Christopher2222

MaplePrimes Activity


These are replies submitted by Christopher2222

Maple's adaptability makes it easy to add such functions.  Thanks.  I was just curious that maybe I was overlooking a command somewhere. 

Could also just multiply the binomial by r! -  convert(r!*binomial(n,r),factorial)

 

Also, I never knew .. something like .. a:=unapply(b/c,b,c) was equivalent to a:=(b,c)->b/c  I haven't realized unapply could be used that way thanks for that too.

 

Not really maple related, but simply, you have 52 cards and half (26) of them are black it is 26/52 = 0.5

How about what is the probability of picking 5 black cards?
26/52 * 25/51 * 24/50 * 23/49 * 22/48  = .02531012404

And two cards

1 red and 1 black card?
26/52*26/51 = 0.2549019608

2 red cards
26/52 * 25/51 = 0.2450980392

That is your more likely to pick one black and one red than you are of two cards the same color.

Ah, okay numpoints default is 50 in M12 the numpoints default in M17 is 200.  Changing to 200 in M12 with anti-aliasing on, achieves the same wavering result shown in M17

Interestingly even numbered points specified in numpoints has the x^2 line away from the x axis.  For M12 not specifying numpoints=50 uses a default of 50 but uses different points (and the line is on the axis) Why is that?

Ah, okay numpoints default is 50 in M12 the numpoints default in M17 is 200.  Changing to 200 in M12 with anti-aliasing on, achieves the same wavering result shown in M17

Interestingly even numbered points specified in numpoints has the x^2 line away from the x axis.  For M12 not specifying numpoints=50 uses a default of 50 but uses different points (and the line is on the axis) Why is that?

Actually copying the lprint output of Maple 17 to M12 and running the PLOT(CURVES(Matrix .. HFloats ..))  uses 11Mb and maybe slightly produces the waiver in the line but is not too noticeable. 

using showstat(plot) the calling to underlying routines is exactly the same.  Perhaps some wrapper calling an M12 routine in M17 could produce the same CURVES plot without the Matrix?

using lprint we can see what's involved in drawing the curves.

In M12 lprint(%) produces

PLOT(CURVES([[-10., 100.], [-9.56405691666666690, 91.4711847052395086], [-9.18474517083333274, 84.3595438531462208], [-8.75816944166666644, 76.7055319689438022], [-8.32876609166666704, 69.3683446096964503], [-7.90140362083333336, 62.4321791793181120], [-7.50518390416666659, 56.3277854353624079], [-7.09492133750000064, 50.3379087853127985], [-6.67062720416666632, 44.4972672969683956], [-6.24769378749999938, 39.0336776623660882], [-5.81265478333333263, 33.7869556302078706], [-5.42947219166666617, 29.4791682800816304], [-4.99809934999999950, 24.9809971124704192], [-4.56495524999999968, 20.8388164345025580], [-4.14754064999999984, 17.2020934434024220], [-3.76848820416666630, 14.2015033449433048], [-3.31775818333333294, 11.0075193630752981], [-2.93593073333333265, 8.61968927093120030], [-2.49177463749999984, 6.20894084408825542], [-2.09862123333333360, 4.40421108099752257], [-1.66726963749999868, 2.77978804412937696], [-1.25652091249999920, 1.57884480354983058], [-.827947708333331534, .685497407734415476], [-.434383720833332987, .188689216925010978], [-0.987179166666685150e-2, 0.974522707100730932e-4], [.431076795833334359, .185827203905934240], [.814923837500000302, .664100860925726955], [1.22948915833333494, 1.51164359045921226], [1.65777570000000018, 2.74822027151049042], [2.07677052500000058, 4.31297581350877835], [2.48216956250000110, 6.16116573700144698], [2.93229607500000000, 8.59836027146040570], [3.33675476666666526, 11.1339323728727120], [3.76860075000000094, 14.2023516129005696], [4.15991739583333242, 17.3049127401567731], [4.58772985000000232, 21.0472651765810426], [4.99026802916666590, 24.9027750029229616], [5.41103641250000145, 29.2793150574008863], [5.82241441666666582, 33.9005096394078294], [6.25308906249999908, 39.1011228235571196], [6.66787993333333516, 44.4606228053493596], [7.09206350833333586, 50.2973648062333467], [7.51273462916666901, 56.4411816082800471], [7.89928770000000212, 62.3987461673713213], [8.34232114166666960, 69.5943220306986916], [8.73857553333333570, 76.3627023517719863], [9.16106536250000048, 83.9251185759972600], [9.56544203750000222, 91.4976813727721918], [10., 100.]], COLOUR(RGB, 1.00000000, 0., 0.)), AXESLABELS(x, ""), VIEW(-10. .. 10., DEFAULT))

Having access to M17 once again we can see M17's underlying structure

PLOT(CURVES(Matrix(200, 2, {(1, 1) = HFloat(-10.), (1, 2) = HFloat(100.), (2, 1) = HFloat(-9.89484789949748666), (2, 2) = HFloat(97.9080149541898238), (3, 1) = HFloat(-9.80335561909547692), (3, 2) = HFloat(96.1057813944508581), (4, 1) = HFloat(-9.70046298090452197), (4, 2) = HFloat(94.0989820438990421), (5, 1) = HFloat(-9.59688830351758780), (5, 2) = HFloat(92.1002651101926801), (6, 1) = HFloat(-9.49380589849246270), (6, 2) = HFloat(90.1323504382502705), (7, 1) = HFloat(-9.39823531356783980), (7, 2) = HFloat(88.3268270091935932), (8, 1) = HFloat(-9.29927750854271372), (8, 2) = HFloat(86.4765621808883794), (9, 1) = HFloat(-9.19693520502512562), (9, 2) = HFloat(84.5836171654305532), (10, 1) = HFloat(-9.09492111457286434), (10, 2) = HFloat(82.7175900803033102), (11, 1) = HFloat(-8.98998708341708586), (11, 2) = HFloat(80.8198677600060478), (12, 1) = HFloat(-8.89756113165829098), (12, 2) = HFloat(79.1665940915963660), (13, 1) = HFloat(-8.79351140100502526), (13, 2) = HFloat(77.3258427596053650), (14, 1) = HFloat(-8.68903443216080440), (14, 2) = HFloat(75.4993193632760296), (15, 1) = HFloat(-8.58835151356783832), (15, 2) = HFloat(73.7597817206029732), (16, 1) = HFloat(-8.49692177788944746), (16, 2) = HFloat(72.1976796995719639), (17, 1) = HFloat(-8.38820297889447274), (17, 2) = HFloat(70.3619492151341035), (18, 1) = HFloat(-8.29610389547738690), (18, 2) = HFloat(68.8253398445550744), (19, 1) = HFloat(-8.18897076683417068), (19, 2) = HFloat(67.0592422200646325), (20, 1) = HFloat(-8.09413979497487368), (20, 2) = HFloat(65.5150990205958834), (21, 1) = HFloat(-7.99009518894472314), (21, 2) = HFloat(63.8416211283976126), (22, 1) = HFloat(-7.89102011959798942), (22, 2) = HFloat(62.2681985279002675), (23, 1) = HFloat(-7.78764567839195898), (23, 2) = HFloat(60.6474252121769554), (24, 1) = HFloat(-7.69271567135678324), (24, 2) = HFloat(59.1778744003382471), (25, 1) = HFloat(-7.59032083417085434), (25, 2) = HFloat(57.6129703656481312), (26, 1) = HFloat(-7.48396137587939680), (26, 2) = HFloat(56.0096778756546314), (27, 1) = HFloat(-7.39137515477386930), (27, 2) = HFloat(54.6324266786084394), (28, 1) = HFloat(-7.29137949949748698), (28, 2) = HFloat(53.1642150056922205), (29, 1) = HFloat(-7.18807420301507526), (29, 2) = HFloat(51.6684107480508104), (30, 1) = HFloat(-7.08701012462311564), (30, 2) = HFloat(50.2257125065105470), (31, 1) = HFloat(-6.98922543216080428), (31, 2) = HFloat(48.8492721415633824), (32, 1) = HFloat(-6.88065220301507540), (32, 2) = HFloat(47.3433747388562125), (33, 1) = HFloat(-6.78309432763819054), (33, 2) = HFloat(46.0103686576373931), (34, 1) = HFloat(-6.67893047236180858), (34, 2) = HFloat(44.6081122546431318), (35, 1) = HFloat(-6.58454253768844210), (35, 2) = HFloat(43.3562004306285474), (36, 1) = HFloat(-6.48135159396984940), (36, 2) = HFloat(42.0079184846555052), (37, 1) = HFloat(-6.38425695778894474), (37, 2) = HFloat(40.7587369030765530), (38, 1) = HFloat(-6.28276508643216048), (38, 2) = HFloat(39.4731371312909118), (39, 1) = HFloat(-6.18353823115577938), (39, 2) = HFloat(38.2361450561651424), (40, 1) = HFloat(-6.07965690954773840), (40, 2) = HFloat(36.9622281378115574), (41, 1) = HFloat(-5.97960685025125560), (41, 2) = HFloat(35.7556980835717440), (42, 1) = HFloat(-5.87729121407035126), (42, 2) = HFloat(34.5425520149885444), (43, 1) = HFloat(-5.77582280301507468), (43, 2) = HFloat(33.3601290518289133), (44, 1) = HFloat(-5.68258387135678332), (44, 2) = HFloat(32.2917594550042466), (45, 1) = HFloat(-5.57572153366834122), (45, 2) = HFloat(31.0886706210128381), (46, 1) = HFloat(-5.48014258492462326), (46, 2) = HFloat(30.0319627511043308), (47, 1) = HFloat(-5.37823549045226112), (47, 2) = HFloat(28.9254169907602724), (48, 1) = HFloat(-5.28069739798994942), (48, 2) = HFloat(27.8857650091378240), (49, 1) = HFloat(-5.17239388140703492), (49, 2) = HFloat(26.7536584644169332), (50, 1) = HFloat(-5.07861099396984894), (50, 2) = HFloat(25.7922896280714156), (51, 1) = HFloat(-4.97216657788944706), (51, 2) = HFloat(24.7224404782808556), (52, 1) = HFloat(-4.87515404824120590), (52, 2) = HFloat(23.7671269940826200), (53, 1) = HFloat(-4.76903758693467328), (53, 2) = HFloat(22.7437195055956920), (54, 1) = HFloat(-4.67747702713567824), (54, 2) = HFloat(21.8787913393820226), (55, 1) = HFloat(-4.57320023718592950), (55, 2) = HFloat(20.9141604093974430), (56, 1) = HFloat(-4.47247400603015066), (56, 2) = HFloat(20.0030237346153825), (57, 1) = HFloat(-4.37181357688442152), (57, 2) = HFloat(19.1127539510309603), (58, 1) = HFloat(-4.27152345929648192), (58, 2) = HFloat(18.2459126633201834), (59, 1) = HFloat(-4.17517605326633134), (59, 2) = HFloat(17.4320950757686184), (60, 1) = HFloat(-4.07102195577889426), (60, 2) = HFloat(16.5732197644338122), (61, 1) = HFloat(-3.97175554874371796), (61, 2) = HFloat(15.7748421389765118), (62, 1) = HFloat(-3.86728232964824058), (62, 2) = HFloat(14.9558726172095238), (63, 1) = HFloat(-3.77270890854271368), (63, 2) = HFloat(14.2333325085975542), (64, 1) = HFloat(-3.66818757386934634), (64, 2) = HFloat(13.4556000770894820), (65, 1) = HFloat(-3.56807434874371854), (65, 2) = HFloat(12.7311545581629116), (66, 1) = HFloat(-3.46820480201005044), (66, 2) = HFloat(12.0284445486855738), (67, 1) = HFloat(-3.36389067336683300), (67, 2) = HFloat(11.3157604623643646), (68, 1) = HFloat(-3.26781355276381902), (68, 2) = HFloat(10.6786054156268922), (69, 1) = HFloat(-3.16941743919597928), (69, 2) = HFloat(10.0452069038795990), (70, 1) = HFloat(-3.06077643819095436), (70, 2) = HFloat(9.36835240458490580), (71, 1) = HFloat(-2.96241091055276406), (71, 2) = HFloat(8.77587840296205712), (72, 1) = HFloat(-2.86181373366834090), (72, 2) = HFloat(8.18997784621272906), (73, 1) = HFloat(-2.75950899597989886), (73, 2) = HFloat(7.61488989889398926), (74, 1) = HFloat(-2.66547103417085384), (74, 2) = HFloat(7.10473583400384090), (75, 1) = HFloat(-2.56522961206030064), (75, 2) = HFloat(6.58040296259104096), (76, 1) = HFloat(-2.46575123417085430), (76, 2) = HFloat(6.07992914881509084), (77, 1) = HFloat(-2.35934029145728540), (77, 2) = HFloat(5.56648661089374830), (78, 1) = HFloat(-2.26543724422110594), (78, 2) = HFloat(5.13220590750411887), (79, 1) = HFloat(-2.15709262110552746), (79, 2) = HFloat(4.65304857602791434), (80, 1) = HFloat(-2.05931995175879390), (80, 2) = HFloat(4.24079866371184089), (81, 1) = HFloat(-1.96257900603015046), (81, 2) = HFloat(3.85171635491029330), (82, 1) = HFloat(-1.85855141105527722), (82, 2) = HFloat(3.45421334753556186), (83, 1) = HFloat(-1.75410300301507506), (83, 2) = HFloat(3.07687734518650436), (84, 1) = HFloat(-1.65907041708542736), (84, 2) = HFloat(2.75251464884801368), (85, 1) = HFloat(-1.55815003216080328), (85, 2) = HFloat(2.42783152272271208), (86, 1) = HFloat(-1.45966159999999868), (86, 2) = HFloat(2.13061198651455630), (87, 1) = HFloat(-1.35289910050251194), (87, 2) = HFloat(1.83033597614050581), (88, 1) = HFloat(-1.26051985527638166), (88, 2) = HFloat(1.58891030554599010), (89, 1) = HFloat(-1.15441893366834058), (89, 2) = HFloat(1.33268307441194844), (90, 1) = HFloat(-1.05467848944723564), (90, 2) = HFloat(1.11234671610270275), (91, 1) = HFloat(-.955901429145727732), (91, 2) = HFloat(.913747542242844713), (92, 1) = HFloat(-.857045790954773068), (92, 2) = HFloat(.734527487793292578), (93, 1) = HFloat(-.756219297487437104), (93, 2) = HFloat(.571867625892392928), (94, 1) = HFloat(-.649344903517588890), (94, 2) = HFloat(.421648803724266830), (95, 1) = HFloat(-.551351549748742897), (95, 2) = HFloat(.303988531410340490), (96, 1) = HFloat(-.454619526633166516), (96, 2) = HFloat(.206678913996164394), (97, 1) = HFloat(-.351214585929648493), (97, 2) = HFloat(.123351685369734440), (98, 1) = HFloat(-.248034748743718226), (98, 2) = HFloat(0.615212365843594290e-1), (99, 1) = HFloat(-.155424717587939298), (99, 2) = HFloat(0.241568428372906860e-1), (100, 1) = HFloat(-0.457214572864312886e-1), (100, 2) = HFloat(0.209045165639496064e-2), (101, 1) = HFloat(0.460731437185923909e-1), (101, 2) = HFloat(0.212273457211406948e-2), (102, 1) = HFloat(.153437240201004243), (102, 2) = HFloat(0.235429866805006716e-1), (103, 1) = HFloat(.255905869346733538), (103, 2) = HFloat(0.654878139661074500e-1), (104, 1) = HFloat(.347398149748743278), (104, 2) = HFloat(.120685474448850263), (105, 1) = HFloat(.450290787939700010), (105, 2) = HFloat(.202761793703355897), (106, 1) = HFloat(.553865465326634165), (106, 2) = HFloat(.306766953681488986), (107, 1) = HFloat(.656947870351759278), (107, 2) = HFloat(.431580504359711903), (108, 1) = HFloat(.752518455276382170), (108, 2) = HFloat(.566284025531552438), (109, 1) = HFloat(.851476260301508248), (109, 2) = HFloat(.725011821857041828), (110, 1) = HFloat(.953818563819094578), (110, 2) = HFloat(.909769852685920144), (111, 1) = HFloat(1.05583265427135764), (111, 2) = HFloat(1.11478259382570033), (112, 1) = HFloat(1.16076668542713612), (112, 2) = HFloat(1.34737929799749990), (113, 1) = HFloat(1.25319263718592922), (113, 2) = HFloat(1.57049178589702398), (114, 1) = HFloat(1.35724236783919672), (114, 2) = HFloat(1.84210684505774935), (115, 1) = HFloat(1.46171933668341758), (115, 2) = HFloat(2.13662341923421018), (116, 1) = HFloat(1.56240225527638366), (116, 2) = HFloat(2.44110080729273004), (117, 1) = HFloat(1.65383199095477452), (117, 2) = HFloat(2.73516025430543319), (118, 1) = HFloat(1.76255078994974924), (118, 2) = HFloat(3.10658528715248483), (119, 1) = HFloat(1.85464987336683328), (119, 2) = HFloat(3.43972615277961058), (120, 1) = HFloat(1.96178300201005130), (120, 2) = HFloat(3.84859254697556884), (121, 1) = HFloat(2.05661397386934652), (121, 2) = HFloat(4.22966103751466527), (122, 1) = HFloat(2.16065857989949706), (122, 2) = HFloat(4.66844549889331172), (123, 1) = HFloat(2.25973364924623078), (123, 2) = HFloat(5.10639616553568754), (124, 1) = HFloat(2.36310809045226122), (124, 2) = HFloat(5.58427984716093206), (125, 1) = HFloat(2.45803809748743874), (125, 2) = HFloat(6.04195128869966780), (126, 1) = HFloat(2.56043293467336852), (126, 2) = HFloat(6.55581681296007802), (127, 1) = HFloat(2.66679239296482428), (127, 2) = HFloat(7.11178166717505356), (128, 1) = HFloat(2.75937861407035356), (128, 2) = HFloat(7.61417033578882485), (129, 1) = HFloat(2.85937426934673410), (129, 2) = HFloat(8.17602121220216914), (130, 1) = HFloat(2.96267956582914494), (130, 2) = HFloat(8.77747020978157088), (131, 1) = HFloat(3.06374364422110724), (131, 2) = HFloat(9.38652511750523110), (132, 1) = HFloat(3.16152833668341770), (132, 2) = HFloat(9.99526142365221836), (133, 1) = HFloat(3.27010156582914746), (133, 2) = HFloat(10.6935642508382430), (134, 1) = HFloat(3.36765944120602966), (134, 2) = HFloat(11.3411301119441088), (135, 1) = HFloat(3.47182329648241250), (135, 2) = HFloat(12.0535570019980050), (136, 1) = HFloat(3.56621123115577988), (136, 2) = HFloat(12.7178625452216228), (137, 1) = HFloat(3.66940217487437080), (137, 2) = HFloat(13.4645123209727622), (138, 1) = HFloat(3.76649681105527812), (138, 2) = HFloat(14.1864982276895795), (139, 1) = HFloat(3.86798868241206150), (139, 2) = HFloat(14.9613364472677954), (140, 1) = HFloat(3.96721553768844260), (140, 2) = HFloat(15.7387991224765980), (141, 1) = HFloat(4.07109685929648358), (141, 2) = HFloat(16.5738296377736916), (142, 1) = HFloat(4.17114691859296548), (142, 2) = HFloat(17.3984666164875926), (143, 1) = HFloat(4.27346255477386806), (143, 2) = HFloat(18.2624822070543935), (144, 1) = HFloat(4.37493096582914730), (144, 2) = HFloat(19.1400209557707548), (145, 1) = HFloat(4.46816989748743688), (145, 2) = HFloat(19.9645422328128924), (146, 1) = HFloat(4.57503223517587898), (146, 2) = HFloat(20.9309199528983996), (147, 1) = HFloat(4.67061118391960050), (147, 2) = HFloat(21.8146088313548532), (148, 1) = HFloat(4.77251827839195996), (148, 2) = HFloat(22.7769307175853584), (149, 1) = HFloat(4.87005637085427346), (149, 2) = HFloat(23.7174490552982960), (150, 1) = HFloat(4.97835988743718616), (150, 2) = HFloat(24.7840671688435920), (151, 1) = HFloat(5.07214277487437216), (151, 2) = HFloat(25.7266323287102950), (152, 1) = HFloat(5.17858719095477404), (152, 2) = HFloat(26.8177652943208572), (153, 1) = HFloat(5.27559972060301518), (153, 2) = HFloat(27.8319524120266132), (154, 1) = HFloat(5.38171618190954782), (154, 2) = HFloat(28.9628690626270818), (155, 1) = HFloat(5.47327674170854372), (155, 2) = HFloat(29.9567582913276916), (156, 1) = HFloat(5.57755353165829248), (156, 2) = HFloat(31.1091033985138914), (157, 1) = HFloat(5.67827976281407132), (157, 2) = HFloat(32.2428610647838241), (158, 1) = HFloat(5.77894019195979958), (158, 2) = HFloat(33.3961497422483618), (159, 1) = HFloat(5.87923030954773828), (159, 2) = HFloat(34.5653490327047948), (160, 1) = HFloat(5.97557771557789152), (160, 2) = HFloat(35.7075290349110902), (161, 1) = HFloat(6.07973181306532950), (161, 2) = HFloat(36.9631389187986414), (162, 1) = HFloat(6.17899822010050314), (162, 2) = HFloat(38.1800190040051888), (163, 1) = HFloat(6.28347143919598140), (163, 2) = HFloat(39.4820133271916164), (164, 1) = HFloat(6.37804486030150740), (164, 2) = HFloat(40.6794562400184746), (165, 1) = HFloat(6.48256619497487564), (165, 2) = HFloat(42.0236644722310402), (166, 1) = HFloat(6.58267942010050432), (166, 2) = HFloat(43.3316683478147127), (167, 1) = HFloat(6.68254896683417242), (167, 2) = HFloat(44.6564606941364630), (168, 1) = HFloat(6.78686309547738632), (168, 2) = HFloat(46.0615106767528886), (169, 1) = HFloat(6.88294021608040296), (169, 2) = HFloat(47.3748660181369417), (170, 1) = HFloat(6.98133632964824358), (170, 2) = HFloat(48.7390569476664126), (171, 1) = HFloat(7.08997733065326586), (171, 2) = HFloat(50.2677785491772085), (172, 1) = HFloat(7.18834285829145968), (172, 2) = HFloat(51.6722730483498296), (173, 1) = HFloat(7.28894003517588018), (173, 2) = HFloat(53.1286468363897626), (174, 1) = HFloat(7.39124477286432224), (174, 2) = HFloat(54.6304992923941698), (175, 1) = HFloat(7.48528273467336902), (175, 2) = HFloat(56.0294576179992276), (176, 1) = HFloat(7.58552415678392222), (176, 2) = HFloat(57.5401767331524354), (177, 1) = HFloat(7.68500253467336946), (177, 2) = HFloat(59.0592639579361105), (178, 1) = HFloat(7.79141347738693568), (178, 2) = HFloat(60.7061239756067792), (179, 1) = HFloat(7.88531652462311428), (179, 2) = HFloat(62.1782166934943490), (180, 1) = HFloat(7.99366114773869540), (180, 2) = HFloat(63.8986185448671194), (181, 1) = HFloat(8.09143381708542718), (181, 2) = HFloat(65.4713012162736448), (182, 1) = HFloat(8.18817476281407152), (182, 2) = HFloat(67.0462059463852711), (183, 1) = HFloat(8.29220235778894832), (183, 2) = HFloat(68.7606199425205916), (184, 1) = HFloat(8.39665076582914692), (184, 2) = HFloat(70.5037440832991962), (185, 1) = HFloat(8.49168335175879462), (185, 2) = HFloat(72.1086861465374796), (186, 1) = HFloat(8.59260373668341870), (186, 2) = HFloat(73.8328389756658510), (187, 1) = HFloat(8.69109216884422152), (187, 2) = HFloat(75.5350830873453560), (188, 1) = HFloat(8.79785466834171004), (188, 2) = HFloat(77.4022467652620208), (189, 1) = HFloat(8.89023391356784030), (189, 2) = HFloat(79.0362590379517513), (190, 1) = HFloat(8.99633483517587962), (190, 2) = HFloat(80.9340404665990150), (191, 1) = HFloat(9.09607527939698812), (191, 2) = HFloat(82.7385854884569910), (192, 1) = HFloat(9.19485233969849602), (192, 2) = HFloat(84.5453095488589100), (193, 1) = HFloat(9.29370797788944714), (193, 2) = HFloat(86.3730079782859548), (194, 1) = HFloat(9.39453447135678486), (194, 2) = HFloat(88.2572779335109061), (195, 1) = HFloat(9.50140886532663487), (195, 2) = HFloat(90.2767704261075750), (196, 1) = HFloat(9.59940221909547730), (196, 2) = HFloat(92.1485229639751680), (197, 1) = HFloat(9.69613424221105546), (197, 2) = HFloat(94.0150192429777576), (198, 1) = HFloat(9.79953918291457526), (198, 2) = HFloat(96.0309681974780602), (199, 1) = HFloat(9.90271902010050198), (199, 2) = HFloat(98.0638439910602529), (200, 1) = HFloat(10.), (200, 2) = HFloat(100.)}, datatype = float[8], storage = rectangular, order = Fortran_order, shape = []), COLOUR(RGB, .47058824, 0., 0.54901961e-1, _ATTRIBUTE("source" = "mathdefault"))), AXESLABELS(x, ""), VIEW(-10. .. 10., DEFAULT, _ATTRIBUTE("source" = "mathdefault")))

Whoa!  much longer and a lot of HFloat's.  I don't know if we need the HFloats in there, do we?  Isn't that a bit excessive?

Indeed if we enter M12's lprint output in Maple17 we can replicate M12's output in M17.  But how can we do it more simply (as a plot command)?  It appears the underlying default controlling the plot structure immediately uses Matrix.  Anyone?  Any insight?

Regarding the girl probability, would it make a difference if the boy was older or younger than the sibling? 

Outside of the original question - an interesting thought - I would like to think there are most likely other factors at play, since it is the male who is the only one to contribute an X or a Y chromosome hence determine the sex of the child.   Wouldn't his interactions with other people, that is if he hung around more females cause him to have a higher male Y chromosome probability and thus have a boy and similarily hanging around more guys cause him to have a higher X chromosome contribution hence a girl?  That would make a ladies man more likely to have a boy as their first child. 

It is an interesting post. 

It would also be interesting to see a comparison of two routes on fuel mileage.  One in particular I had in mind was a 12km route of 100km/h hwy driving one stop sign at the 11.5 km mark onto a 70 km/h hwy to the join point.  The other route is through town and only 10km but with 5 stop lights and two stop signs but where max speed shouldn't exceed 60- 70km/h.

On average it is a good estimate to say it roughly costs 10 cents per km for ease of calculations.  Tracking my two cars so far the average it costs me to drive is 8.6 and 8.4 cents per km (hyundai touring standard transmission and honda civic automatic transmission respectively) and the fuel mileage 7.2 and 6.8 L/100km (or 14.5 and 15.1 km/L). The best I ever got for both cars was 5.9 L/100km or 16.9km/L.

Now based on distance alone it's going to cost me in my civic 84 cents to go through town or $1.01 rounding up to go the highway route.  But am I really going to save almost 20 cents going through town?  Lots of possible stops along the way, it would be interesting to use statistics here.  Some lights are longer than others and what's the probabilities that you would hit all the lights green?  .. or red?  How about your wait time at the stop signs?  Some are longer than others.  ... I wonder if we could use a Markov chain here?

And then there's the drag coefficient that really bites into your mileage along the highway and that won't be that much of a factor driving through town, but your engine will be running longer guzzling fuel at those stop lights and stop signs.  So fuel mileage wise, does it work out even in the end?  Then there's a time factor.  Which route is the fastest? and how much time do you save?

Perhaps a general equation could be derived based on the number of stop signs, stop lights and speed limit along your route that would closely estimate how much your drive would cost? 

@Carl Love Never before now have I heard of osculating before.  Hence I mis-interperetted it as a spelling error for oscillating.  Now it is clear.  A simple look up in google would have spared me.

Can you show what you have done so far?  It is not clear what this red oscillating circle is, I am guessing it rolls back and forth within the ellipse?

Animating the graph still gives the best visualization. 

Animating the graph still gives the best visualization. 

Anyone else have any favorite memories or stories out there?

Scale works great.  The style=points option originally was intended to keep the responsiveness as high as possible.  The style=patchnogrid option was also what was intended. 

Scale works great.  The style=points option originally was intended to keep the responsiveness as high as possible.  The style=patchnogrid option was also what was intended. 

First 73 74 75 76 77 78 79 Last Page 75 of 155