John 2014

15 Reputation

5 Badges

11 years, 90 days

MaplePrimes Activity


These are questions asked by John 2014

Let Poly2 denote the vector space of polynomials

(with real coefficients) of degree less than 3.

Poly2 = {a1t^2+ a2 t+ a3 |a1; a2; a3 €R}

You may assume that {1,t; t^2}is a basis for Poly2.

(1) Show that L1 = {t^2 + 1; t-2 ; t + 3}and L2 = {2 t^2 + t; t^2 + 3; t}

are bases for Poly2.

(2) Let = 8t^2- 4+ 6 and = 7t^2- t + 9. Find the coordinates for

and with respect to the basis L1 and with respect to the basis L2

(3) find the coordinate change matrix P from the basis L1 to the basis L2.find P^-1

Just I answer part (1) can you help me to answer 2 and 3 

Let Poly2 denote the vector space of polynomials

(with real coefficients) of degree less than 3.

Poly2 = {a1t^2+ a2 t+ a3 |a1; a2; a3 €R}

You may assume that {1,t; t^2}is a basis for Poly2.

(1) Show that L1 = {t^2 + 1; t-2 ; t + 3}and L2 = {2 t^2 + t; t^2 + 3; t}

are bases for Poly2.

(2) Let v = 8t^2- 4t + 6 and w = 7t^2- t + 9. Find the coordinates for

v and w with respect to the basis L1 and with respect to the basis L2

Using the Fourier convolution theorem to solve f(t) =sin (t)

f(t)=R dJ(t)/dt+J(t)/C

R dJ(t)/dt+J(t)/C=f(t)

where f(t) is a driving electromotive force. Use the fourier transform to analyze this equation as follows.

 

 

Find the transfer function G(alpha)  then find g(t) .

 Thanks ....

R dJ(t)/dt+J(t)/C=f(t)

where f(t) is a driving electromotive force. Use the fourier transform to analyze this equation as follows.

 

 

Find the transfer function G(alpha)  then find g(t) .

 Thanks ....

1 2 Page 1 of 2