Adam Ledger

Mr. Adam Ledger

360 Reputation

11 Badges

9 years, 127 days
unemployed
hobo
Perth, Australia

Social Networks and Content at Maplesoft.com

MaplePrimes Activity


These are replies submitted by Adam Ledger

What are the roots of unity at an index of 10 and this should provide a basis on C

 

HERE IS AN IMAGE

ACER6_paramterization_i_less_than_j_Known_true.mw
Also again bijectivity of (i,j) restriants  is conserved over this implict path of computation

``

`implies`(`implies`((-1)^(2*i*j/(-j+2*i))+(-1)^((j+2*i*j+2*i)/(-j+2*i)) = 0, 2*i*j/(-j+2*i)+1 = (j+2*i*j+2*i)/(-j+2*i)), {i = i, j = 0})

1

(1)

"for i<j:"

(-1)^(2*j*(j-k)/(j+2*(j-k)))+(-1)^((j+2*j*(j-k)+2*(j-k))/(-j+2*(j-k))) = 0

(-1)^(2*j*(j-k)/(3*j-2*k))+(-1)^((3*j+2*j*(j-k)-2*k)/(j-2*k)) = 0

(2)

solve({(-1)^(2*j*(j-k)/(3*j-2*k))+(-1)^((3*j+2*j*(j-k)-2*k)/(j-2*k)) = 0}, [j])

[[j = -3/4+(1/2)*k+(1/4)*(9+4*k+4*k^2)^(1/2)], [j = -3/4+(1/2)*k-(1/4)*(9+4*k+4*k^2)^(1/2)], [j = 0]]

(3)

solve({(-1)^(2*j*(j-k)/(3*j-2*k))+(-1)^((3*j+2*j*(j-k)-2*k)/(j-2*k)) = 0}, [k])

[[k = (1/2)*j*(3+2*j)/(j+1)]]

(4)

``


 

Download ACER6_paramterization_i_less_than_j_Known_true.mw

 


 

"Determine R."

``

``

"(-1)^((2 j i)/(-j+2 i))+(-1)^((j+2 j i+2 i)/(-j+2 i))=0 implies {(i,j) in `&Zopf;`^(2):R}"


 

Download ACER4.mw

The implied expression of k in terms of i and j is then injected back into the original equation to assure bijectivity of (i,j). Thus in determining the restrictions that apply you can expect these statements must themselves too be bijective, in that you can express the restrictions of i strictly in terms of j and vice versa.

@acer  i have simply encountered so many erraneous results tryng to do this part but yes the next step is to define their domains and ranges. but as such i have not been able to decicively say these conditions. but there are poles. 

its basically imposing the conditions similar to the derivation ive seen many use for the -1/12 result actually in the treatment of the Grandis series algebra used there.

UPDATED* (BIG ERROR)  
 

restart

solve(-(((-1)^(-j))^(1/(-j+2*i)))^(-2*i)*(-((-1)^(-j))^(2/(-j+2*i))+((-1)^(-j))^(1/(-j+2*i)))/(((-1)^(-j))^(2/(-j+2*i))-1) = (-1)^j*(((-1)^(-j))^(1/(-j+2*i)))^(-j)*((-1)^(-j))^(1/(-j+2*i))/(1+((-1)^(-j))^(1/(-j+2*i))), i)

Error, (in RootOf) expression independent of _S000006

 

``

``

`implies`(sum(1/k^(2*n), n = i .. infinity)-(sum(1/k^(2*n+1), n = i .. infinity)) = sum((-1)^n/k^n, n = j .. infinity), k[i, j] = ((-1)^j)^(-1/(-j+2*i)))

 

 

k[i, j] = ((-1)^j)^(-1/(-j+2*i))
" implies (&sum;)1/((((-1)^(-j))^(1/(-j+2 i)))^(2 n))-(&sum;)1/((((-1)^(-j))^(1/(-j+2 i)))^(2 n+1))=(&sum;)((-1)^(n))/((((-1)^(-j))^(1/(-j+2 i)))^(n))"

 

 

 

`implies`(sum(1/(((-1)^(-j))^(1/(-j+2*i)))^(2*n), n = i .. infinity)-(sum(1/(((-1)^(-j))^(1/(-j+2*i)))^(2*n+1), n = i .. infinity)) = sum((-1)^n/(((-1)^(-j))^(1/(-j+2*i)))^n, n = j .. infinity), ((-1)^(2*j*i/(-j+2*i))-(-1)^(j*(1+2*i)/(-j+2*i)))/(-1+(-1)^(2*j/(-j+2*i)))-(-1)^(j*(-1+2*i)/(-j+2*i))/(1+(-1)^(-j/(-j+2*i))) = 0)

 

`&therefore;`(((-1)^(2*j*i/(-j+2*i))-(-1)^(j*(1+2*i)/(-j+2*i)))/(-1+(-1)^(2*j/(-j+2*i))))-(-1)^(j*(-1+2*i)/(-j+2*i))/(1+(-1)^(-j/(-j+2*i))) = (2*((-1)^(2*j*i/(-j+2*i))+(-1)^((2*i*j+2*i+j)/(-j+2*i))))/(((-1)^(j/(-j+2*i))+1)*(-1+(-1)^(2*j/(-j+2*i)))) and (2*((-1)^(2*j*i/(-j+2*i))+(-1)^((2*i*j+2*i+j)/(-j+2*i))))/(((-1)^(j/(-j+2*i))+1)*(-1+(-1)^(2*j/(-j+2*i)))) = 0

``

``


 

Download ACER3.mw

@tomleslie  no that would actually make sense so i can only assume there is something in interface i can write to allow me to view the globals defined by the library requested for

Thats why this is in front of you, im saying its just not very worth while error code if maple prefers to keep its context to itself while knowing all of mine lol

@tomleslie well alright then i i guess my point, is that the error message i get has no context to anyone other than someone that knows what _S000100 is referring to so the CAS may as well tell me nothing.

@tomleslie come on you know how DHL etc is i just wanted to remind engine that expression is independent of _S000100 just in case we have a logistics issue in the dispatch

First 19 20 21 22 23 24 25 Last Page 21 of 30