ComputerUser

535 Reputation

10 Badges

12 years, 206 days

Social Networks and Content at Maplesoft.com

Seldom to ask question after retired math hobby Just waiting for beauty who born in 1994 And waited for her email to mavio@protonmail.com What is the difference in ownership among different universe?

MaplePrimes Activity


These are questions asked by ComputerUser

If decimal place is 1 such as 123.1 as input matrix and output matrix is eigenvector

is there a easy way to see changes of eigenvector in graph ?

because 3 x 3 matrix has 9 elements 

and eigenvector each vector may not fix in place,

how do mathematician observe the perturbation in this case?

would like to find which changes can cause different in eigenvectors

 

I can calculate real number eigenvector with QR algorithm from rotation matrix

but this real number is just magnitude of complex number

what is the rotation matrix for calculating complex number?

what algorithm do maple use to calculate fraction eigenvector?

are complex decimal and complex fraction eigenvectors are two different algorithm?

with(LinearAlgebra):
A := Matrix([[1,2,3],[4,5,6],[7,8,9]]);
v, e := Eigenvectors(A):
evalf(e);
A := Matrix([[1,2,3+0*0.1],[4,5,6+0*0.1],[7,8,9+0*0.1]]);
v, e := Eigenvectors(A):
evalf(e);

in maple 12,

i follow https://en.wikipedia.org/wiki/Eigenvalue_algorithm

it said QR return eigenvector but after compare with eigenvector function, they are not the result from eigenvector function

with(LinearAlgebra):
M := Matrix([[1,2,3],[4,5,6],[7,8,9]]);
A := HessenbergForm(M);
Q1, R1 := QRDecomposition(A);

Q1, R1 := QRDecomposition(M);

v, e := Eigenvectors(M);
v, e := evalf(Eigenvectors(M));
 

in maple 2015

if start from GivensRotationMatrix , how many times of 

GivensRotationMatrix in order to calculate the result of QR decomposition?

can this QR decomposition calculate the result of eigenvector?

1.

with(Groebner):
K := {r-x^4,u-(x^3)*y,v-x*y^3,w-y^4};
G := Basis(K, 'tord', degrevlex(r,u,v,w));
R1 := eliminate(G, {r,u,v,w}); # eliminate is the reverse of Basis
Ga := Basis({a*G[1],a*G[2],a*G[3],a*G[4],a*G[5],a*G[6],a*G[7],a*G[8],a*G[9],a*G[10],a*G[11],a*G[12],a*G[13],a*G[14], (1-a)*K[1], (1-a)*K[2], (1-a)*K[3], (1-a)*K[4]}, 'tord', deglex(a,r,u,v,w));
Ga := remove(has, Ga, [x,y,a]);
eliminate(Ga, [r,u,v,w]);

how to eliminate Ga to find back K ?

2.

A1A2 and A3A4 parallel
A(0,0), B(u1,0), D(u2,u3), C(x1,x2), E(x3,x4)
#BC = A1A2
xx1 := u1:
xx2 := x1:
yy1 := 0:
yy2 := x2:
#AD = A3A4
xx3 := 0:
xx4 := u2:
yy3 := 0:
yy4 := u3:
eq1 := (xx2 - xx1)*(yy4 - yy3) - (yy2 - yy1)*(xx4 - xx3);
(x1-u1)*u3-x2*u2;
#CD = A1A2
xx1 := x1:
xx2 := u2:
yy1 := x2:
yy2 := u3:
#AB = A3A4
xx3 := 0:
xx4 := u1:
yy3 := 0:
yy4 := 0:
eq2 := (xx2 - xx1)*(yy4 - yy3) - (yy2 - yy1)*(xx4 - xx3);
-(u3-x2)*u1;
with(LinearAlgebra):
#E is on the same line of AC
xx1 := x3:
yy1 := x4:
xx2 := 0:
yy2 := 0:
xx3 := x1:
yy3 := x2:
eq3 := Determinant(Matrix([[xx1,yy1,1],[xx2,yy2,1],[xx3,yy3,1]]));
-x3*x2+x1*x4;
#E is on the same line of BD
xx1 := x3:
yy1 := x4:
xx2 := u1:
yy2 := 0:
xx3 := u2:
yy3 := u3:
eq4 := Determinant(Matrix([[xx1,yy1,1],[xx2,yy2,1],[xx3,yy3,1]]));
-x3*u3+u1*u3-u1*x4+u2*x4;
 

sol := eliminate({eq1,eq2,eq3,eq4},[x1,x2,x3,x4]);

with(Groebner):
K := {(rhs(sol[1][1])-lhs(sol[1][1])),(rhs(sol[1][2])-lhs(sol[1][2])),(rhs(sol[1][3])-lhs(sol[1][3])),(rhs(sol[1][4])-lhs(sol[1][4]))};
G := Basis(K, 'tord', degrevlex(x1,x2,x3,x4));
R1 := eliminate(G, {x1,x2,x3,x4}); # eliminate is the reverse of Basis
Ga := Basis({a*G[1],a*G[2],a*G[3],a*G[4], (1-a)*K[1], (1-a)*K[2], (1-a)*K[3], (1-a)*K[4]}, 'tord', deglex(a,x1,x2,x3,x4));
Ga := remove(has, Ga, [u1,u2,u3,u4,a]);

From Question1, is it possible to find from sol to eq1, eq2, eq3 and eq4 ?

First 21 22 23 24 25 26 27 Last Page 23 of 141