KatePirs

20 Reputation

6 Badges

12 years, 84 days

MaplePrimes Activity


These are replies submitted by KatePirs

These boundary conditions are equivalent to the fact, that this function at infinity tend to zero. But however I changed 500 to 100 (-500 to -100) and get the result!

I do not know if I can change this, but still thank you very much for your help. I am very grateful to you! 

@Carl Love  Thank you very much! You are absolutely right, I mage a mistake, Thank you!
But unfortunately , I still get an error , as You.

> plots[display]([seq(sol:-plot(U, t = 0))]);

Error, (in pdsolve/numeric/plot) unable to compute solution for t<HFloat(0.0):
matrix is singular

What does it mean, can you help me?

Thank you!!! You were absolutly right. I added new nitial conditions and get 

> sol := pdsolve({l1, l2}, IBC, funcs, numeric, time = t, range = -500 .. 500);
print(`output redirected...`); # input placeholder
module () local INFO; export plot, plot3d, animate, value,

I'm new to working with the program, can I use a plot after this message, and what kind of operation I should use for building the plot (not 3d) of ui(e, t=0) and ur(e,t=0) ?

Please help.

Thank you!!! You were absolutly right. I added new nitial conditions and get 

> sol := pdsolve({l1, l2}, IBC, funcs, numeric, time = t, range = -500 .. 500);
print(`output redirected...`); # input placeholder
module () local INFO; export plot, plot3d, animate, value,

I'm new to working with the program, can I use a plot after this message, and what kind of operation I should use for building the plot (not 3d) of ui(e, t=0) and ur(e,t=0) ?

Please help.

it's my program

> restart; with(PDEtools); a := 1;
> m := 1/64;

> l1 := 2*(diff(ur(e, t), t))+(1+tanh((1/20)*e))*(diff(ui(e, t), `$`(e, 2)))+2*a*(ui(e, t)*ur(e, t)*ur(e, t)+(ui(e, t)*ui(e, t))*ui(e, t))+m*ui(e, t)*(diff(ur(e, t)^2, e))+m*ui(e, t)*(diff(ui(e, t)*ui(e, t), e)) = 0;

> l2 := -2*(diff(ui(e, t), t))+(1+tanh((1/20)*e))*(diff(ur(e, t), `$`(e, 2)))+2*a*(ur(e, t)^3+ur(e, t)*ui(e, t)^2)+m*ur(e, t)*(diff(ur(e, t)^2, e))+m*ur(e, t)*(diff(ui(e, t)^2, e)) = 0;
> sys := {l1, l2};

 

> IBC := {ui(-500, t) = 0, ui(0, t) = 0, ui(500, t) = 0, ur(-500, t) = 0, ur(500, t) = 0, (D[1](ui))(-500, t) = 0, (D[1](ui))(500, t) = 0, (D[1](ur))(-500, t) = 0, (D[1](ur))(500, t) = 0};

> sol := pdsolve(sys, IBC, [ur(e, t), ui(e, t)], numeric);

Error, (in pdsolve/numeric) unable to handle elliptic PDEs

a and m have numerical values. And as for e and t its are dependent variables with respect to which it is necessary to solve the system. For the Plot (according my task I wil take t=0) And finally the result should contain the Plot of dependence ui from e and ur from e

it's my program

> restart; with(PDEtools); a := 1;
> m := 1/64;

> l1 := 2*(diff(ur(e, t), t))+(1+tanh((1/20)*e))*(diff(ui(e, t), `$`(e, 2)))+2*a*(ui(e, t)*ur(e, t)*ur(e, t)+(ui(e, t)*ui(e, t))*ui(e, t))+m*ui(e, t)*(diff(ur(e, t)^2, e))+m*ui(e, t)*(diff(ui(e, t)*ui(e, t), e)) = 0;

> l2 := -2*(diff(ui(e, t), t))+(1+tanh((1/20)*e))*(diff(ur(e, t), `$`(e, 2)))+2*a*(ur(e, t)^3+ur(e, t)*ui(e, t)^2)+m*ur(e, t)*(diff(ur(e, t)^2, e))+m*ur(e, t)*(diff(ui(e, t)^2, e)) = 0;
> sys := {l1, l2};

 

> IBC := {ui(-500, t) = 0, ui(0, t) = 0, ui(500, t) = 0, ur(-500, t) = 0, ur(500, t) = 0, (D[1](ui))(-500, t) = 0, (D[1](ui))(500, t) = 0, (D[1](ur))(-500, t) = 0, (D[1](ur))(500, t) = 0};

> sol := pdsolve(sys, IBC, [ur(e, t), ui(e, t)], numeric);

Error, (in pdsolve/numeric) unable to handle elliptic PDEs

a and m have numerical values. And as for e and t its are dependent variables with respect to which it is necessary to solve the system. For the Plot (according my task I wil take t=0) And finally the result should contain the Plot of dependence ui from e and ur from e

@Preben Alsholm 

The program in my case doesn't require the initial conditions. As I understand, I should set boundary or initial conditions, as initial I have only one.
so

> restart; with(PDEtools); a := 1;
> m := 1/64;

> l1 := 2*(diff(ur(e, t), t))+(1+tanh((1/20)*e))*(diff(ui(e, t), `$`(e, 2)))+2*a*(ui(e, t)*ur(e, t)*ur(e, t)+(ui(e, t)*ui(e, t))*ui(e, t))+m*ui(e, t)*(diff(ur(e, t)^2, e))+m*ui(e, t)*(diff(ui(e, t)*ui(e, t), e)) = 0;

> l2 := -2*(diff(ui(e, t), t))+(1+tanh((1/20)*e))*(diff(ur(e, t), `$`(e, 2)))+2*a*(ur(e, t)^3+ur(e, t)*ui(e, t)^2)+m*ur(e, t)*(diff(ur(e, t)^2, e))+m*ur(e, t)*(diff(ui(e, t)^2, e)) = 0;
> sys := {l1, l2};

 

> IBC := {ui(-500, t) = 0, ui(0, t) = 0, ui(500, t) = 0, ur(-500, t) = 0, ur(500, t) = 0, (D[1](ui))(-500, t) = 0, (D[1](ui))(500, t) = 0, (D[1](ur))(-500, t) = 0, (D[1](ur))(500, t) = 0};

> sol := pdsolve(sys, IBC, [ur(e, t), ui(e, t)], numeric);

Error, (in pdsolve/numeric) unable to handle elliptic PDEs
>

 

 

@Preben Alsholm 

The program in my case doesn't require the initial conditions. As I understand, I should set boundary or initial conditions, as initial I have only one.
so

> restart; with(PDEtools); a := 1;
> m := 1/64;

> l1 := 2*(diff(ur(e, t), t))+(1+tanh((1/20)*e))*(diff(ui(e, t), `$`(e, 2)))+2*a*(ui(e, t)*ur(e, t)*ur(e, t)+(ui(e, t)*ui(e, t))*ui(e, t))+m*ui(e, t)*(diff(ur(e, t)^2, e))+m*ui(e, t)*(diff(ui(e, t)*ui(e, t), e)) = 0;

> l2 := -2*(diff(ui(e, t), t))+(1+tanh((1/20)*e))*(diff(ur(e, t), `$`(e, 2)))+2*a*(ur(e, t)^3+ur(e, t)*ui(e, t)^2)+m*ur(e, t)*(diff(ur(e, t)^2, e))+m*ur(e, t)*(diff(ui(e, t)^2, e)) = 0;
> sys := {l1, l2};

 

> IBC := {ui(-500, t) = 0, ui(0, t) = 0, ui(500, t) = 0, ur(-500, t) = 0, ur(500, t) = 0, (D[1](ui))(-500, t) = 0, (D[1](ui))(500, t) = 0, (D[1](ur))(-500, t) = 0, (D[1](ur))(500, t) = 0};

> sol := pdsolve(sys, IBC, [ur(e, t), ui(e, t)], numeric);

Error, (in pdsolve/numeric) unable to handle elliptic PDEs
>

 

 

I change some steps, and finally get

> sol := pdsolve(sys, IBC, [ur(e, t), ui(e, t)], numeric);

Error, (in pdsolve/numeric) unable to handle elliptic PDEs

So, as I understand right, Maple can't solve such kind of PDE?

This is my system:
l1 := 2*(diff(ur(e, t), t))+(1+tanh((1/20)*e))*(diff(ui(e, t), `$`(e, 2)))+2*a*(ui(e, t)*ur(e, t)*ur(e, t)+(ui(e, t)*ui(e, t))*ui(e, t))+m*ui(e, t)*(diff(ur(e, t)^2, e))+m*ui(e, t)*(diff(ui(e, t)*ui(e, t), e)) = 0

l2 := -2*(diff(ui(e, t), t))+(1+tanh((1/20)*e))*(diff(ur(e, t), `$`(e, 2)))+2*a*(ur(e, t)^3+ur(e, t)*ui(e, t)^2)+m*ur(e, t)*(diff(ur(e, t)^2, e))+m*ur(e, t)*(diff(ui(e, t)^2, e)) = 0

sys:={l1,l2}

I change some steps, and finally get

> sol := pdsolve(sys, IBC, [ur(e, t), ui(e, t)], numeric);

Error, (in pdsolve/numeric) unable to handle elliptic PDEs

So, as I understand right, Maple can't solve such kind of PDE?

This is my system:
l1 := 2*(diff(ur(e, t), t))+(1+tanh((1/20)*e))*(diff(ui(e, t), `$`(e, 2)))+2*a*(ui(e, t)*ur(e, t)*ur(e, t)+(ui(e, t)*ui(e, t))*ui(e, t))+m*ui(e, t)*(diff(ur(e, t)^2, e))+m*ui(e, t)*(diff(ui(e, t)*ui(e, t), e)) = 0

l2 := -2*(diff(ui(e, t), t))+(1+tanh((1/20)*e))*(diff(ur(e, t), `$`(e, 2)))+2*a*(ur(e, t)^3+ur(e, t)*ui(e, t)^2)+m*ur(e, t)*(diff(ur(e, t)^2, e))+m*ur(e, t)*(diff(ui(e, t)^2, e)) = 0

sys:={l1,l2}

Thank you! I fixed it, but now I get another error

IBC := {ui(-500, t) = 0, ui(500, t) = 0, ur(-500, t) = 0, ur(500, t) = 0, (D[1](ui))(-500, t) = 0, (D[1](ui))(500, t) = 0, (D[1](ur))(-500, t) = 0, (D[1](ur))(500, t) = 0}

funcs:={ui(e, t), ur(e, t)};

sol := pdsolve(sys, IBC, funcs, numeric)

Error, (in pdsolve/numeric/process_PDEs) specified dependent variable(s) {funcs} not present in input PDE


Can you help me, why its not present?
 This is my system:
l1 := 2*(diff(ur(e, t), t))+(1+tanh((1/20)*e))*(diff(ui(e, t), `$`(e, 2)))+2*a*(ui(e, t)*ur(e, t)*ur(e, t)+(ui(e, t)*ui(e, t))*ui(e, t))+m*ui(e, t)*(diff(ur(e, t)^2, e))+m*ui(e, t)*(diff(ui(e, t)*ui(e, t), e)) = 0

l2 := -2*(diff(ui(e, t), t))+(1+tanh((1/20)*e))*(diff(ur(e, t), `$`(e, 2)))+2*a*(ur(e, t)^3+ur(e, t)*ui(e, t)^2)+m*ur(e, t)*(diff(ur(e, t)^2, e))+m*ur(e, t)*(diff(ui(e, t)^2, e)) = 0

sys:={l1,l2}

I will be very grateful for any help

Thank you! I fixed it, but now I get another error

IBC := {ui(-500, t) = 0, ui(500, t) = 0, ur(-500, t) = 0, ur(500, t) = 0, (D[1](ui))(-500, t) = 0, (D[1](ui))(500, t) = 0, (D[1](ur))(-500, t) = 0, (D[1](ur))(500, t) = 0}

funcs:={ui(e, t), ur(e, t)};

sol := pdsolve(sys, IBC, funcs, numeric)

Error, (in pdsolve/numeric/process_PDEs) specified dependent variable(s) {funcs} not present in input PDE


Can you help me, why its not present?
 This is my system:
l1 := 2*(diff(ur(e, t), t))+(1+tanh((1/20)*e))*(diff(ui(e, t), `$`(e, 2)))+2*a*(ui(e, t)*ur(e, t)*ur(e, t)+(ui(e, t)*ui(e, t))*ui(e, t))+m*ui(e, t)*(diff(ur(e, t)^2, e))+m*ui(e, t)*(diff(ui(e, t)*ui(e, t), e)) = 0

l2 := -2*(diff(ui(e, t), t))+(1+tanh((1/20)*e))*(diff(ur(e, t), `$`(e, 2)))+2*a*(ur(e, t)^3+ur(e, t)*ui(e, t)^2)+m*ur(e, t)*(diff(ur(e, t)^2, e))+m*ur(e, t)*(diff(ui(e, t)^2, e)) = 0

sys:={l1,l2}

I will be very grateful for any help

1 2 Page 2 of 2