JAMET

375 Reputation

4 Badges

7 years, 320 days

MaplePrimes Activity


These are questions asked by JAMET

I am trying to anime a pump but itn't working. I need help. Thank you. restart; with(plots); with(plottools); unprotect(D); alpha := arctan(-58/62.5); solve({k*Pi/100 = alpha}, {k}); beta := arctan(19/84); solve({k*Pi/100 = beta}, {k}); ang1 := arctan(-68/84); evalf(solve({k = ang1}, {k})); ang2 := arctan(55/84); evalf(solve({k = ang2}, {k})); #angular head travel Head := proc(k) local r, poly, k1, tC, tD, tE, DikC, DikD, DikE; global C, D, E; r := 84; C := [-55, 17]; D := [0, 0]; E := [84, 0]; poly := [[-60, 24], [63, -17], [60, -55.5], seq([r*cos(1/100*k*Pi), r*sin(1/100*k*Pi)], k1 = -24 .. 7), [82, 18], [78, 20], [64, -3], [-46.5, 35]]; tC := textplot([C[], "C"], align = {above, right}, font = [Times, bold, 18]); tD := textplot([D[], "D"], align = {above, left}, font = [Times, bold, 18]); tE := textplot([E[], "E"], align = {above, left}, font = [Times, bold, 18]); DikC := disk(C, 1, color = black); DikD := disk(D, 1, color = black); DikE := disk(E, 1, color = black); if 0

Would you tel me why this code doesn't work : the  lenghts of BC and BD are not constant. Thank you very much.
restart;
with(plots);
with(plottools);
AB := 39;
BC := 140;
BD := 140;
local(D);
Vdot := proc(U, V) local i; add(U[i]*V[i], i = 1 .. 2); end proc;
dist := proc(M, N) sqrt(Vdot(expand(M - N), expand(M - N))); end proc;
Fig := proc(alpha)
local cir, R, BC, BD, AC, AD, lAC, A, lBC, lAB, lBD, beta, B, C, Cc, Dd, D, Aa, Bb, F1, F2, d, k, h, i, Pb, Ph, pb1, ph1, Qb, Qh, qh1, qb1, p1, P1, p2, P2, p3, P3, p4, P4, q1, Q1, q2, Q2, q3, Q3, q4, Q4, cy1, cy2, cy3, cy4, tA, tB, tC, tD;
A := [0, 0]; R := 39; d := 83; BC := 140; BD := 140;
B := [R*cos(alpha), R*sin(alpha)];
k := BC/R; h := 1/2*sqrt(2);
Ph := [h*(R + BC), h*(R + BC)];
Pb := [h*(-R + BC), h*(-R + BC)];
Qh := [-h*(R + BC), h*(R + BC)];
Qb := [-h*(-R + BC), h*(-R + BC)];
P1 := [Ph[1] - 1/2*d*h, Ph[2] + 1/2*d*h];
P2 := [Ph[1] + 1/2*d*h, Ph[2] - 1/2*d*h];
P3 := [Pb[1] - 1/2*d*h, Pb[2] + 1/2*d*h];
P4 := [Pb[1] + 1/2*d*h, Pb[2] - 1/2*d*h];
Q1 := [Qh[1] + 1/2*d*h, Qh[2] + 1/2*d*h];
Q2 := [Qh[1] - 1/2*d*h, Qh[2] - 1/2*d*h];
Q3 := [Qb[1] + 1/2*d*h, Qb[2] + 1/2*d*h];
Q4 := [Qb[1] - 1/2*d*h, Qb[2] - 1/2*d*h];
cir := circle(A, R, color = black, linestyle = longdash);
F1 := plot(x, x = -R .. R + BC, color = black, linestyle = longdash);
F2 := plot(-x, x = -R - BC .. R, color = black, linestyle = longdash);
AC := R*(cos(alpha) + sqrt(k^2 - sin(alpha)^2));
C := [h . AC, h . AC];
AD := R*(cos(Pi - alpha) + sqrt(k^2 - sin(Pi - alpha)^2));
D := [-h*AD, h*AD]; lBC := plot([B, C], color = red, thickness = 4);
lAB := plot([A, B], color = red, thickness = 4); print(evalf(dist(B, C)), evalf(dist(B, D)));
lBD := plot([B, D], color = red, thickness = 4);
pb1 := pointplot(Pb, symbol = solidcircle, symbolsize = 5, color = black);
ph1 := pointplot(Ph, symbol = solidcircle, symbolsize = 5, color = black);
qb1 := pointplot(Qb, symbol = solidcircle, symbolsize = 5, color = black);
qh1 := pointplot(Qh, symbol = solidcircle, symbolsize = 5, color = black);
p1 := pointplot(P1, symbol = solidcircle, symbolsize = 10, color = black);
p2 := pointplot(P2, symbol = solidcircle, symbolsize = 10, color = black);
p3 := pointplot(P3, symbol = solidcircle, symbolsize = 10, color = black);
p4 := pointplot(P4, symbol = solidcircle, symbolsize = 10, color = black);
q1 := pointplot(Q1, symbol = solidcircle, symbolsize = 10, color = black);
q2 := pointplot(Q2, symbol = solidcircle, symbolsize = 10, color = black);
q3 := pointplot(Q3, symbol = solidcircle, symbolsize = 10, color = black);
q4 := pointplot(Q4, symbol = solidcircle, symbolsize = 10, color = black);
Aa := pointplot(A, symbol = solidcircle, symbolsize = 12, color = blue);
Bb := pointplot(B, symbol = solidcircle, symbolsize = 12, color = blue);
Cc := pointplot(C, symbol = solidcircle, symbolsize = 12, color = blue);
Dd := pointplot(D, symbol = solidcircle, symbolsize = 12, color = blue);
cy1 := plot([P1, P3], color = black, thickness = 8); cy2 := plot([P2, P4], color = black, thickness = 8);
cy3 := plot([Q1, Q3], color = black, thickness = 8); cy4 := plot([Q2, Q4], color = black, thickness = 8);
tA := textplot([0, 0, "A"], 'align' = {'above', 'right'});
tB := textplot([B[1], B[2], "B"], 'align' = {'above', 'right'});
tC := textplot([C[1], C[2], "C"], 'align' = {'above', 'right'});
tD := textplot([D[1], D[2], "D"], 'align' = {'above', 'right'});
display([cir, F1, F2, pb1, ph1, qb1, qh1, p1, p2, p3, p4, q1, q2, q3, q4, Aa, Bb, Cc, Dd, lAB, lBC, lBD, cy1, cy2, cy3, cy4, tA, tB, tC, tD], scaling = constrained); end proc;
Fig(Pi/3);
display([seq(Fig((2*alpha*Pi)/50), alpha = 0 .. 50)], insequence = true, axes = none);

Justify that 2 vectors (1,1) and (1,2) are an R² base; How to write calculations correctly ?
<x, y> = lambda*<1, 1> + mu*<1, 2>:
 solve({lambda+mu=x,lambda+2*mu=y},{lambda,mu}):
 <x, y> := (2*x - y)*<1, 1> + (-x + y)*<1, 2>:
Thank you.

restart;In this code "add" is a trouble.
A := Matrix([[1, 2, 1, 3], [1, 1, 2, 1], [1, -2, 5, -11]]);
cs := LinearAlgebra:-ColumnSpace(A);
cnames := [seq(c || j, j = 1 .. numelems(cs))];
cvals := seq(solve([entries(A[() .. (), k] -~ add(`*`~(cnames, cs)), 'nolist')], cnames)[], k = 1 .. op([1, 2], A));
seq(add*rhs~(cvals[k]) *~ cs, k = 1 .. op([1, 2], A));
add does not play its role. Why. Thank you.

I try to find kernel and image of a application whose i know the matrix.
restart;
with(LinearAlgebra);
A := Matrix([[1, 1, 1, -1], [-1, 1, -1, -1], [1, -1, -1, -1], [-1, -1, 1, 3]]);
k := op(NullSpace(A));#kernel
MatrixVectorMultiply(A, k);#check
C := op(ColumnSpace(A));
X := <x, y, z, t>;
F := MatrixVectorMultiply(A, X) - a*C[1] - b*C[2] - c*C[2];
G := op(convert(F, list));
solve({seq(G[i] = 0, i = 1 .. 4)}, {a, b, c}); why there is no solution ? Thank you.

First 10 11 12 13 14 15 16 Last Page 12 of 27