KIRAN SAJJAN

35 Reputation

4 Badges

2 years, 147 days

MaplePrimes Activity


These are questions asked by KIRAN SAJJAN

How to plot the second order derivative and first oder derivatives plot in time dependent pde and vector plot of  theta(y,t), u(y,t) at y=0..10 and t=0..1

nowhere i found a vector plot of time-dependent pde 

how to plot give me suggestions.

in vector plots, flow patterns should show with arrow marks

  restart;
  inf:=10:
  pdes:= diff(u(y,t),t)-xi*diff(u(y,t),y)=diff(u(y,t),y$2)/(1+lambda__t)+Gr*theta(y,t)+Gc*C(y,t)-M*u(y,t)-K*u(y,t),
         diff(theta(y,t),t)-xi*diff(theta(y,t),y)=1/Pr*diff(theta(y,t),y$2)+phi*theta(y,t),
         diff(C(y,t),t)-xi*diff(C(y,t),y)=1/Sc*diff(C(y,t),y$2)-delta*C(y,t)+nu*theta(y,t):
  conds:= u(y,0)=0, theta(y,0)=0, C(y,0)=0,
          u(0,t)=0, D[1](theta)(0,t)=-1, D[1](C)(0,t)=-1,
          u(inf,t)=0, theta(inf,t)=0, C(inf,t)=0:
  pars:= { Gr=1, Gc=1, M=1, nu=1, lambda__t=0.5,
           Sc=0.78, delta=0.1, phi=0.5, K=0.5, xi=0.5
         }        

{Gc = 1, Gr = 1, K = .5, M = 1, Sc = .78, delta = .1, nu = 1, phi = .5, xi = .5, lambda__t = .5}

(1)

  PrVals:=[0.71, 1.00, 3.00, 7.00]:
  colors:=[red, green, blue, black]:
  for j from 1 to numelems(PrVals) do
      pars1:=`union`( pars, {Pr=PrVals[j]}):
      pdSol:= pdsolve( eval([pdes], pars1),
                       eval([conds], pars1),
                       numeric
                     );
      plt[j]:=pdSol:-plot( diff(u(y,t),y), y=0, t=0..2, numpoints=200, color=colors[j]);
  od:
  plots:-display( [seq(plt[j], j=1..numelems(PrVals))]);

 

PrVals := [.71, 1.00, 3.00, 7.00]; colors := [red, green, blue, black]; for j to numelems(PrVals) do pars1 := `union`(pars, {Pr = PrVals[j]}); pdSol := pdsolve(eval([pdes], pars1), eval([conds], pars1), numeric); plt[j] := pdSol:-plot(diff(u(y, t), y, y), y = 0, t = 0 .. 2, numpoints = 200, color = colors[j]) end do; plots:-display([seq(plt[j], j = 1 .. numelems(PrVals))])

 
 

 

Download badPDE.mw

  I am unable to draw both 3d plots sowing error please help me to solve

restart:NULLNULL

p1 := 0.1e-1; p2 := 0.2e-1; p3 := 0.1e-1; Px := p1+p2+p3

rf := 1050; kf := .52; cpf := 3617; sigmaf := .8

sigma1 := 25000; rs1 := 5200; ks1 := 6; cps1 := 670

sigma2 := 59.7*10^6; rs2 := 8933; ks2 := 400; cps2 := 385

sigma3 := 2380000; rs3 := 4250; ks3 := 8.9538; cps3 := 686.2

NULL

B1 := 1+2.5*Px+6.2*Px^2; B2 := 1+13.5*Px+904.4*Px^2; B3 := 1+37.1*Px+612.6*Px^2; B4 := (ks1+2*kf-2*Px*(kf-ks1))/(ks1+2*kf+Px*(kf-ks1)); B5 := (ks2+3.9*kf-3.9*Px*(kf-ks2))/(ks2+3.9*kf+Px*(kf-ks2)); B6 := (ks3+4.7*kf-4.7*Px*(kf-ks3))/(ks3+4.7*kf+Px*(kf-ks3))

a2 := B1*p1+B2*p2+B3*p3

a1 := 1-p1-p2-p3+p1*rs1/rf+p2*rs2/rf+p3*rs3/rf

a3 := 1-p1-p2-p3+p1*rs1*cps1/(rf*cpf)+p2*rs2*cps2/(rf*cpf)+p3*rs3*cps3/(rf*cpf)

a4 := B4*p1+B5*p2+B6*p3

NULL

a5 := 1+3*((p1*sigma1+p2*sigma2+p3*sigma3)/sigmaf-p1-p2-p3)/(2+(p1*sigma1+p2*sigma2+p3*sigma3)/((p1+p2+p3)*sigmaf)-((p1*sigma1+p2*sigma2+p3*sigma3)/sigmaf-p1-p2-p3))

``

``



NULL

ODE:=[(a2+K)*(diff(U0(eta), eta, eta))/a1-Ra*(diff(U0(eta), eta))+lambda0/a1-a5*M1^2*U0(eta)/a1+K*(diff(N0(eta), eta))/a1+la*Ra*Theta0(eta)*(1+Qc*Theta0(eta)), (a2+K)*(diff(U1(eta), eta, eta))/a1-H^2*l1*U1(eta)-Ra*(diff(U1(eta), eta))+lambda1/a1-a5*M1^2*U1(eta)/a1+K*(diff(N1(eta), eta))/a1+la*Ra*(Theta1(eta))(1+2*Qc*Theta0(eta)), diff(N0(eta), eta, eta)-Ra*a1*Pj*(diff(N0(eta), eta))-2*n1*N0(eta)-n1*(diff(U0(eta), eta)), diff(N1(eta), eta, eta)-Ra*a1*Pj*(diff(N1(eta), eta))-2*n1*N1(eta)-n1*(diff(U1(eta), eta))-H^2*a1*Pj*l1*N1(eta), (a4/(a3*Pr)-delta*Ra^2/H^2+4*Rd*(1+(Tp-1)^3*Theta0(eta)^3+3*(Tp-1)^2*Theta0(eta)^2+(3*(Tp-1))*Theta0(eta))/(3*a3*Pr))*(diff(Theta0(eta), eta, eta))-Ra*(diff(Theta0(eta), eta))+a5*Ec*M1^2*U0(eta)^2/a3+(a2+K)*Ec*(diff(U0(eta), eta))^2/a1+Q*Theta0(eta)/a3+4*(diff(Theta0(eta), eta))^2*Rd*(3*(Tp-1)+6*(Tp-1)^2*Theta0(eta)+3*(Tp-1)^3*Theta0(eta)^2)/(3*a3*Pr), (a4/(a3*Pr)-delta*Ra^2/H^2+4*Rd*(1+(Tp-1)^3*Theta0(eta)^3+3*(Tp-1)^2*Theta0(eta)^2+(3*(Tp-1))*Theta0(eta))/(3*a3*Pr))*(diff(Theta1(eta), eta, eta))-(H^2*l1+2*Ra*delta*l1+Ra)*(diff(Theta1(eta), eta))+(Q/a3-delta*H^2*l1^2)*Theta1(eta)+2*(a2+K)*Ec*(diff(U0(eta), eta))*(diff(U1(eta), eta))/a1+2*a5*Ec*M^2*U0(eta)*U1(eta)/a3+4*(diff(Theta0(eta), eta, eta))*Theta1(eta)*Rd*(3*(Tp-1)+6*(Tp-1)^2*Theta0(eta)+3*(Tp-1)^3*Theta0(eta)^2)/(3*a3*Pr)+4*Rd*(diff(Theta0(eta), eta))^2*(6*(Tp-1)^2*Theta1(eta)+6*(Tp-1)^3*Theta0(eta)*Theta1(eta))/(3*a3*Pr)+4*Rd*(diff(Theta1(eta), eta))*(diff(Theta0(eta), eta))*(6*(Tp-1)+6*(Tp-1)^3*Theta0(eta)^2+12*(Tp-1)^2*Theta0(eta))/(3*a3*Pr)]:


(LB,UB):= (0,1):


BCs:= [
  
  U0(0) = 0, U1(0) = 0, N0(0) = 0, N1(0) = 0, Theta0(0) = 0, Theta1(0) = 0, U0(1) = 0, U1(1) = 0, N0(1) = 0, N1(1) = 0, Theta0(1) = 1, Theta1(1) = 0
]:

NULL


Params:= Record(
   
   M1=  1.2, Rd=0.8,la=0.8,n1=1.2,Q=0.2,Pj=0.001,Ra=0.8,Ec=1,    Pr= 21,   delta= 0.2,    t1= (1/4)*Pi, lambda0=2,lambda1=3,   Qc= 0.1,    l1= 1,K=0.4,H=3 ,deltat=0.05  ):
   

NBVs:= [   
 
a1**D(U0)(0) = `C*__f` , # Skin friction coefficient
 (a4+(4*Rd*(1/3))*(1+(Tp-1)*(Theta0(0)+0.1e-2*exp(l1*t1)*Theta1(0)))^3)*((D(Theta0))(0)+0.1e-2*exp(l1*t1)*(D(Theta1))(0)) = `Nu*`    # Nusselt number     
]:
Nu:= `Nu*`:
Cf:= `C*__f`:

 

Solve:= module()
local
   nbvs_rhs:= rhs~(:-NBVs), #just the names
   Sol, #numeric dsolve BVP solution of any 'output' form
   ModuleApply:= subs(
      _Sys= {:-ODEs[], :-BCs[], :-NBVs[]},
      proc({
          M1::realcons:=  Params:-M1,
         Pr::realcons:= Params:-Pr,
         Rd::realcons:= Params:-Rd,
         la::realcons:= Params:-la,
         Tp::realcons:= Params:-Tp,
         n1::realcons:= Params:-n1,
         Q::realcons:= Params:-Q,
         Pj::realcons:= Params:-Pj,
         Ra::realcons:= Params:-Ra,
         Ec::realcons:= Params:-Ec,
         t1::realcons:=  Params:-t1,
         delta::realcons:= Params:-delta,
         lambda0::realcons:= Params:-lambda0,
         lambda1::realcons:= Params:-lambda1,
         Qc::realcons:= Params:-Qc,
         K::realcons:= Params:-K,
         l1::realcons:= Params:-l1,
         H::realcons:= Params:-H
      })
         Sol:= dsolve(_Sys, _rest, numeric);
         AccumData(Sol, {_options});
         Sol
      end proc
   ),
   AccumData:= proc(
      Sol::{Matrix, procedure, list({name, function}= procedure)},
      params::set(name= realcons)
   )
   local n, nbvs;
      if Sol::Matrix then
         nbvs:= seq(n = Sol[2,1][1,Pos(n)], n= nbvs_rhs)
      else
         nbvs:= (nbvs_rhs =~ eval(nbvs_rhs, Sol(:-LB)))[]
      fi;
      SavedData[params]:= Record[packed](params[], nbvs)
   end proc,
   ModuleLoad:= eval(Init);
export
   SavedData, #table of Records
   Pos, #Matrix column indices of nbvs
   Init:= proc()
      Pos:= proc(n::name) option remember; local p; member(n, Sol[1,1], 'p'); p end proc;
      SavedData:= table();
      return
   end proc ;
   ModuleLoad()
end module:
 


 

 

#procedure that generates 3-D plots (dropped-shadow contour + surface) of an expression


ParamPlot3d:= proc(
   Z::{procedure, `module`}, #procedure that extracts z-value from Solve's dsolve solution
   X::name= range(realcons), #x-axis-parameter range
   Y::name= range(realcons), #y-axis-parameter range
   FP::list(name= realcons), #fixed values of other parameters
   {
      #fraction of empty space above and below plot (larger "below"
      #value improves view of dropped-shadow contourplot):
      zmargin::[realcons,realcons]:= [.05,0.15],
      eta::realcons:= :-LB, #independent variable value
      dsolveopts::list({name, name= anything}):= [],
      contouropts::list({name, name= anything}):= [],
      surfaceopts::list({name, name= anything}):=[]    
   }
)
local
   LX:= lhs(X), RX:= rhs(X), LY:= lhs(Y), RY:= rhs(Y),
   Zremember:= proc(x,y)
   option remember; #Used because 'grid' should be the same for both plots.
      Z(
         Solve(
            LX= x, LY= y, FP[],
            #Default dsolve options can be changed by setting 'dsolveopts':
            'abserr'= 0.5e-7, 'interpolant'= false, 'output'= Array([eta]),  
            dsolveopts[]
         )
      )
   end proc,
   plotspec:= (Zremember, RX, RY),
   C:= plots:-contourplot(
      plotspec,
      #These default plot options can be changed by setting 'contouropts':
      'grid'= [25,25], 'contours'= 5, 'filled',
      'coloring'= ['yellow', 'orange'], 'color'= 'green',
      contouropts[]
   ),
   P:= plot3d(
      plotspec,
      #These default plot options can be changed by setting 'surfaceopts':
      'grid'= [25,25], 'style'= 'surfacecontour', 'contours'= 6,
      surfaceopts[]
   ),
   U, L #z-axis endpoints after margin adjustment
;
   #Stretch z-axis to include margins:
   (U,L):= ((Um,Lm,M,m)-> (M*(Lm-1)+m*Um, M*Lm+m*(Um-1)) /~ (Um+Lm-1))(
      zmargin[],
      (max,min)(op(3, indets(P, 'specfunc'('GRID'))[])) #actual z-axis range
   );
   plots:-display(
      [
         plots:-spacecurve(
            {
               [[lhs(RX),rhs(RY),U],[rhs(RX),rhs(RY),U],[rhs(RX),rhs(RY),L]], #yz backwall
               [[rhs(RX),rhs(RY),U],[rhs(RX),lhs(RY),U],[rhs(RX),lhs(RY),L]]  #xz backwall
            },
            'color'= 'grey', 'thickness'= 0
         ),
         plottools:-transform((x,y)-> [x,y,L])(C), #dropped-shadow contours
         P
      ],
      #These default plot options can be changed simply by putting the option in the
      #ParamPlot3d call:
      'view'= ['DEFAULT', 'DEFAULT', L..U], 'orientation'= [-135, 75], 'axes'= 'frame',
      'labels'= [lhs(X), lhs(Y), Z], 'labelfont'= ['TIMES', 'BOLDOBLIQUE', 16],
      'caption'= nprintf(cat("%a = %4.2f, "$nops(FP)-1, "%a = %4.2f"), (lhs,rhs)~(FP)[]),
      'captionfont'= ['TIMES', 14],
      'projection'= 2/3,   
      _rest
   )
end proc:

NULL

NULL

GetNu := proc (Sol::Matrix) options operator, arrow; Sol[2, 1][1, Solve:-Pos(:-Nu)] end proc

ParamPlot3d(
   GetNu,Q= 0..5, Rd= 0..5, [
   
   Pr= 21   ],
   labels= [Q, gamma, Nu]
);

Error, (in plot/iplot2d/levelcurve) could not evaluate expression

 

``

Download P6_3D_plots.mw

am attaching the worksheet of the problem please help me to solve not able to  compute coupled

error.mw

 

restart; with(plots)

PDEtools[declare]((F, T, G, H)(Y), prime = Y)

` F`(Y)*`will now be displayed as`*F

 

` T`(Y)*`will now be displayed as`*T

 

` G`(Y)*`will now be displayed as`*G

 

` H`(Y)*`will now be displayed as`*H

 

`derivatives with respect to`*Y*`of functions of one variable will now be displayed with '`

(1)

p1 := 0.1e-1; p2 := 0.3e-1; p3 := 0.5e-1; p := p1+p2+p3

rf := 1050; kf := .52; cpf := 3617; sigmaf := .8

sigma1 := 25000; rs1 := 5200; ks1 := 6; cps1 := 670

sigma2 := 0.210e-5; rs2 := 5700; ks2 := 25; cps2 := 523

sigma3 := 6.30*10^7; rs3 := 10500; ks3 := 429; cps3 := 235

sigma4 := 10^(-10); rs4 := 3970; ks4 := 40; cps4 := 765

sigma5 := 1.69*10^7; rs5 := 7140; ks5 := 116; cps5 := 390

sigma6 := 4.10*10^7; rs6 := 19300; ks6 := 318; cps6 := 129

``

M := 1; S1 := .5; A := 1; delta := 0.1e-2; g := .1; Gr := .5; betu := .5; bett := .5; Pr := 21; Ec := .5; bet := 1; S2 := .5; Rd := 1; Q := .1; Ra := .5; S := .1

alp := .1

``

``

B1 := 1+2.5*p+6.2*p^2; B2 := 1+13.5*p+904.4*p^2; B3 := 1+37.1*p+612.6*p^2; B4 := (ks1+2*kf-2*p*(kf-ks1))/(ks1+2*kf+p*(kf-ks1)); B5 := (ks2+3.9*kf-3.9*p*(kf-ks2))/(ks2+3.9*kf+p*(kf-ks2)); B6 := (ks3+4.7*kf-4.7*p*(kf-ks3))/(ks3+4.7*kf+p*(kf-ks3)); B7 := (ks4+2*kf-2*p*(kf-ks4))/(ks4+2*kf+p*(kf-ks4)); B8 := (ks5+3.9*kf-3.9*p*(kf-ks5))/(ks5+3.9*kf+p*(kf-ks5)); B9 := (ks6+4.7*kf-4.7*p*(kf-ks6))/(ks6+4.7*kf+p*(kf-ks6))

a1 := B1*p1+B2*p2+B3*p3

a2 := 1-p1-p2-p3+p1*rs1/rf+p2*rs2/rf+p3*rs3/rf

a3 := 1-p1-p2-p3+p1*rs1*cps1/(rf*cpf)+p2*rs2*cps2/(rf*cpf)+p3*rs3*cps3/(rf*cpf)

a4 := B4*p1+B5*p2+B6*p3

``

a5 := 1+3*((p1*sigma1+p2*sigma2+p3*sigma3)/sigmaf-p1-p2-p3)/(2+(p1*sigma1+p2*sigma2+p3*sigma3)/((p1+p2+p3)*sigmaf)-((p1*sigma1+p2*sigma2+p3*sigma3)/sigmaf-p1-p2-p3))

``

NULL

a6 := B1*p1+B2*p2+B3*p3

a7 := 1-p1-p2-p3+p1*rs4/rf+p2*rs5/rf+p3*rs6/rf

a8 := 1-p1-p2-p3+p1*rs4*cps4/(rf*cpf)+p2*rs5*cps5/(rf*cpf)+p3*rs6*cps6/(rf*cpf)

a9 := B7*p1+B8*p2+B9*p3

``

a10 := 1+3*((p1*sigma4+p2*sigma5+p3*sigma6)/sigmaf-p1-p2-p3)/(2+(p1*sigma4+p2*sigma5+p3*sigma6)/((p1+p2+p3)*sigmaf)-((p1*sigma4+p2*sigma5+p3*sigma6)/sigmaf-p1-p2-p3))

W := sum(b[i]*Y^i, i = 0 .. 3); Theta := sum(c[i]*Y^i, i = 0 .. 3); U := sum(d[i]*Y^i, i = 0 .. 2); Phi := sum(h[i]*Y^i, i = 0 .. 2)

Y^3*b[3]+Y^2*b[2]+Y*b[1]+b[0]

 

Y^3*c[3]+Y^2*c[2]+Y*c[1]+c[0]

 

Y^2*d[2]+Y*d[1]+d[0]

 

Y^2*h[2]+Y*h[1]+h[0]

(2)

F := a1*(1+1/bet)*(diff(W, `$`(Y, 2)))+a2*Ra*(diff(W, Y))+A-a5*M*W-S2*W^2+a2*Gr*Theta-S*betu*(W-U) = 0

9.1682928*Y*b[3]+3.0560976*b[2]+2.433571428*Y^2*b[3]+1.622380952*Y*b[2]+.8111904760*b[1]+1-1.346703274*b[3]*Y^3-1.346703274*b[2]*Y^2-1.346703274*b[1]*Y-1.346703274*b[0]-.5*(Y^3*b[3]+Y^2*b[2]+Y*b[1]+b[0])^2+.8111904760*c[3]*Y^3+.8111904760*c[2]*Y^2+.8111904760*c[1]*Y+.8111904760*c[0]+0.5e-1*d[2]*Y^2+0.5e-1*d[1]*Y+0.5e-1*d[0] = 0

(3)

T := (a4+Rd)*(diff(Theta, `$`(Y, 2)))+a3*Pr*Ra*(diff(Theta, Y))+Q*Theta+Pr*alp*S*bett*(Theta-Phi)+Pr*Ec*((1+1/bet)*a1*(diff(W, Y))^2+a5*M*W^2+(1+1/bet)*a1*S1*W^2+S2*W^3+S*betu*(W-U)) = 0

.205*c[1]*Y+.205*c[2]*Y^2+.205*c[3]*Y^3-.525*d[1]*Y-.525*d[2]*Y^2+.525*b[0]+.525*b[1]*Y+.525*b[2]*Y^2+.525*b[3]*Y^3+21.63764058*(Y^3*b[3]+Y^2*b[2]+Y*b[1]+b[0])^2-.105*h[0]+6.799682664*Y*c[3]+30.71903373*Y^2*c[3]+20.47935582*Y*c[2]-.105*Y^2*h[2]-.105*Y*h[1]-.525*d[0]+.205*c[0]+10.23967791*c[1]+2.266560888*c[2]+16.04451240*(3*Y^2*b[3]+2*Y*b[2]+b[1])^2+5.25*(Y^3*b[3]+Y^2*b[2]+Y*b[1]+b[0])^3 = 0

(4)

G := Ra*(diff(U, Y))+betu*(W-U) = 0

1.0*Y*d[2]+.5*d[1]+.5*b[3]*Y^3+.5*b[2]*Y^2-.5*d[2]*Y^2+.5*b[1]*Y-.5*d[1]*Y+.5*b[0]-.5*d[0] = 0

(5)

H := Ra*(diff(Phi, Y))+bett*(Theta-Phi) = 0

1.0*Y*h[2]+.5*h[1]+.5*c[3]*Y^3+.5*c[2]*Y^2-.5*Y^2*h[2]+.5*c[1]*Y-.5*Y*h[1]+.5*c[0]-.5*h[0] = 0

(6)

BCS := (D(W))(0) = 0, (D(Theta))(0) = 0, W(1) = -delta*(1+1/bet)*(D(W))(1), Theta(1) = 1+g*(D(Theta))(1), U(1) = -delta*(1+1/bet)*(D(W))(1), Phi(1) = 1+g*(D(Theta))(1)

W := unapply(W(Y), Y)

F := unapply(F(Y), Y)

Theta := unapply(Theta(Y), Y)

T := unapply(T(Y), Y)

U := unapply(U(Y), Y)

G := unapply(G(Y), Y)

Phi := unapply(Phi(Y), Y)

H := unapply(H(Y), Y)

z1 := (D(W))(0) = 0

(D(W))(0) = 0

(7)

z2 := (D(Theta))(0) = 0

(D(Theta))(0) = 0

(8)

z3 := W(1) = -delta*(1+1/bet)*(D(W))(1)

b[3](1)+b[2](1)+b[1](1)+b[0](1) = -0.2e-2*(D(W))(1)

(9)

z4 := Theta(1) = 1+g*(D(Theta))(1)

c[3](1)+c[2](1)+c[1](1)+c[0](1) = 1+.1*(D(Theta))(1)

(10)

z5 := U(1) = -delta*(1+1/bet)*(D(W))(1)

d[2](1)+d[1](1)+d[0](1) = -0.2e-2*(D(W))(1)

(11)

z6 := Phi(1) = 1+g*(D(Theta))(1)

h[2](1)+h[1](1)+h[0](1) = 1+.1*(D(Theta))(1)

(12)

z7 := F(0)

1.+3.0560976*b[2](0)+.8111904760*b[1](0)-1.346703274*b[0](0)-.5*b[0](0)^2+.8111904760*c[0](0)+0.5e-1*d[0](0) = 0

(13)

z8 := T(0)

.525*b[0](0)+21.63764058*b[0](0)^2-.105*h[0](0)-.525*d[0](0)+.205*c[0](0)+10.23967791*c[1](0)+2.266560888*c[2](0)+16.04451240*b[1](0)^2+5.25*b[0](0)^3 = 0

(14)

z9 := G(0)

.5*d[1](0)+.5*b[0](0)-.5*d[0](0) = 0

(15)

z10 := H(0)

.5*h[1](0)+.5*c[0](0)-.5*h[0](0) = 0

(16)

z11 := F(1)

10.25516095*b[3](1)+3.331775278*b[2](1)-.5355127980*b[1](1)+1-1.346703274*b[0](1)-.5*(b[3](1)+b[2](1)+b[1](1)+b[0](1))^2+.8111904760*c[3](1)+.8111904760*c[2](1)+.8111904760*c[1](1)+.8111904760*c[0](1)+0.5e-1*d[2](1)+0.5e-1*d[1](1)+0.5e-1*d[0](1) = 0

(17)

z12 := T(1)

10.44467791*c[1](1)+22.95091671*c[2](1)+37.72371639*c[3](1)-.525*d[1](1)-.525*d[2](1)+.525*b[0](1)+.525*b[1](1)+.525*b[2](1)+.525*b[3](1)+21.63764058*(b[3](1)+b[2](1)+b[1](1)+b[0](1))^2-.105*h[0](1)-.105*h[2](1)-.105*h[1](1)-.525*d[0](1)+.205*c[0](1)+16.04451240*(3*b[3](1)+2*b[2](1)+b[1](1))^2+5.25*(b[3](1)+b[2](1)+b[1](1)+b[0](1))^3 = 0

(18)

z13 := G(1)

.5*d[2](1)+.5*b[3](1)+.5*b[2](1)+.5*b[1](1)+.5*b[0](1)-.5*d[0](1) = 0

(19)

z14 := H(1)

.5*h[2](1)+.5*c[3](1)+.5*c[2](1)+.5*c[1](1)+.5*c[0](1)-.5*h[0](1) = 0

(20)

NULL

Z := fsolve([z1, z2, z3, z4, z5, z6, z7, z8, z9, z10, z11, z12, z13, z14], {b[0], b[1], b[2], b[3], c[0], c[1], c[2], c[3], d[0], d[1], d[2], h[0], h[1], h[2]})

(21)

"F(Y):=eval(sum(b[i]*Y^i,i=0..5),Z);    "

Error, invalid input: eval received NULL, which is not valid for its 2nd argument, eqns

 

"T(Y):=eval(sum(c[i]*Y^i,i=0..5),Z);    "

Error, invalid input: eval received NULL, which is not valid for its 2nd argument, eqns

 

"G(Y):=eval(sum(d[i]*Y^i,i=0..5),Z);    "

Error, invalid input: eval received NULL, which is not valid for its 2nd argument, eqns

 

"H(Y):=eval(sum(h[i]*Y^i,i=0..5),Z);    "

Error, invalid input: eval received NULL, which is not valid for its 2nd argument, eqns

 

NULL

plot(F(Y), Y = 0 .. 1, axes = boxed, color = green, thickness = 2, labels = [Y, W])

Error, (in plot) unexpected options: [9.1682928*Y(Y)*b[3](Y)+3.0560976*b[2](Y)+2.433571428*Y(Y)^2*b[3](Y)+1.622380952*Y(Y)*b[2](Y)+.8111904760*b[1](Y)+1-1.346703274*b[3](Y)*Y(Y)^3-1.346703274*b[2](Y)*Y(Y)^2-1.346703274*b[1](Y)*Y(Y)-1.346703274*b[0](Y)-.5*(b[3](Y)*Y(Y)^3+b[2](Y)*Y(Y)^2+b[1](Y)*Y(Y)+b[0](Y))^2+.8111904760*c[3](Y)*Y(Y)^3+.8111904760*c[2](Y)*Y(Y)^2+.8111904760*c[1](Y)*Y(Y)+.8111904760*c[0](Y)+0.5e-1*d[2](Y)*Y(Y)^2+0.5e-1*d[1](Y)*Y(Y)+0.5e-1*d[0](Y) = 0, Y = 0 .. 1]

 

plot(T(Y), Y = 0 .. 1, axes = boxed, color = green, thickness = 2, labels = [Y, Theta])

Error, (in plot) unexpected options: [.205*c[1](Y)*Y(Y)+.205*c[2](Y)*Y(Y)^2+.205*c[3](Y)*Y(Y)^3-.525*d[1](Y)*Y(Y)-.525*d[2](Y)*Y(Y)^2+.525*b[0](Y)+.525*b[1](Y)*Y(Y)+.525*b[2](Y)*Y(Y)^2+.525*b[3](Y)*Y(Y)^3+21.63764058*(b[3](Y)*Y(Y)^3+b[2](Y)*Y(Y)^2+b[1](Y)*Y(Y)+b[0](Y))^2-.105*h[0](Y)+6.799682664*Y(Y)*c[3](Y)+30.71903373*Y(Y)^2*c[3](Y)+20.47935582*Y(Y)*c[2](Y)-.105*Y(Y)^2*h[2](Y)-.105*Y(Y)*h[1](Y)-.525*d[0](Y)+.205*c[0](Y)+10.23967791*c[1](Y)+2.266560888*c[2](Y)+16.04451240*(3*Y(Y)^2*b[3](Y)+2*Y(Y)*b[2](Y)+b[1](Y))^2+5.25*(b[3](Y)*Y(Y)^3+b[2](Y)*Y(Y)^2+b[1](Y)*Y(Y)+b[0](Y))^3 = 0, Y = 0 .. 1]

 

plot(G(Y), Y = 0 .. 1, axes = boxed, color = green, thickness = 2, labels = [Y, W])

Error, (in plot) unexpected options: [1.0*Y(Y)*d[2](Y)+.5*d[1](Y)+.5*b[3](Y)*Y(Y)^3+.5*b[2](Y)*Y(Y)^2-.5*d[2](Y)*Y(Y)^2+.5*b[1](Y)*Y(Y)-.5*d[1](Y)*Y(Y)+.5*b[0](Y)-.5*d[0](Y) = 0, Y = 0 .. 1]

 

plot(H(Y), Y = 0 .. 1, axes = boxed, color = green, thickness = 2, labels = [Y, Theta])

Error, (in plot) unexpected options: [1.0*Y(Y)*h[2](Y)+.5*h[1](Y)+.5*c[3](Y)*Y(Y)^3+.5*c[2](Y)*Y(Y)^2-.5*Y(Y)^2*h[2](Y)+.5*c[1](Y)*Y(Y)-.5*Y(Y)*h[1](Y)+.5*c[0](Y)-.5*h[0](Y) = 0, Y = 0 .. 1]

 

NULL


 

Download AGM.mw
 

 

1 2 3 4 Page 2 of 4