C_R

1960 Reputation

19 Badges

5 years, 318 days

MaplePrimes Activity


These are replies submitted by C_R

You have to be more specific what you want to analyse.

If it is a mechanical problem you want to analyse:

The load case (e.g. bending) and the geometry would be helpfull.

Do you have drawings or a sketch?

It would be nice if convert/unit would offer

  1. symbols as yours for degrees minutes and seconds
  2. a compound output as yours

Here is what is possible with 2023

45.2365*Unit('arcdeg')

45.2365*Units:-Unit(arcdeg)

(1)

trunc(45.2365*Units:-Unit(arcdeg))

45*Units:-Unit(arcdeg)

(2)

frac(45.2365*Units:-Unit(arcdeg))

.2365*Units:-Unit(arcdeg)

(3)

convert(.2365*Units:-Unit(arcdeg), units, arcmin)

14.1900*Units:-Unit(arcmin)

(4)

trunc(14.1900*Units:-Unit(arcmin))

14*Units:-Unit(arcmin)

(5)

frac(14.1900*Units:-Unit(arcmin))

.1900*Units:-Unit(arcmin)

(6)

convert(.1900*Units:-Unit(arcmin), units, arcsec)

11.4000*Units:-Unit(arcsec)

(7)

45*Units:-Unit(arcdeg)+14*Units:-Unit(arcmin)+11.4000*Units:-Unit(arcsec)

45*Units:-Unit(arcdeg)+14*Units:-Unit(arcmin)+11.4000*Units:-Unit(arcsec)

(8)

NULL

(which represents a silent improvement over 2022 where trunc an floor did not work on expressions with units.

Thank you Maplesoft and please continue)

Download degminsec.mw

What version do you use?

restart; with(LinearAlgebra)

A[m] := (x/a)^(i+1)*(1-x/a)^2; B[n] := (y/b)^(i+1)*(1-y/b)^2; w := c[i]*A[m]*B[n]

TPE := (1/2)*(int(int(D__11*(diff(w, x, x))^2+2*D__12*(diff(w, x, x))*(diff(w, y, y))+4*D__66*(diff(w, x, y))^2+D__22*(diff(w, y, y))^2-2*q__0*w, x = 0 .. a), y = 0 .. b))

2*c[i]*(-512*a^4*b^4*i^8*q__0-6144*a^4*b^4*i^7*q__0-29184*a^4*b^4*i^6*q__0+36*D__11*b^4*i^8*c[i]+8*D__12*a^2*b^2*i^8*c[i]+36*D__22*a^4*i^8*c[i]+16*D__66*a^2*b^2*i^8*c[i]-69120*a^4*b^4*i^5*q__0+612*D__11*b^4*i^7*c[i]+168*D__12*a^2*b^2*i^7*c[i]+612*D__22*a^4*i^7*c[i]+336*D__66*a^2*b^2*i^7*c[i]-82368*a^4*b^4*i^4*q__0+4257*D__11*b^4*i^6*c[i]+1482*D__12*a^2*b^2*i^6*c[i]+4257*D__22*a^4*i^6*c[i]+2964*D__66*a^2*b^2*i^6*c[i]-38016*a^4*b^4*i^3*q__0+15570*D__11*b^4*i^5*c[i]+7068*D__12*a^2*b^2*i^5*c[i]+15570*D__22*a^4*i^5*c[i]+14136*D__66*a^2*b^2*i^5*c[i]+9824*a^4*b^4*i^2*q__0+31959*D__11*b^4*i^4*c[i]+19386*D__12*a^2*b^2*i^4*c[i]+31959*D__22*a^4*i^4*c[i]+38772*D__66*a^2*b^2*i^4*c[i]+13920*a^4*b^4*i*q__0+36198*D__11*b^4*i^3*c[i]+29352*D__12*a^2*b^2*i^3*c[i]+36198*D__22*a^4*i^3*c[i]+58704*D__66*a^2*b^2*i^3*c[i]+3150*a^4*b^4*q__0+20448*D__11*b^4*i^2*c[i]+19048*D__12*a^2*b^2*i^2*c[i]+20448*D__22*a^4*i^2*c[i]+38096*D__66*a^2*b^2*i^2*c[i]+4320*D__11*b^4*i*c[i]-3648*D__12*a^2*b^2*i*c[i]+4320*D__22*a^4*i*c[i]-7296*D__66*a^2*b^2*i*c[i]-8064*D__12*a^2*b^2*c[i]-16128*D__66*a^2*b^2*c[i])/(a^3*(2*i+7)*(2*i-1)*(i+4)^2*(i+3)^2*(2*i+5)^2*(i+2)^2*(2*i+3)^2*(2*i+1)^2*b^3)

(1)

NULL

Download total_PE.mw

@Kitonum 
I have been too hasty. x >= 0 leaves of course two choices for T2. 👍

@Kitonum 

Math put that way in only 2 lines is really nice.
S<=0 seems to be a quite broad definition for solids with a closed surface S=0 as a boundary. 

However, extending your method of defining an intersection with inequalities and max to polyhedrons does not work straight away. I tried to plot a cube and an infinite slice with planes without immediate success. At least with one plane it can be used to chop of the head of an egg.

z^2/9 + (x^2 + y^2)/(4*(1 - z/5)) - 1;
plots:-implicitplot3d(max(%, z - 2), x = -3 .. 3, y = -3 .. 3, z = -3 .. 4, style = surface, color = red, grid = [100, 100, 100]);

Thanks again.

@acer 
Thanks for the clarification

@acer 

Vertical adjustments become tricky. 

If I understand correctly, the question about linking such a user defined symbol to a name should be asked separately.
I am never quite sure when to branch off.

Thank you.

@acer 
HTML is not exactly straightforward either. Is it possible to nudge the Y up a bit?

Can this typesetting output now be liked to a name or user defined operator?

@mmcdara 

Maybe with plottools,extrude its easier to plot a solid.

@mmcdara 

, as you said, is as difficult

restart;
with(plots);
ce := (p, q, r, a, b) -> ((x - p)^2 + (y - q)^2 + (z - r)^2 + a^2 - b^2)^2 - 4*a^2*((x - p)^2 + (y - q)^2);
T1 := ce(1, 1, 1, 2, 1);
T2 := ce(1, 6, 1, 2, 1);
implicitplot3d(min(T1, T2), x = -4 .. 4, y = -2 .. 9.5, z = -1 .. 1, style = surface, color = "Red", grid = [100, 100, 100], scaling = constrained, axes = normal, orientation = [15, 80]);

@Dkunb
There might be some real valued solutions the plot command misses.

Plotting your assumptions reveals that they are "over constrained" (i.e. too many).

assumptions := 1/5 < x, x < 1, 0 < beta, beta < 1, 1/2 < x/(beta*x^2 + 1);
plots:-inequal({assumptions}, x = 0 .. 1, beta = -0.1 .. 1, axes = frame);

I have tried to work with refined assumptions

assumptions_a := 1/2 < x, x < 1, 0 < beta, beta < 1; 
assumptions_b := x < 1, 0 < beta, beta < (2*x - 1)/x^2;

without success.


Maybe someone knows a magic trick to show that roots number 3 an 4 are imaginary

[{x = (-sqrt(3)*5^(2/3)*(5*5^(1/3)*(5*beta^3 + 625 + 18*sqrt(beta)*sqrt(40*beta^4 + 3674*beta^3 + 22575*beta^2 + 29375*beta + 15625) + 1101*beta^2 + 3075*beta)^(2/3) + 5^(2/3)*(17*beta - 50)*(5*beta^3 + 625 + 18*sqrt(beta)*sqrt(40*beta^4 + 3674*beta^3 + 22575*beta^2 + 29375*beta + 15625) + 1101*beta^2 + 3075*beta)^(1/3) + 25*beta^2 - 650*beta + 625)^(3/4)*sqrt(beta) + sqrt(3)*5^(5/6)*sqrt(beta)*sqrt((-5*(5*beta^3 + 625 + 18*sqrt(beta)*sqrt(40*beta^4 + 3674*beta^3 + 22575*beta^2 + 29375*beta + 15625) + 1101*beta^2 + 3075*beta)^(2/3) + (34*beta - 100)*5^(1/3)*(5*beta^3 + 625 + 18*sqrt(beta)*sqrt(40*beta^4 + 3674*beta^3 + 22575*beta^2 + 29375*beta + 15625) + 1101*beta^2 + 3075*beta)^(1/3) + (-5*beta^2 + 130*beta - 125)*5^(2/3))*sqrt(5*5^(1/3)*(5*beta^3 + 625 + 18*sqrt(beta)*sqrt(40*beta^4 + 3674*beta^3 + 22575*beta^2 + 29375*beta + 15625) + 1101*beta^2 + 3075*beta)^(2/3) + 5^(2/3)*(17*beta - 50)*(5*beta^3 + 625 + 18*sqrt(beta)*sqrt(40*beta^4 + 3674*beta^3 + 22575*beta^2 + 29375*beta + 15625) + 1101*beta^2 + 3075*beta)^(1/3) + 25*beta^2 - 650*beta + 625) - 450*(sqrt(beta) + (4*beta^(3/2))/25)*sqrt(5*beta^3 + 625 + 18*sqrt(beta)*sqrt(40*beta^4 + 3674*beta^3 + 22575*beta^2 + 29375*beta + 15625) + 1101*beta^2 + 3075*beta)*5^(2/3)*sqrt(3)) + 45*beta*(5*beta^3 + 625 + 18*sqrt(beta)*sqrt(40*beta^4 + 3674*beta^3 + 22575*beta^2 + 29375*beta + 15625) + 1101*beta^2 + 3075*beta)^(1/6)*(5*5^(1/3)*(5*beta^3 + 625 + 18*sqrt(beta)*sqrt(40*beta^4 + 3674*beta^3 + 22575*beta^2 + 29375*beta + 15625) + 1101*beta^2 + 3075*beta)^(2/3) + 5^(2/3)*(17*beta - 50)*(5*beta^3 + 625 + 18*sqrt(beta)*sqrt(40*beta^4 + 3674*beta^3 + 22575*beta^2 + 29375*beta + 15625) + 1101*beta^2 + 3075*beta)^(1/3) + 25*beta^2 - 650*beta + 625)^(1/4))/(150*beta*(5*beta^3 + 625 + 18*sqrt(beta)*sqrt(40*beta^4 + 3674*beta^3 + 22575*beta^2 + 29375*beta + 15625) + 1101*beta^2 + 3075*beta)^(1/6)*(5*5^(1/3)*(5*beta^3 + 625 + 18*sqrt(beta)*sqrt(40*beta^4 + 3674*beta^3 + 22575*beta^2 + 29375*beta + 15625) + 1101*beta^2 + 3075*beta)^(2/3) + 5^(2/3)*(17*beta - 50)*(5*beta^3 + 625 + 18*sqrt(beta)*sqrt(40*beta^4 + 3674*beta^3 + 22575*beta^2 + 29375*beta + 15625) + 1101*beta^2 + 3075*beta)^(1/3) + 25*beta^2 - 650*beta + 625)^(1/4))}, {x = (-sqrt(3)*5^(2/3)*(5*5^(1/3)*(5*beta^3 + 625 + 18*sqrt(beta)*sqrt(40*beta^4 + 3674*beta^3 + 22575*beta^2 + 29375*beta + 15625) + 1101*beta^2 + 3075*beta)^(2/3) + 5^(2/3)*(17*beta - 50)*(5*beta^3 + 625 + 18*sqrt(beta)*sqrt(40*beta^4 + 3674*beta^3 + 22575*beta^2 + 29375*beta + 15625) + 1101*beta^2 + 3075*beta)^(1/3) + 25*beta^2 - 650*beta + 625)^(3/4)*sqrt(beta) - sqrt(3)*5^(5/6)*sqrt(beta)*sqrt((-5*(5*beta^3 + 625 + 18*sqrt(beta)*sqrt(40*beta^4 + 3674*beta^3 + 22575*beta^2 + 29375*beta + 15625) + 1101*beta^2 + 3075*beta)^(2/3) + (34*beta - 100)*5^(1/3)*(5*beta^3 + 625 + 18*sqrt(beta)*sqrt(40*beta^4 + 3674*beta^3 + 22575*beta^2 + 29375*beta + 15625) + 1101*beta^2 + 3075*beta)^(1/3) + (-5*beta^2 + 130*beta - 125)*5^(2/3))*sqrt(5*5^(1/3)*(5*beta^3 + 625 + 18*sqrt(beta)*sqrt(40*beta^4 + 3674*beta^3 + 22575*beta^2 + 29375*beta + 15625) + 1101*beta^2 + 3075*beta)^(2/3) + 5^(2/3)*(17*beta - 50)*(5*beta^3 + 625 + 18*sqrt(beta)*sqrt(40*beta^4 + 3674*beta^3 + 22575*beta^2 + 29375*beta + 15625) + 1101*beta^2 + 3075*beta)^(1/3) + 25*beta^2 - 650*beta + 625) - 450*(sqrt(beta) + (4*beta^(3/2))/25)*sqrt(5*beta^3 + 625 + 18*sqrt(beta)*sqrt(40*beta^4 + 3674*beta^3 + 22575*beta^2 + 29375*beta + 15625) + 1101*beta^2 + 3075*beta)*5^(2/3)*sqrt(3)) + 45*beta*(5*beta^3 + 625 + 18*sqrt(beta)*sqrt(40*beta^4 + 3674*beta^3 + 22575*beta^2 + 29375*beta + 15625) + 1101*beta^2 + 3075*beta)^(1/6)*(5*5^(1/3)*(5*beta^3 + 625 + 18*sqrt(beta)*sqrt(40*beta^4 + 3674*beta^3 + 22575*beta^2 + 29375*beta + 15625) + 1101*beta^2 + 3075*beta)^(2/3) + 5^(2/3)*(17*beta - 50)*(5*beta^3 + 625 + 18*sqrt(beta)*sqrt(40*beta^4 + 3674*beta^3 + 22575*beta^2 + 29375*beta + 15625) + 1101*beta^2 + 3075*beta)^(1/3) + 25*beta^2 - 650*beta + 625)^(1/4))/(150*beta*(5*beta^3 + 625 + 18*sqrt(beta)*sqrt(40*beta^4 + 3674*beta^3 + 22575*beta^2 + 29375*beta + 15625) + 1101*beta^2 + 3075*beta)^(1/6)*(5*5^(1/3)*(5*beta^3 + 625 + 18*sqrt(beta)*sqrt(40*beta^4 + 3674*beta^3 + 22575*beta^2 + 29375*beta + 15625) + 1101*beta^2 + 3075*beta)^(2/3) + 5^(2/3)*(17*beta - 50)*(5*beta^3 + 625 + 18*sqrt(beta)*sqrt(40*beta^4 + 3674*beta^3 + 22575*beta^2 + 29375*beta + 15625) + 1101*beta^2 + 3075*beta)^(1/3) + 25*beta^2 - 650*beta + 625)^(1/4))}]

  Even then only the first root fits to your assumptions (see the plot above).
 

More observations that were repeatable at least 3 times:

  • A successfully loaded classic worksheet (*.mws) saved under to the *.mw format could always been opened by double-click with 2023.
  • When running Maple 2021 (or other instances of Maple) in parallel while the computer was on battery, the classic worksheet could be opened by double-click. Without other instances running in parallel Maple 2023 froze at the fist double-click.
  • Back in office running the computer plugged in did not show a dependency on other instances of Maple running in parallel. This time Maple 2023 froze on the second double-click after a first successful attempt to open by double-click (Maple was closed before the second double-click).  The second double-click to freeze Maple 2023 was a new behavior.
  • After logging out and in, no freezes occurred. At this point, I saw myself in my mind being taken away in a straitjacket, screaming, but it really happened. I decided to discontinue my investigations and opened other applications. For some reason I double clicked one last time and Maple 2023 froze again. Finally, it turned out that Maple froze when a pdf reader (Foxit) was running in parallel.   
  • I decided a reboot and (unplanned) Windows was updated. Since then, I can’t force a freeze anymore.

If this case were repeatable, I would ask differently now: Why does Maple 2023 freeze under certain states of the computer system when opening this particular classic worksheet

With the update of Windows on my computer, this case is now a cold case

@mmcdara 

I get squares on my computer with 2023. Can you send a screen shot how it should look like?

Update: It looks like this after opening

@all: Is that reproducible on other computers or is it only my local installation?

 

@Nicole Sharp 
I do not think it’s a bug its more an enhancement you are looking for which I would also welcome for text passages. If you want to do math with it, you could try in the meatime the following:

Not an ideal workaround to start with:
1. Use the handwriting palette to find a symbol that matches the character you want to display best.

2. put the palette symbol in left single quotes (back ticks) to make it a Maple symbol (parseable from the GUI to the Maple engine/server)

`&dtri;` = 1, `&dtri;&dtri;` = 2, `&dtri;&dtri;&dtri;` = 3

`&dtri;` = 1, `&dtri;&dtri;` = 2, `&dtri;&dtri;&dtri;` = 3

(1)

3. Define expressions to do ancient math (here with modern symbols for operators)

`&dtri;`+`&dtri;&dtri;`+`&dtri;&dtri;&dtri;`

`&dtri;`+`&dtri;&dtri;`+`&dtri;&dtri;&dtri;`

(2)

`&dtri;&dtri;`/`&dtri;&dtri;&dtri;`

`&dtri;&dtri;`/`&dtri;&dtri;&dtri;`

(3)

`&dtri;`+`&dtri;&dtri;`+`&dtri;&dtri;&dtri;` = subs(`&dtri;` = 1, `&dtri;&dtri;` = 2, `&dtri;&dtri;&dtri;` = 3, `&dtri;`+`&dtri;&dtri;`+`&dtri;&dtri;&dtri;`)

`&dtri;`+`&dtri;&dtri;`+`&dtri;&dtri;&dtri;` = 6

(4)

(proc (x) options operator, arrow; x = subs(`&dtri;` = 1, `&dtri;&dtri;` = 2, `&dtri;&dtri;&dtri;` = 3, x) end proc)(`&dtri;&dtri;`/`&dtri;&dtri;&dtri;`)

`&dtri;&dtri;`/`&dtri;&dtri;&dtri;` = 2/3

(5)

Or if you want to permanently assign values to the symbols

assign(`&dtri;` = 1, `&dtri;&dtri;` = 2, `&dtri;&dtri;&dtri;` = 3)

`&dtri;`; `&dtri;&dtri;`; `&dtri;&dtri;&dtri;`

3

(6)

'`&dtri;`+`&dtri;&dtri;`+`&dtri;&dtri;&dtri;`' = `&dtri;`+`&dtri;&dtri;`+`&dtri;&dtri;&dtri;`

`&dtri;`+`&dtri;&dtri;`+`&dtri;&dtri;&dtri;` = 6

(7)

((proc (x::uneval) options operator, arrow; x end proc) = value)(`&dtri;&dtri;`/`&dtri;&dtri;&dtri;`)

`&dtri;&dtri;`/`&dtri;&dtri;&dtri;` = 2/3

(8)

NULL

Download userdefined_symbols.mw

And yes, fun is important in life! 🙂

@mmcdara 
Kitonum is correct. I used jargon from CAD where intersection is the operation to drill holes into a body, for example.
Thank you for providing the intersection line that I needed as well. Both answers fit nicely together.
@Kitonum 

To express my reaction in HTML: &#x1f632
Can you give me hint what max does with implict geometries?

I am missing something important here.
min, by the way, leaves out the inner surfaces which is nice as well.

First 18 19 20 21 22 23 24 Last Page 20 of 36