setting 'eventfired'" end if; _i := _dtbl[4]; _val := NULL; if not assigned(_EnvEventRetriggerWarned) then _EnvEventRetriggerWarned := false end if; for _k in rhs(_xin) do if type(_k, 'integer') then _src := _k elif type(_k, 'integer' = 'anything') and type(evalf(rhs(_k)), 'numeric') then _k := lhs(_k) = evalf[max(Digits, 18)](rhs(_k)); _src := lhs(_k) else error "'eventfired' entry is not valid: %1", _k end if; if _src < 1 or round(_dtbl[1][3][1][_nv+1, 1]) < _src then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _src := {seq(`if`(_dtbl[1][3][1][_j, 1]-_src = 0., _j, NULL), _j = 1 .. _nv)}; if nops(_src) <> 1 then error "'eventfired' can only be set/queried for root-finding events and time/interval events" end if; _src := _src[1]; if _dtbl[1][3][1][_src, 2] <> 0. and _dtbl[1][3][1][_src, 2]-2. <> 0. then error "'eventfired' can only be set/queried for root-finding events and time/interval events" elif irem(round(_dtbl[1][3][1][_src, 4]), 2) = 1 then if _EnvEventRetriggerWarned = false then WARNING(`'eventfired' has no effect on events that retrigger`) end if; _EnvEventRetriggerWarned := true end if; if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then _val := _val, undefined elif type(_dtbl[_i][3][4][_src, _i-1], 'undefined') or _i = 2 and _dtbl[2][3][1][_src, 8] < _dtbl[2][3][4][_src, 1] or _i = 3 and _dtbl[3][3][4][_src, 2] < _dtbl[3][3][1][_src, 8] then _val := _val, _dtbl[_i][3][1][_src, 8] else _val := _val, _dtbl[_i][3][4][_src, _i-1] end if; if type(_k, `=`) then if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then error "cannot set event code for a rate hysteresis event" end if; userinfo(3, {'events', 'eventreset'}, `manual set event code `, _src, ` to value `, rhs(_k)); _dtbl[_i][3][1][_src, 8] := rhs(_k); _dtbl[_i][3][4][_src, _i-1] := rhs(_k) end if end do; return [_val] elif type(_xin, `=`) and lhs(_xin) = "direction" then if not member(rhs(_xin), {-1, 1, ':-left', ':-right'}) then error "'direction' must be specified as either '1' or 'right' (positive) or '-1' or 'left' (negative)" end if; _src := `if`(_dtbl[4] = 2, -1, `if`(_dtbl[4] = 3, 1, undefined)); _i := `if`(member(rhs(_xin), {1, ':-right'}), 3, 2); _dtbl[4] := _i; _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if; return _src elif _xin = "eventcount" then if _dtbl[1][3][1] = 0 or _dtbl[4] <> 2 and _dtbl[4] <> 3 then return 0 else return round(_dtbl[_dtbl[4]][3][1][_nv+1, 12]) end if else return "procname" end if end if; if _xout = _x0 then return [_x0, seq(evalf(_dtbl[1][6][_vmap[_i]]), _i = 1 .. _n-_ne)] end if; _i := `if`(_x0 <= _xout, 3, 2); if _xin = "last" and 0 < _dtbl[_i][4][9] and _dtbl[_i][4][9] < 10 then _dat := eval(_dtbl[_i], 2); _j := _dat[4][20]; return [_dat[11][_j, 0], seq(_dat[11][_j, _vmap[_i]], _i = 1 .. _n-_ne-_nd), seq(_dat[8][1][_vmap[_i]], _i = _n-_ne-_nd+1 .. _n-_ne)] end if; if not type(_dtbl[_i], 'array') then _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if end if; if _xin <> "last" then if 0 < 0 then if `dsolve/numeric/checkglobals`(op(_dtbl[1][14]), _pars, _n, _y0) then `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars, _i) end if end if; if _dtbl[1][4][7] = 0 then error "parameters must be initialized before solution can be computed" end if end if; _dat := eval(_dtbl[_i], 2); _dtbl[4] := _i; try _src := `dsolve/numeric/SC/IVPrun`(_dat, _xout) catch: userinfo(2, `dsolve/debug`, print(`Exception in solnproc:`, [lastexception][2 .. -1])); error  end try; if _src = 0 and 10 < _dat[4][9] then _val := _dat[3][1][_nv+1, 8] else _val := _dat[11][_dat[4][20], 0] end if; if _src <> 0 or _dat[4][9] <= 0 then _dtbl[1][5][1] := _xout else _dtbl[1][5][1] := _val end if; if _i = 3 and _val < _xout then Rounding := -infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further right of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further right of %1, maxfun limit exceeded (see ?dsolve,maxfun for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further right of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further right of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif 10 < _dat[4][9] then if _dat[4][9]-10 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further right of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-10, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further right of %1", evalf[8](_val) end if elif _i = 2 and _xout < _val then Rounding := infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further left of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further left of %1, maxfun limit exceeded (see ?dsolve,maxfun for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further left of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further left of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif 10 < _dat[4][9] then if _dat[4][9]-10 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further left of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-10, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further left of %1", evalf[8](_val) end if end if; if _EnvInFsolve = true then _dig := _dat[4][26]; _dat[4][26] := _EnvDSNumericSaveDigits; _Env_dsolve_SC_native := true; if _dat[4][25] = 1 then _i := 1; _dat[4][25] := 2 else _i := _dat[4][25] end if; _val := `dsolve/numeric/SC/IVPval`(_dat, _xout, _src); _dat[4][25] := _i; _dat[4][26] := _dig; [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] else Digits := _dat[4][26]; _val := `dsolve/numeric/SC/IVPval`(eval(_dat, 2), _xout, _src); [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] end if end proc, (2) = Array(1..9, {(1) = 4366565378, (2) = 4366565474, (3) = 4366565570, (4) = 4366565666, (5) = 4366565762, (6) = 4366565858, (7) = 4366565954, (8) = 4366566050, (9) = 4366566146}), (3) = [eta, T(eta), diff(T(eta), eta), f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), g(eta), diff(g(eta), eta), diff(diff(g(eta), eta), eta)], (4) = []}); _solnproc := _dat[1]; _pars := map(rhs, _dat[4]); if not type(_xout, 'numeric') then if member(eta, ["start", 'start', "method", 'method', "left", 'left', "right", 'right', "leftdata", "rightdata", "enginedata", "eventstop", 'eventstop', "eventclear", 'eventclear', "eventstatus", 'eventstatus', "eventcount", 'eventcount', "laxtol", 'laxtol', "numfun", 'numfun', NULL]) then _res := _solnproc(convert(eta, 'string')); if 1 < nops([_res]) then return _res elif type(_res, 'array') then return eval(_res, 1) elif _res <> "procname" then return _res end if elif member(eta, ["last", 'last', "initial", 'initial', NULL]) then _res := _solnproc(convert(eta, 'string')); if type(_res, 'list') then return _res[8] else return NULL end if elif member(eta, ["parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(eta, 'string'); _res := _solnproc(_xout); if _xout = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] else return [_res[8], seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] end if elif type(_xout, `=`) and member(lhs(_xout), ["initial", 'initial', "parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(lhs(eta), 'string') = rhs(eta); if lhs(_xout) = "initial" then if type(rhs(_xout), 'list') then _res := _solnproc(_xout) else _res := _solnproc("initial" = ["single", 8, rhs(_xout)]) end if elif not type(rhs(_xout), 'list') then error "initial and/or parameter values must be specified in a list" elif lhs(_xout) = "initial_and_parameters" and nops(rhs(_xout)) = nops(_pars)+1 then _res := _solnproc(lhs(_xout) = ["single", 8, op(rhs(_xout))]) else _res := _solnproc(_xout) end if; if lhs(_xout) = "initial" then return _res[8] elif lhs(_xout) = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] else return [_res[8], seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] end if elif type(_xout, `=`) and member(lhs(_xout), ["eventdisable", 'eventdisable', "eventenable", 'eventenable', "eventfired", 'eventfired', "direction", 'direction', NULL]) then return _solnproc(convert(lhs(eta), 'string') = rhs(eta)) elif _xout = "solnprocedure" then return eval(_solnproc) elif _xout = "sysvars" then return _dat[3] end if; if procname <> unknown then return ('procname')(eta) else _ndsol := `tools/gensym`("D(g)"); eval(FromInert(_Inert_FUNCTION(_Inert_NAME("assign"), _Inert_EXPSEQ(ToInert(_ndsol), _Inert_VERBATIM(pointto(_dat[2][8])))))); return FromInert(_Inert_FUNCTION(ToInert(_ndsol), _Inert_EXPSEQ(ToInert(eta)))) end if end if; try _res := _solnproc(_xout); _res[8] catch: error  end try end proc, proc (eta) local _res, _dat, _solnproc, _xout, _ndsol, _pars, _i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; if 1 < nargs then error "invalid input: too many arguments" end if; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then _xout := evalf[_EnvDSNumericSaveDigits](eta) else _xout := evalf(eta) end if; _dat := Array(1..4, {(1) = proc (_xin) local _xout, _dtbl, _dat, _vmap, _x0, _y0, _val, _dig, _n, _ne, _nd, _nv, _pars, _ini, _par, _i, _j, _k, _src; option `Copyright (c) 2002 by Waterloo Maple Inc. All rights reserved.`; table( [( "complex" ) = false ] ) _xout := _xin; _pars := []; _dtbl := array( 1 .. 4, [( 1 ) = (array( 1 .. 20, [( 1 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 2 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 3 ) = ([0, 0, 0, Array(1..0, 1..2, {}, datatype = float[8], order = C_order)]), ( 5 ) = (Array(1..28, {(1) = .0, (2) = 0.10e-9, (3) = .0, (4) = 0.500001e-14, (5) = .0, (6) = 0.56668809672174786e-4, (7) = .0, (8) = 0.10e-9, (9) = .0, (10) = .0, (11) = .0, (12) = .0, (13) = 1.0, (14) = .0, (15) = .49999999999999, (16) = .0, (17) = 1.0, (18) = 1.0, (19) = .0, (20) = .0, (21) = 1.0, (22) = 1.0, (23) = .0, (24) = .0, (25) = 0.10e-14, (26) = .0, (27) = .0, (28) = .0}, datatype = float[8], order = C_order)), ( 4 ) = (Array(1..53, {(1) = 8, (2) = 8, (3) = 0, (4) = 0, (5) = 0, (6) = 0, (7) = 1, (8) = 0, (9) = 0, (10) = 0, (11) = 0, (12) = 0, (13) = 0, (14) = 0, (15) = 0, (16) = 0, (17) = 0, (18) = 1, (19) = 30000, (20) = 0, (21) = 0, (22) = 1, (23) = 4, (24) = 0, (25) = 1, (26) = 15, (27) = 1, (28) = 0, (29) = 1, (30) = 3, (31) = 3, (32) = 0, (33) = 1, (34) = 0, (35) = 0, (36) = 0, (37) = 0, (38) = 0, (39) = 0, (40) = 0, (41) = 0, (42) = 0, (43) = 1, (44) = 0, (45) = 0, (46) = 0, (47) = 0, (48) = 0, (49) = 0, (50) = 50, (51) = 1, (52) = 0, (53) = 0}, datatype = integer[4])), ( 7 ) = ([Array(1..4, 1..7, {(1, 1) = .0, (1, 2) = .203125, (1, 3) = .3046875, (1, 4) = .75, (1, 5) = .8125, (1, 6) = .40625, (1, 7) = .8125, (2, 1) = 0.6378173828125e-1, (2, 2) = .0, (2, 3) = .279296875, (2, 4) = .27237892150878906, (2, 5) = -0.9686851501464844e-1, (2, 6) = 0.1956939697265625e-1, (2, 7) = .5381584167480469, (3, 1) = 0.31890869140625e-1, (3, 2) = .0, (3, 3) = -.34375, (3, 4) = -.335235595703125, (3, 5) = .2296142578125, (3, 6) = .41748046875, (3, 7) = 11.480712890625, (4, 1) = 0.9710520505905151e-1, (4, 2) = .0, (4, 3) = .40350341796875, (4, 4) = 0.20297467708587646e-1, (4, 5) = -0.6054282188415527e-2, (4, 6) = -0.4770040512084961e-1, (4, 7) = .77858567237854}, datatype = float[8], order = C_order), Array(1..6, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = 1.0, (2, 1) = .25, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = 1.0, (3, 1) = .1875, (3, 2) = .5625, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = 2.0, (4, 1) = .23583984375, (4, 2) = -.87890625, (4, 3) = .890625, (4, 4) = .0, (4, 5) = .0, (4, 6) = .2681884765625, (5, 1) = .1272735595703125, (5, 2) = -.5009765625, (5, 3) = .44921875, (5, 4) = -0.128936767578125e-1, (5, 5) = .0, (5, 6) = 0.626220703125e-1, (6, 1) = -0.927734375e-1, (6, 2) = .626220703125, (6, 3) = -.4326171875, (6, 4) = .1418304443359375, (6, 5) = -0.861053466796875e-1, (6, 6) = .3131103515625}, datatype = float[8], order = C_order), Array(1..6, {(1) = .0, (2) = .386, (3) = .21, (4) = .63, (5) = 1.0, (6) = 1.0}, datatype = float[8], order = C_order), Array(1..6, {(1) = .25, (2) = -.1043, (3) = .1035, (4) = -0.362e-1, (5) = .0, (6) = .0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 1.544, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = .9466785280815533, (3, 2) = .25570116989825814, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = 3.3148251870684886, (4, 2) = 2.896124015972123, (4, 3) = .9986419139977808, (4, 4) = .0, (4, 5) = .0, (5, 1) = 1.2212245092262748, (5, 2) = 6.019134481287752, (5, 3) = 12.537083329320874, (5, 4) = -.687886036105895, (5, 5) = .0, (6, 1) = 1.2212245092262748, (6, 2) = 6.019134481287752, (6, 3) = 12.537083329320874, (6, 4) = -.687886036105895, (6, 5) = 1.0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = -5.6688, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = -2.4300933568337584, (3, 2) = -.20635991570891224, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = -.10735290581452621, (4, 2) = -9.594562251021896, (4, 3) = -20.470286148096154, (4, 4) = .0, (4, 5) = .0, (5, 1) = 7.496443313968615, (5, 2) = -10.246804314641219, (5, 3) = -33.99990352819906, (5, 4) = 11.708908932061595, (5, 5) = .0, (6, 1) = 8.083246795922411, (6, 2) = -7.981132988062785, (6, 3) = -31.52159432874373, (6, 4) = 16.319305431231363, (6, 5) = -6.0588182388340535}, datatype = float[8], order = C_order), Array(1..3, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 10.126235083446911, (2, 2) = -7.487995877607633, (2, 3) = -34.800918615557414, (2, 4) = -7.9927717075687275, (2, 5) = 1.0251377232956207, (3, 1) = -.6762803392806898, (3, 2) = 6.087714651678606, (3, 3) = 16.43084320892463, (3, 4) = 24.767225114183653, (3, 5) = -6.5943891257167815}, datatype = float[8], order = C_order)]), ( 6 ) = (Array(1..8, {(1) = .6800687881055208, (2) = -.11511620494228457, (3) = .0, (4) = .0, (5) = .37811799244920297, (6) = .0, (7) = 1.4117113181447527, (8) = .0}, datatype = float[8], order = C_order)), ( 10 ) = ([proc (N, X, Y, YP) option `[Y[1] = T(eta), Y[2] = diff(T(eta),eta), Y[3] = f(eta), Y[4] = diff(f(eta),eta), Y[5] = diff(diff(f(eta),eta),eta), Y[6] = g(eta), Y[7] = diff(g(eta),eta), Y[8] = diff(diff(g(eta),eta),eta)]`; YP[2] := (-.5000000000*Y[2]*Y[3]-3.081102216*(.1*Y[1]+1)^2*Y[2]^2)/(.8804858221+1.027034072*(.1*Y[1]+1)^3); YP[5] := -0.22360732220118799324e-1*Y[5]*Y[3]+0.13416439332071279594e-1*Y[8]*Y[6]; YP[8] := -0.45558086560364464692e-1*Y[8]*Y[3]+0.45558086560364464692e-1*Y[5]*Y[6]; YP[1] := Y[2]; YP[3] := Y[4]; YP[4] := Y[5]; YP[6] := Y[7]; YP[7] := Y[8]; 0 end proc, -1, 0, 0, 0, 0, 0, 0]), ( 11 ) = (Array(1..6, 0..8, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (1, 7) = .0, (1, 8) = .0, (2, 0) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (2, 7) = .0, (2, 8) = .0, (3, 0) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (3, 7) = .0, (3, 8) = .0, (4, 0) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (4, 7) = .0, (4, 8) = .0, (5, 0) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (5, 7) = .0, (5, 8) = .0, (6, 0) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (6, 7) = .0, (6, 8) = .0}, datatype = float[8], order = C_order)), ( 8 ) = ([Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = -.11511620494228457, (2) = -0.21848192814805673e-1, (3) = .0, (4) = .37811799244920297, (5) = .0, (6) = 1.4117113181447527, (7) = .0, (8) = .0}, datatype = float[8], order = C_order)]), ( 9 ) = ([Array(1..8, {(1) = 0.1e-1, (2) = 0.1e-1, (3) = 0.1e-1, (4) = 0.1e-1, (5) = 0.1e-1, (6) = 0.1e-1, (7) = 0.1e-1, (8) = 0.1e-1}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, 1..8, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (1, 7) = .0, (1, 8) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (2, 7) = .0, (2, 8) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (3, 7) = .0, (3, 8) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (4, 7) = .0, (4, 8) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (5, 7) = .0, (5, 8) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (6, 7) = .0, (6, 8) = .0, (7, 1) = .0, (7, 2) = .0, (7, 3) = .0, (7, 4) = .0, (7, 5) = .0, (7, 6) = .0, (7, 7) = .0, (7, 8) = .0, (8, 1) = .0, (8, 2) = .0, (8, 3) = .0, (8, 4) = .0, (8, 5) = .0, (8, 6) = .0, (8, 7) = .0, (8, 8) = .0}, datatype = float[8], order = C_order), Array(1..8, 1..8, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (1, 7) = .0, (1, 8) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (2, 7) = .0, (2, 8) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (3, 7) = .0, (3, 8) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (4, 7) = .0, (4, 8) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (5, 7) = .0, (5, 8) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (6, 7) = .0, (6, 8) = .0, (7, 1) = .0, (7, 2) = .0, (7, 3) = .0, (7, 4) = .0, (7, 5) = .0, (7, 6) = .0, (7, 7) = .0, (7, 8) = .0, (8, 1) = .0, (8, 2) = .0, (8, 3) = .0, (8, 4) = .0, (8, 5) = .0, (8, 6) = .0, (8, 7) = .0, (8, 8) = .0}, datatype = float[8], order = C_order), Array(1..8, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (7, 1) = .0, (7, 2) = .0, (7, 3) = .0, (7, 4) = .0, (7, 5) = .0, (7, 6) = .0, (8, 1) = .0, (8, 2) = .0, (8, 3) = .0, (8, 4) = .0, (8, 5) = .0, (8, 6) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = 0, (2) = 0, (3) = 0, (4) = 0, (5) = 0, (6) = 0, (7) = 0, (8) = 0}, datatype = integer[4]), Array(1..8, {(1) = .6800687881055208, (2) = -.11511620494228457, (3) = .0, (4) = .0, (5) = .37811799244920297, (6) = .0, (7) = 1.4117113181447527, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order)]), ( 15 ) = ("rkf45"), ( 14 ) = ([0, 0]), ( 13 ) = (), ( 12 ) = (), ( 20 ) = ([]), ( 16 ) = ([0, 0, 0, []]), ( 17 ) = ([proc (N, X, Y, YP) option `[Y[1] = T(eta), Y[2] = diff(T(eta),eta), Y[3] = f(eta), Y[4] = diff(f(eta),eta), Y[5] = diff(diff(f(eta),eta),eta), Y[6] = g(eta), Y[7] = diff(g(eta),eta), Y[8] = diff(diff(g(eta),eta),eta)]`; YP[2] := (-.5000000000*Y[2]*Y[3]-3.081102216*(.1*Y[1]+1)^2*Y[2]^2)/(.8804858221+1.027034072*(.1*Y[1]+1)^3); YP[5] := -0.22360732220118799324e-1*Y[5]*Y[3]+0.13416439332071279594e-1*Y[8]*Y[6]; YP[8] := -0.45558086560364464692e-1*Y[8]*Y[3]+0.45558086560364464692e-1*Y[5]*Y[6]; YP[1] := Y[2]; YP[3] := Y[4]; YP[4] := Y[5]; YP[6] := Y[7]; YP[7] := Y[8]; 0 end proc, -1, 0, 0, 0, 0, 0, 0]), ( 18 ) = ([]), ( 19 ) = (0)  ] ))  ] ); _y0 := Array(0..8, {(1) = 0., (2) = HFloat(0.6800687881055208), (3) = HFloat(-0.11511620494228457), (4) = HFloat(0.0), (5) = HFloat(0.0), (6) = HFloat(0.37811799244920297), (7) = HFloat(0.0), (8) = HFloat(1.4117113181447527)}); _vmap := array( 1 .. 8, [( 1 ) = (1), ( 2 ) = (2), ( 3 ) = (3), ( 5 ) = (5), ( 4 ) = (4), ( 7 ) = (7), ( 6 ) = (6), ( 8 ) = (8)  ] ); _x0 := _dtbl[1][5][5]; _n := _dtbl[1][4][1]; _ne := _dtbl[1][4][3]; _nd := _dtbl[1][4][4]; _nv := _dtbl[1][4][16]; if not type(_xout, 'numeric') then if member(_xout, ["start", "left", "right"]) then if _Env_smart_dsolve_numeric = true or _dtbl[1][4][10] = 1 then if _xout = "left" then if type(_dtbl[2], 'table') then return _dtbl[2][5][1] end if elif _xout = "right" then if type(_dtbl[3], 'table') then return _dtbl[3][5][1] end if end if end if; return _dtbl[1][5][5] elif _xout = "method" then return _dtbl[1][15] elif _xout = "storage" then return evalb(_dtbl[1][4][10] = 1) elif _xout = "leftdata" then if not type(_dtbl[2], 'array') then return NULL else return eval(_dtbl[2]) end if elif _xout = "rightdata" then if not type(_dtbl[3], 'array') then return NULL else return eval(_dtbl[3]) end if elif _xout = "enginedata" then return eval(_dtbl[1]) elif _xout = "enginereset" then _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); return NULL elif _xout = "initial" then return procname(_y0[0]) elif _xout = "laxtol" then return _dtbl[`if`(member(_dtbl[4], {2, 3}), _dtbl[4], 1)][5][18] elif _xout = "numfun" then return `if`(member(_dtbl[4], {2, 3}), _dtbl[_dtbl[4]][4][18], 0) elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "initial_and_parameters" then return procname(_y0[0]), [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "last" then if _dtbl[4] <> 2 and _dtbl[4] <> 3 or _x0-_dtbl[_dtbl[4]][5][1] = 0. then error "no information is available on last computed point" else _xout := _dtbl[_dtbl[4]][5][1] end if elif _xout = "function" then if _dtbl[1][4][33]-2. = 0 then return eval(_dtbl[1][10], 1) else return eval(_dtbl[1][10][1], 1) end if elif _xout = "map" then return copy(_vmap) elif type(_xin, `=`) and type(rhs(_xin), 'list') and member(lhs(_xin), {"initial", "parameters", "initial_and_parameters"}) then _ini, _par := [], []; if lhs(_xin) = "initial" then _ini := rhs(_xin) elif lhs(_xin) = "parameters" then _par := rhs(_xin) elif select(type, rhs(_xin), `=`) <> [] then _par, _ini := selectremove(type, rhs(_xin), `=`) elif nops(rhs(_xin)) < nops(_pars)+1 then error "insufficient data for specification of initial and parameters" else _par := rhs(_xin)[-nops(_pars) .. -1]; _ini := rhs(_xin)[1 .. -nops(_pars)-1] end if; _xout := lhs(_xout); if _par <> [] then `dsolve/numeric/process_parameters`(_n, _pars, _par, _y0) end if; if _ini <> [] then `dsolve/numeric/process_initial`(_n-_ne, _ini, _y0, _pars, _vmap) end if; `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars); if _Env_smart_dsolve_numeric = true and type(_y0[0], 'numeric') and _dtbl[1][4][10] <> 1 then procname("right") := _y0[0]; procname("left") := _y0[0] end if; if _xout = "initial" then return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)] elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] else return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)], [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] end if elif _xin = "eventstop" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then return 0 end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 10 and 10 <= _dtbl[5-_i][4][9] then _i := 5-_i; _dtbl[4] := _i; _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) elif 10 <= _dtbl[_i][4][9] then _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) else return 0 end if elif _xin = "eventstatus" then if _nv = 0 then error "this solution has no events" end if; _i := [selectremove(proc (a) options operator, arrow; _dtbl[1][3][1][a, 7] = 1 end proc, {seq(_j, _j = 1 .. round(_dtbl[1][3][1][_nv+1, 1]))})]; return ':-enabled' = _i[1], ':-disabled' = _i[2] elif _xin = "eventclear" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then error "no events to clear" end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 10 and 10 < _dtbl[5-_i][4][9] then _dtbl[4] := 5-_i; _i := 5-_i end if; if _dtbl[_i][4][9] < 10 then error "no events to clear" elif _nv < _dtbl[_i][4][9]-10 then error "event error condition cannot be cleared" else _j := _dtbl[_i][4][9]-10; if irem(round(_dtbl[_i][3][1][_j, 4]), 2) = 1 then error "retriggerable events cannot be cleared" end if; _j := round(_dtbl[_i][3][1][_j, 1]); for _k to _nv do if _dtbl[_i][3][1][_k, 1] = _j then if _dtbl[_i][3][1][_k, 2] = 3 then error "range events cannot be cleared" end if; _dtbl[_i][3][1][_k, 8] := _dtbl[_i][3][1][_nv+1, 8] end if end do; _dtbl[_i][4][17] := 0; _dtbl[_i][4][9] := 0; if _dtbl[1][4][10] = 1 then if _i = 2 then try procname(procname("left")) catch:  end try else try procname(procname("right")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and member(lhs(_xin), {"eventdisable", "eventenable"}) then if _nv = 0 then error "this solution has no events" end if; if type(rhs(_xin), {('list')('posint'), ('set')('posint')}) then _i := {op(rhs(_xin))} elif type(rhs(_xin), 'posint') then _i := {rhs(_xin)} else error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; if select(proc (a) options operator, arrow; _nv < a end proc, _i) <> {} then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _k := {}; for _j to _nv do if member(round(_dtbl[1][3][1][_j, 1]), _i) then _k := `union`(_k, {_j}) end if end do; _i := _k; if lhs(_xin) = "eventdisable" then _dtbl[4] := 0; _j := [evalb(assigned(_dtbl[2]) and member(_dtbl[2][4][17], _i)), evalb(assigned(_dtbl[3]) and member(_dtbl[3][4][17], _i))]; for _k in _i do _dtbl[1][3][1][_k, 7] := 0; if assigned(_dtbl[2]) then _dtbl[2][3][1][_k, 7] := 0 end if; if assigned(_dtbl[3]) then _dtbl[3][3][1][_k, 7] := 0 end if end do; if _j[1] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[2][3][4][_k, 1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to defined init `, _dtbl[2][3][4][_k, 1]); _dtbl[2][3][1][_k, 8] := _dtbl[2][3][4][_k, 1] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to rate hysteresis init `, _dtbl[2][5][24]); _dtbl[2][3][1][_k, 8] := _dtbl[2][5][24] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to initial init `, _x0); _dtbl[2][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to fireinitial init `, _x0-1); _dtbl[2][3][1][_k, 8] := _x0-1 end if end do; _dtbl[2][4][17] := 0; _dtbl[2][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("left")) end if end if; if _j[2] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[3][3][4][_k, 2], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to defined init `, _dtbl[3][3][4][_k, 2]); _dtbl[3][3][1][_k, 8] := _dtbl[3][3][4][_k, 2] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to rate hysteresis init `, _dtbl[3][5][24]); _dtbl[3][3][1][_k, 8] := _dtbl[3][5][24] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to initial init `, _x0); _dtbl[3][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to fireinitial init `, _x0+1); _dtbl[3][3][1][_k, 8] := _x0+1 end if end do; _dtbl[3][4][17] := 0; _dtbl[3][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("right")) end if end if else for _k in _i do _dtbl[1][3][1][_k, 7] := 1 end do; _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); _dtbl[4] := 0; if _dtbl[1][4][10] = 1 then if _x0 <= procname("right") then try procname(procname("right")) catch:  end try end if; if procname("left") <= _x0 then try procname(procname("left")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and lhs(_xin) = "eventfired" then if not type(rhs(_xin), 'list') then error "'eventfired' must be specified as a list" end if; if _nv = 0 then error "this solution has no events" end if; if _dtbl[4] <> 2 and _dtbl[4] <> 3 then error "'direction' must be set prior to calling/setting 'eventfired'" end if; _i := _dtbl[4]; _val := NULL; if not assigned(_EnvEventRetriggerWarned) then _EnvEventRetriggerWarned := false end if; for _k in rhs(_xin) do if type(_k, 'integer') then _src := _k elif type(_k, 'integer' = 'anything') and type(evalf(rhs(_k)), 'numeric') then _k := lhs(_k) = evalf[max(Digits, 18)](rhs(_k)); _src := lhs(_k) else error "'eventfired' entry is not valid: %1", _k end if; if _src < 1 or round(_dtbl[1][3][1][_nv+1, 1]) < _src then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _src := {seq(`if`(_dtbl[1][3][1][_j, 1]-_src = 0., _j, NULL), _j = 1 .. _nv)}; if nops(_src) <> 1 then error "'eventfired' can only be set/queried for root-finding events and time/interval events" end if; _src := _src[1]; if _dtbl[1][3][1][_src, 2] <> 0. and _dtbl[1][3][1][_src, 2]-2. <> 0. then error "'eventfired' can only be set/queried for root-finding events and time/interval events" elif irem(round(_dtbl[1][3][1][_src, 4]), 2) = 1 then if _EnvEventRetriggerWarned = false then WARNING(`'eventfired' has no effect on events that retrigger`) end if; _EnvEventRetriggerWarned := true end if; if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then _val := _val, undefined elif type(_dtbl[_i][3][4][_src, _i-1], 'undefined') or _i = 2 and _dtbl[2][3][1][_src, 8] < _dtbl[2][3][4][_src, 1] or _i = 3 and _dtbl[3][3][4][_src, 2] < _dtbl[3][3][1][_src, 8] then _val := _val, _dtbl[_i][3][1][_src, 8] else _val := _val, _dtbl[_i][3][4][_src, _i-1] end if; if type(_k, `=`) then if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then error "cannot set event code for a rate hysteresis event" end if; userinfo(3, {'events', 'eventreset'}, `manual set event code `, _src, ` to value `, rhs(_k)); _dtbl[_i][3][1][_src, 8] := rhs(_k); _dtbl[_i][3][4][_src, _i-1] := rhs(_k) end if end do; return [_val] elif type(_xin, `=`) and lhs(_xin) = "direction" then if not member(rhs(_xin), {-1, 1, ':-left', ':-right'}) then error "'direction' must be specified as either '1' or 'right' (positive) or '-1' or 'left' (negative)" end if; _src := `if`(_dtbl[4] = 2, -1, `if`(_dtbl[4] = 3, 1, undefined)); _i := `if`(member(rhs(_xin), {1, ':-right'}), 3, 2); _dtbl[4] := _i; _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if; return _src elif _xin = "eventcount" then if _dtbl[1][3][1] = 0 or _dtbl[4] <> 2 and _dtbl[4] <> 3 then return 0 else return round(_dtbl[_dtbl[4]][3][1][_nv+1, 12]) end if else return "procname" end if end if; if _xout = _x0 then return [_x0, seq(evalf(_dtbl[1][6][_vmap[_i]]), _i = 1 .. _n-_ne)] end if; _i := `if`(_x0 <= _xout, 3, 2); if _xin = "last" and 0 < _dtbl[_i][4][9] and _dtbl[_i][4][9] < 10 then _dat := eval(_dtbl[_i], 2); _j := _dat[4][20]; return [_dat[11][_j, 0], seq(_dat[11][_j, _vmap[_i]], _i = 1 .. _n-_ne-_nd), seq(_dat[8][1][_vmap[_i]], _i = _n-_ne-_nd+1 .. _n-_ne)] end if; if not type(_dtbl[_i], 'array') then _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if end if; if _xin <> "last" then if 0 < 0 then if `dsolve/numeric/checkglobals`(op(_dtbl[1][14]), _pars, _n, _y0) then `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars, _i) end if end if; if _dtbl[1][4][7] = 0 then error "parameters must be initialized before solution can be computed" end if end if; _dat := eval(_dtbl[_i], 2); _dtbl[4] := _i; try _src := `dsolve/numeric/SC/IVPrun`(_dat, _xout) catch: userinfo(2, `dsolve/debug`, print(`Exception in solnproc:`, [lastexception][2 .. -1])); error  end try; if _src = 0 and 10 < _dat[4][9] then _val := _dat[3][1][_nv+1, 8] else _val := _dat[11][_dat[4][20], 0] end if; if _src <> 0 or _dat[4][9] <= 0 then _dtbl[1][5][1] := _xout else _dtbl[1][5][1] := _val end if; if _i = 3 and _val < _xout then Rounding := -infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further right of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further right of %1, maxfun limit exceeded (see ?dsolve,maxfun for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further right of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further right of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif 10 < _dat[4][9] then if _dat[4][9]-10 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further right of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-10, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further right of %1", evalf[8](_val) end if elif _i = 2 and _xout < _val then Rounding := infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further left of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further left of %1, maxfun limit exceeded (see ?dsolve,maxfun for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further left of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further left of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif 10 < _dat[4][9] then if _dat[4][9]-10 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further left of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-10, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further left of %1", evalf[8](_val) end if end if; if _EnvInFsolve = true then _dig := _dat[4][26]; _dat[4][26] := _EnvDSNumericSaveDigits; _Env_dsolve_SC_native := true; if _dat[4][25] = 1 then _i := 1; _dat[4][25] := 2 else _i := _dat[4][25] end if; _val := `dsolve/numeric/SC/IVPval`(_dat, _xout, _src); _dat[4][25] := _i; _dat[4][26] := _dig; [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] else Digits := _dat[4][26]; _val := `dsolve/numeric/SC/IVPval`(eval(_dat, 2), _xout, _src); [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] end if end proc, (2) = Array(1..9, {(1) = 4366565378, (2) = 4366565474, (3) = 4366565570, (4) = 4366565666, (5) = 4366565762, (6) = 4366565858, (7) = 4366565954, (8) = 4366566050, (9) = 4366566146}), (3) = [eta, T(eta), diff(T(eta), eta), f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), g(eta), diff(g(eta), eta), diff(diff(g(eta), eta), eta)], (4) = []}); _solnproc := _dat[1]; _pars := map(rhs, _dat[4]); if not type(_xout, 'numeric') then if member(eta, ["start", 'start', "method", 'method', "left", 'left', "right", 'right', "leftdata", "rightdata", "enginedata", "eventstop", 'eventstop', "eventclear", 'eventclear', "eventstatus", 'eventstatus', "eventcount", 'eventcount', "laxtol", 'laxtol', "numfun", 'numfun', NULL]) then _res := _solnproc(convert(eta, 'string')); if 1 < nops([_res]) then return _res elif type(_res, 'array') then return eval(_res, 1) elif _res <> "procname" then return _res end if elif member(eta, ["last", 'last', "initial", 'initial', NULL]) then _res := _solnproc(convert(eta, 'string')); if type(_res, 'list') then return _res[9] else return NULL end if elif member(eta, ["parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(eta, 'string'); _res := _solnproc(_xout); if _xout = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] else return [_res[9], seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] end if elif type(_xout, `=`) and member(lhs(_xout), ["initial", 'initial', "parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(lhs(eta), 'string') = rhs(eta); if lhs(_xout) = "initial" then if type(rhs(_xout), 'list') then _res := _solnproc(_xout) else _res := _solnproc("initial" = ["single", 9, rhs(_xout)]) end if elif not type(rhs(_xout), 'list') then error "initial and/or parameter values must be specified in a list" elif lhs(_xout) = "initial_and_parameters" and nops(rhs(_xout)) = nops(_pars)+1 then _res := _solnproc(lhs(_xout) = ["single", 9, op(rhs(_xout))]) else _res := _solnproc(_xout) end if; if lhs(_xout) = "initial" then return _res[9] elif lhs(_xout) = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] else return [_res[9], seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] end if elif type(_xout, `=`) and member(lhs(_xout), ["eventdisable", 'eventdisable', "eventenable", 'eventenable', "eventfired", 'eventfired', "direction", 'direction', NULL]) then return _solnproc(convert(lhs(eta), 'string') = rhs(eta)) elif _xout = "solnprocedure" then return eval(_solnproc) elif _xout = "sysvars" then return _dat[3] end if; if procname <> unknown then return ('procname')(eta) else _ndsol := `tools/gensym`("`@@`(D,2)(g)"); eval(FromInert(_Inert_FUNCTION(_Inert_NAME("assign"), _Inert_EXPSEQ(ToInert(_ndsol), _Inert_VERBATIM(pointto(_dat[2][9])))))); return FromInert(_Inert_FUNCTION(ToInert(_ndsol), _Inert_EXPSEQ(ToInert(eta)))) end if end if; try _res := _solnproc(_xout); _res[9] catch: error  end try end proc

 

 

 

 

``

``


 

Download AP.mw

 

 

Dear @Preben Alsholm 
Thanks for your response.
Have a good day.

 

Respected @tomleslie @Carl Love @acer @Kitonum

 code: jbs.mw

How to display a value for  diff(f, `$`(x, 2)), p, x = 0

I tried a print comment maple shows 

                                                         
     -2.277141067 + 0.1456822830 x + 1.371481838 x *x, x = 0
                                                    
     -2.445405258 + 0.2657744995 x + 2.140882549 x *x, x = 0
                                                       
     -2.630934764 + 0.4257676173 x + 2.934073350 x*x , x = 0
                                                         
     -2.835347980 + 0.6332784948 x + 3.745530890 x *x, x = 0

Thanking you,

Waiting for replay.

Respected @tomleslie 

I've got what to expect, thank you.
Thanks for the support.

1 2 3 4 5 6 7 Page 3 of 8