ComputerUser

535 Reputation

10 Badges

12 years, 208 days

Social Networks and Content at Maplesoft.com

Seldom to ask question after retired math hobby Just waiting for beauty who born in 1994 And waited for her email to mavio@protonmail.com What is the difference in ownership among different universe?

MaplePrimes Activity


These are questions asked by ComputerUser

g2 := arctanh((exp(2*y)+sqrt((exp(2*y))^2+exp(2*y)))/exp(2*y)-1)-1;
singular(g2);
FunctionAdvisor(definition, g2);
plot(g2, y=-5..5);
 

Assume I had a 2D line

how to put and draw this line into a new geometric world defined by patch?

how to calculate potential energy in terms of gauss curvature?

how to find back a patch in maple from Pi+GaussCurvature*Area(triangle) = Pi

restart:
with(LinearAlgebra):
EFG := proc(X)
local Xu, Xv, E, F, G;
Xu := <diff(X[1],u), diff(X[2],u), diff(X[3],u)>;
Xv := <diff(X[1],v), diff(X[2],v), diff(X[3],v)>;
E := DotProduct(Xu, Xu, conjugate=false);
F := DotProduct(Xu, Xv, conjugate=false);
G := DotProduct(Xv, Xv, conjugate=false);
simplify([E,F,G]);
end proc;

UN := proc(X)
local Xu,Xv,Z,s;
Xu := <diff(X[1],u), diff(X[2],u), diff(X[3],u)>;
Xv := <diff(X[1],v), diff(X[2],v), diff(X[3],v)>;
Z := CrossProduct(Xu,Xv);
s := VectorNorm(Z, Euclidean, conjugate=false);
simplify(<Z[1]/s|Z[2]/s|Z[3]/s>,sqrt,trig,symbolic);
end:

lmn := proc(X)
local Xu,Xv,Xuu,Xuv,Xvv,U,l,m,n;
Xu := <diff(X[1],u), diff(X[2],u), diff(X[3],u)>;
Xv := <diff(X[1],v), diff(X[2],v), diff(X[3],v)>;
Xuu := <diff(Xu[1],u), diff(Xu[2],u), diff(Xu[3],u)>;
Xuv := <diff(Xu[1],v), diff(Xu[2],v), diff(Xu[3],v)>;
Xvv := <diff(Xv[1],v), diff(Xv[2],v), diff(Xv[3],v)>;
U := UN(X);
l := DotProduct(U, Xuu, conjugate=false);
m := DotProduct(U, Xuv, conjugate=false);
n := DotProduct(U, Xvv, conjugate=false);
simplify([l,m,n],sqrt,trig,symbolic);
end proc:

GK := proc(X)
local E,F,G,l,m,n,S,T;
S := EFG(X);
T := lmn(X);
E := S[1];
F := S[2];
G := S[3];
l := T[1];
m := T[2];
n := T[3];
simplify((l*n-m^2)/(E*G-F^2),sqrt,trig,symbolic);
end proc:

sph := <f(u,v)|g(u,v)|h(u,v)>;
cur := GK(sph);
X := sph;
Xu := <diff(X[1],u), diff(X[2],u), diff(X[3],u)>;
Xv := <diff(X[1],v), diff(X[2],v), diff(X[3],v)>;
Z := CrossProduct(Xu,Xv);
AreaTriangle := int(int(Z[1]^2+Z[2]^2+Z[3]^2,v=-Pi/2..Pi/2),u=0..2*Pi);
dsolve(Pi+cur*AreaTriangle = Pi, [f(u,v),g(u,v),h(u,v)]);
 

in the steps below, it is not fluent to do, and appear diff(1,t)

KineticEnergy := 1/2*m*diff(x(t), t)^2;
PotentialEnergy := subs(x=x(t),int((1/R^2)^2,x));
Action := KineticEnergy - PotentialEnergy;
AA := diff(Action,x(t)) - diff(diff(Action, diff(x(t),t)),t) = 0 <-------- Dsolve this
AA := eval(subs(diff(1,t)=0,diff(Action,x(t))) - Diff(subs(p=Diff(x(t),t),diff(subs(Diff(x(t),t)=p, Action), p)),t)) = 0
dsolve(AA, x(t));
 

Where R is constant

First 29 30 31 32 33 34 35 Last Page 31 of 141