Earl

930 Reputation

8 Badges

19 years, 21 days

MaplePrimes Activity


These are questions asked by Earl

The third execution of procedure TP returns infinity but it has a real value in the integral's plot. Why is this?

Int_Question.mw

I am brand new to Maple Cloud and Maple Player.

I have uploaded two worksheets to the cloud, and my wife has just installed Maple Player on her laptop.

In Maple Player, the second worksheet shows the shareable symbol but the first doesn't even thought I uploaded both in the same way by clicking on the upload symbol in the Maple Cloud palette. Why is the first worksheet not shareable?

When my wife displays the second worksheet she is able to move its sliders but they do not change the display as they do when I move the sliders within Maple2016. How can she change the display?

Here is a link to the second worksheet:

Cassinian_oval.mw

This application describes the motion of a pendulum attached to a moving pivot, all in 2D.

https://www.maplesoft.com/applications/view.aspx?SID=4888

 
How can this situation be generalized to a pendulum attached to a pivot which moves along a 3D spacecurve?

Given the 2 equations below...

-T*sin(theta(t)) = m*(diff(X(t), t, t)+L*(diff(theta(t), t, t))*cos(theta(t))-L*(diff(theta(t), t))^2*sin(theta(t)))

 T*cos(theta(t))-m*g = m*(diff(Y(t), t, t)+L*(diff(theta(t), t, t))*sin(theta(t))+L*(diff(theta(t), t))^2*cos(theta(t)))

which command(s) will eliminate T and m to give the ODE below?

 L*diff(theta(t), x, x)+(diff(X(t), x, x))*cos(theta)+(diff(Y(t), x, x)+g)*sin(theta) = 0

 

 

In the uploaded worksheet a block slides up the Hill from an initial position at an initial horizontal velocity. The block's motion is subject to sliding friction.

How can the equations of the block's motion be obtained to include the effects of gravity and friction?

It may simplify the answer to end the block's upward motion when gravity and friction bring it to an instantaneous halt.

Block_sliding.mw

First 14 15 16 17 18 19 20 Last Page 16 of 28