Kitonum

20084 Reputation

26 Badges

17 years, 29 days

MaplePrimes Activity


These are answers submitted by Kitonum

Use  add  instead of  sum  when summing a specific finite number of terms. The  sum  command is used if at least one of the summation limits is a symbol or the infinity:

restart;
seq(add(x^r*(add((-1)^s*binomial(r, s)*pochhammer((a+s+1)*d, n), s = 0 .. r))/factorial(r), r = 0 .. n), n = 0 .. 4);

 

It is easy to prove that your second graph is empty. Probably you rewrote something wrong. I modified the second equation a bit to make the graph look like your second graph in the picture:


 

restart;
z:=x+I*y;
eq1:=evalc(abs(z-1)+abs(z-I)=2);
eq2:=evalc(abs(abs(z-1)-abs(z+1))=1);
plots:-implicitplot(eq1, x=-4..4, y=-4..4, color=red, gridrefine=3);
plots:-implicitplot(eq2, x=-4..4, y=-4..4, color=blue, gridrefine=3);

x+I*y

 

((x-1)^2+y^2)^(1/2)+(x^2+(y-1)^2)^(1/2) = 2

 

abs(((x-1)^2+y^2)^(1/2)-((x+1)^2+y^2)^(1/2)) = 1

 

 

 

 



Edit. Let us prove that the equation  abs(z-I) - abs(z+1)  =  2  has no solutions for complex numbers  z=x+I*y . This is most easily done using the fact that   abs(z1 - z2)  is the distance between the points  z1  and  z2 . Consider 3 points  z1=Iz2=-1 and  . It follows from the triangle inequality that  abs(z-z1) - abs(z-z2) < abs(z1-z2) = sqrt(2)<2

Download z.mw

If you need to do this more than once, then (as a development of vv's idea) a simple procedure  Sort  can be used to reduce typing:

restart;
S:=[seq(_C||k=c[k], k=0..10)]:
sol:=dsolve(diff(y(x),x) = x+y(x),y(x));

Sort:=s->sort(subs(S,s)):

Sort(sol); 

 

Use  piecewise  instead of  if .. fi  :


 

restart; u1 := (1/960000)*(((x__A-200)^2+y__A^2)*0.1e-2); w := piecewise(u1 <= 0.1e-2, -.5772-ln(u1), -.5772-ln(u1)+u1-u1^2/(2*factorial(2))+u1^3/(3*factorial(3))-u1^4/(4*factorial(4))+u1^5/(5*factorial(5))-u1^6/(6*factorial(6))+u1^7/(7*factorial(7))-u1^8/(8*factorial(8))+u1^9/(9*factorial(9))-u1^10/(10*factorial(10))+u1^11/(11*factorial(11))-u1^12/(12*factorial(12)))

u1 := 1.041666667*10^(-9)*(x__A-200)^2+1.041666667*10^(-9)*y__A^2

 

piecewise(0.1041666667e-8*(x__A-200)^2+0.1041666667e-8*y__A^2 <= 0.1e-2, -.5772-ln(0.1041666667e-8*(x__A-200)^2+0.1041666667e-8*y__A^2), -.5772-ln(0.1041666667e-8*(x__A-200)^2+0.1041666667e-8*y__A^2)+0.1041666667e-8*(x__A-200)^2+0.1041666667e-8*y__A^2-(1/4)*(0.1041666667e-8*(x__A-200)^2+0.1041666667e-8*y__A^2)^2+(1/18)*(0.1041666667e-8*(x__A-200)^2+0.1041666667e-8*y__A^2)^3-(1/96)*(0.1041666667e-8*(x__A-200)^2+0.1041666667e-8*y__A^2)^4+(1/600)*(0.1041666667e-8*(x__A-200)^2+0.1041666667e-8*y__A^2)^5-(1/4320)*(0.1041666667e-8*(x__A-200)^2+0.1041666667e-8*y__A^2)^6+(1/35280)*(0.1041666667e-8*(x__A-200)^2+0.1041666667e-8*y__A^2)^7-(1/322560)*(0.1041666667e-8*(x__A-200)^2+0.1041666667e-8*y__A^2)^8+(1/3265920)*(0.1041666667e-8*(x__A-200)^2+0.1041666667e-8*y__A^2)^9-(1/36288000)*(0.1041666667e-8*(x__A-200)^2+0.1041666667e-8*y__A^2)^10+(1/439084800)*(0.1041666667e-8*(x__A-200)^2+0.1041666667e-8*y__A^2)^11-(1/5748019200)*(0.1041666667e-8*(x__A-200)^2+0.1041666667e-8*y__A^2)^12)

(1)

s := 6.87*10^(-3)*w; plot3d(s, x__A = -1300 .. 200, y__A = -1300 .. 200)

 

``


 

Download if_new.mw

I do not know the reasons for this behavior, but to immediately get the desired position of the constants use the  sort  command:

restart;
ode:=diff(diff(y(x),x),x)+8*diff(y(x),x)+25*y(x) = 1:
sol:=sort(dsolve(ode));

                    


This code in Maple 2018.2

Here is another proof without complex numbers using the well-known rotation matrix by an angle. We take the unit vector  <1,0>  and rotate it first by the angle of  2*x , we get the vector  . Rotating the same vector  <1,0>  sequentially, first by the angle  , and then again by , we get a vector  . Obviously  X=Y . At the same time, we proved another formula  cos(2*x)=cos(x)^2-sin(x)^2 .


 

restart;
A:=<cos(x),-sin(x); sin(x),cos(x)>;  # The rotation matrix by the angle x
v:=<1,0>;
X:=eval(A,x=2*x).v;
Y:=A.(A.v);

X[2]=Y[2]; # The desired equality

Matrix(2, 2, {(1, 1) = cos(x), (1, 2) = -sin(x), (2, 1) = sin(x), (2, 2) = cos(x)})

 

Vector(2, {(1) = 1, (2) = 0})

 

Vector(2, {(1) = cos(2*x), (2) = sin(2*x)})

 

Vector[column](%id = 18446746521234725454)

 

sin(2*x) = 2*sin(x)*cos(x)

(1)


 

Download proof.mw

 

You are probably interested in calculating the area of the region bounded by a red closed curve below (this is not an ellipse of course).
It's easy to do numerically:


 

restart;
A:=plots:-implicitplot(y^2 = x^3 - 3*x - 1, x=-2..0, y=-1..1):
B:=plot(x^3 - 3*x - 1, x=-2..0,-1..1):
plots:-display(A,B, color=[red,blue]);
R:=[fsolve(x^3 - 3*x - 1, x=-2..0)];
2*int(sqrt(x^3 - 3*x - 1), x=R[1]..R[2], numeric);

 

[-1.532088886, -.3472963553]

 

1.848519838

(1)

 


 

Download int.mw

 

To solve your example, it is enough to know the simplest definitions related to the joint distribution of two random variables  X  and  Y . Let's introduce the notations:  f__XY  is the density function of the joint distribution of  X  and  Yf__X  is the density function of  X ,  f__Y  is the density function of  Y ,  f__X_Y  is the density function of the conditional distribution of  X  given  ,   f__Y_X  is the density function of the conditional distribution of  Y  given  .


 

restart;
f__XY:=(x,y)->piecewise(x>0 and x<y and y<1, 2, 0);
f__X:=x->int(f__XY(x,y), y=0..1);
f__Y:=y->int(f__XY(x,y), x=0..1);
f__X_Y:=(x,y)->f__XY(x,y)/f__Y(y);
f__X_Y(x,y); # The answer to question 1
f__X_Y(0.3,0.7);  # Example of use
f__Y_X:=(x,y)->f__XY(x,y)/f__X(x);

f__XY := proc (x, y) options operator, arrow; piecewise(0 < x and x < y and y < 1, 2, 0) end proc

 

f__X := proc (x) options operator, arrow; int(f__XY(x, y), y = 0 .. 1) end proc

 

f__Y := proc (y) options operator, arrow; int(f__XY(x, y), x = 0 .. 1) end proc

 

f__X_Y := proc (x, y) options operator, arrow; f__XY(x, y)/f__Y(y) end proc

 

piecewise(0 < x and x < y and y < 1, 2, 0)/(2*y*piecewise(y < 0, 0, 1)-2*piecewise(y < 1, 0, 1)*y)

 

1.428571429

 

proc (x, y) options operator, arrow; f__XY(x, y)/f__X(x) end proc

(1)

int(f__X_Y(x,0.7), x=0.5..1);  # The answer to question 2

.2857142857

(2)

 


 

Download XY.mw

You have chosen too narrow a range of values for the contours. If we increase it, we get more interesting pictures, for example:

restart;
randomize():
a, b, c_3, c_4, A_5:='rand(-5..5)'()$5;
A := a*(A_5)^3-b; B := 3*a*(A_5)^2-3*b/(A_5); C := (c_3)*(A_5)-(c_4);
u:=3*y^2+2*x^3*B/A+3*x^2*C/A;
plots:-contourplot(u, x=-2.25..2.25, y=-2.25..2.25, axes=boxed, contours=[seq(-10..10,1)],grid=[200,200], coloring=["Blue","Red"], size=[500,500]);

                                

Below are 2 solutions to the problem. In the first one, we randomly set all the necessary parameters. In the second one, we use  Explore  command for this:


 

``

restart;
randomize():
a, b, c_3, c_4, A_5:='rand(-5..5)'()$5;
A := a*(A_5)^3-b; B := 3*a*(A_5)^2-3*b/(A_5); C := (c_3)*(A_5)-(c_4);
u:=3*y^2+2*x^3*B/A+3*x^2*C/A;

-5, 4, -4, 5, 2

 

-44

 

-66

 

-13

 

3*y^2+3*x^3+(39/44)*x^2

(1)

plots:-contourplot(u, x=-2.25..2.25, y=-2.25..2.25, axes=boxed, contours=[seq(-2.5..-1.3,0.1)], grid=[80,80], coloring=["Blue","Red"], size=[500,500]);

 

 

restart;
P:=[a, b, c_3, c_4, A_5]:
A := a*(A_5)^3-b; B := 3*a*(A_5)^2-3*b/(A_5); C := (c_3)*(A_5)-(c_4);
u:=3*y^2+2*x^3*B/A+3*x^2*C/A;
Explore(plots:-contourplot(u, x=-2.25..2.25, y=-2.25..2.25, axes=boxed, contours=[seq(-2.5..-1.3,0.1)], grid=[80,80], coloring=["Blue","Red"], size=[500,500]), parameters= (P=~ -5..5));

A_5^3*a-b

 

3*a*A_5^2-3*b/A_5

 

A_5*c_3-c_4

 

3*y^2+2*x^3*(3*a*A_5^2-3*b/A_5)/(A_5^3*a-b)+3*x^2*(A_5*c_3-c_4)/(A_5^3*a-b)

(2)

``


MaplePrime did not display the result of the last command. See the attached file for this.

 

Download contour_new.mw


 

restart;

eq9_30 := T__e_n = 2*(s/s_hat) / ((1+r*s/s_hat)^2+(s/s_hat)^2);

T__e_n = 2*s/(s_hat*((1+r*s/s_hat)^2+s^2/s_hat^2))

(1)

eq9_31 := solve(diff(rhs(eq9_30), s)=0,s);

s_hat/(r^2+1)^(1/2), -s_hat/(r^2+1)^(1/2)

(2)

eq9_32a :=  T__e_np = simplify(subs(s=eq9_31[1] , rhs(eq9_30))) assuming r::real;

T__e_np = (r^2+1)^(1/2)/(r^2+(r^2+1)^(1/2)*r+1)

(3)

Desired := T__e_np = 1/(sqrt(r^2 + 1) + r);

T__e_np = 1/((r^2+1)^(1/2)+r)

(4)

simplify(algsubs(r^2+1=t^2,eq9_32a)) assuming t>0;

T__e_np = 1/(r+t)

(5)

subs(t=sqrt(r^2+1), %);

T__e_np = 1/((r^2+1)^(1/2)+r)

(6)

 


Addition - another way:

T__e_np := sqrt(r^2+1)/(r^2+sqrt(r^2+1)*r+1);
numer(T__e_np)*sqrt(r^2+1)/expand(denom(T__e_np)*sqrt(r^2+1));
simplify(%);

                      

 

Download Q20201208_new.mw

Maple simply doesn't know what it should return if  k  is a symbol. Therefore, we must provide for this in the body of the procedure. Below is a possible solution to the problem:
 

restart;

divide5_new := proc(g, k)
  local x, r;
  if type(k,numeric) then if k < 3 then return 0 else return unapply((1/5)*g(i, x), i, x) fi;
else return piecewise(k<3,0,unapply((1/5)*g(i, x),i,x)) fi;
end proc:

# Examples

f :=  (i,x) -> x^2+i :

f1 := divide5_new(f, i);
f2 := divide5_new(f, 2);
f3 := divide5_new(f, 4);

piecewise(i < 3, 0, proc (i, x) options operator, arrow; (1/5)*x^2+(1/5)*i end proc)

 

0

 

proc (i, x) options operator, arrow; (1/5)*x^2+(1/5)*i end proc

(1)

 


 

Download divide5_new.mw

  BrettKnoss I have simplified  Carl's code a bit. I think this will make it clearer for you. To study the convergence at the ends of the convergence interval, we used the n-th term test: If , then the series diverges  (from wiki)  . Since the results are not 0, the series diverges at both ends.

restart;
f:= (x-1)/(x+2);
s:= convert(f, FormalPowerSeries);
c:= unapply(op([2,1],s), k);
L:= limit(abs(c(k+1)/c(k)), k= infinity);
solve(L < 1, x);
``;
# Investigation on the ends
RealDomain:-limit(eval(c(k),x=-2),k=infinity); 
RealDomain:-limit(simplify(eval(c(k),x=2)),k=infinity);

                       

 

 

Download ic.mw

Procedure  P  returns the list of  N  pairs of such numbers  [p, q] :


 

restart;

P:=proc(N::posint)
local k, n, p, m, q, u;
uses NumberTheory;
k:=0;
for n from 1 do
p:=ithprime(n);
for m from 1 to n do
q:=ithprime(m);
if pi(p)=q-pi(q) then k:=k+1; u[k]:=[p,q]; break fi;
od;
if k=N then return convert(u,list) fi;
od;
end proc:

 

# Example of use
P(100);

[[2, 2], [13, 11], [17, 13], [29, 17], [31, 19], [43, 23], [67, 29], [71, 31], [97, 37], [107, 41], [109, 43], [131, 47], [157, 53], [181, 59], [191, 61], [223, 67], [233, 71], [239, 73], [269, 79], [281, 83], [313, 89], [359, 97], [379, 101], [383, 103], [401, 107], [409, 109], [431, 113], [503, 127], [523, 131], [569, 137], [571, 139], [619, 149], [631, 151], [659, 157], [691, 163], [719, 167], [751, 173], [787, 179], [797, 181], [857, 191], [859, 193], [881, 197], [883, 199], [971, 211], [1039, 223], [1061, 227], [1063, 229], [1091, 233], [1117, 239], [1123, 241], [1201, 251], [1231, 257], [1279, 263], [1301, 269], [1303, 271], [1361, 277], [1381, 281], [1399, 283], [1453, 293], [1549, 307], [1567, 311], [1571, 313], [1597, 317], [1693, 331], [1723, 337], [1789, 347], [1801, 349], [1831, 353], [1873, 359], [1931, 367], [1979, 373], [2003, 379], [2027, 383], [2069, 389], [2113, 397], [2137, 401], [2207, 409], [2273, 419], [2281, 421], [2347, 431], [2351, 433], [2383, 439], [2399, 443], [2441, 449], [2521, 457], [2543, 461], [2549, 463], [2579, 467], [2671, 479], [2707, 487], [2719, 491], [2777, 499], [2797, 503], [2837, 509], [2927, 521], [2939, 523], [3083, 541], [3137, 547], [3217, 557], [3257, 563]]

(1)

 


Edit.

Download P1.mw

In fact, we have a nonlinear inequality with the parameter . Maple usually cannot solve such inequality in a closed form. But it is easy to write a procedure  (named  F  below) that, for each value of the parameter , finds the corresponding range for  r . Now you can use this procedure by specifying values for c:

restart;
F:=c->solve({-r+c+1 + sqrt(r^2 - 2*r*c -r +2*c )<1, 0<r, r<1}, r):


Examples of use:

F(0.1), F(0.5), F(0.9);

             {r <= .2000000000, .1900000000 < r}, {.7500000000 < r, r < 1.}, {.9900000000 < r, r < 1.}

First 35 36 37 38 39 40 41 Last Page 37 of 280