Kitonum

20084 Reputation

26 Badges

17 years, 29 days

MaplePrimes Activity


These are answers submitted by Kitonum

We easily get the same result (without the VectorCalculus package) using the standard way to calculate such a curvilinear integral:

restart;
x:=1+t: y:=2*t: # Parametric equations of the line with endpoints (1,0), (2,2)
int( (2*x + y^2)*sqrt(diff(x,t)^2+diff(y,t)^2), t=0..1);

                                        

I think that from a pedagogical point of view, a student studying mathematical analysis should be able to solve such simple examples by hand, and only then, of course, can he check the correctness of the calculations using Maple:

     

 


 

restart;
subexp := M__a*sin(omega*t + alpha)*I__a*sin(omega*t + phi);
subexp2:=factor(combine(subexp));
d:=M__a*I__a:
subexp22:=d*``(subexp2/d)

 

M__a*sin(omega*t+alpha)*I__a*sin(omega*t+phi)

 

(1/2)*M__a*I__a*(cos(alpha-phi)-cos(2*omega*t+alpha+phi))

 

M__a*I__a*``((1/2)*cos(alpha-phi)-(1/2)*cos(2*omega*t+alpha+phi))

(1)

 


 

Download identity.mw

restart;
with(Statistics):
X:=Vector([0,0.001,0.002,0.003,0.004,0.005,0.006,0.007,0.008,0.009,0.01,0.012]):
Y:=Vector([1.103,1.057,1.016,0.978,0.94,0.91,0.88,0.85,0.826,0.8,0.778,0.735]):
Fn:=Fit((-a*t+b)/(-d+e*t+f*t^3),X,Y,t);
add((Y-~[seq(eval(Fn,t=x),x=X)])^~2); # residual sum of squares
plots:-display(plot(X,Y,style=point,color=red,symbolsize=12), plot(Fn,t=X[1]..X[-1],color=blue), labels=["X","Y"]);

Download RS.mw


 

restart;
A:=x<7: B:=-10<x and x<25: C:=x>15:

solve(A and B);

RealRange(Open(-10), 7)

(1)

solve(B or C);

RealRange(Open(-10), infinity)

(2)

solve(A and B and C); # Return NULL that is empty set

solve(A or B or C); # Whole real number axis

x

(3)

 


 

Download solve.mw


 

restart;
S:=proc(n)
local P;
uses combinat;
P:=permute([0$n,1$n]):
select(p->andmap(k->add(p[1..k])<=k/2, [$ 1..2*n]), P);
end proc:

S(3);
nops(%);
seq(nops(S(n)), n=1..7);

 

[[0, 0, 0, 1, 1, 1], [0, 0, 1, 0, 1, 1], [0, 0, 1, 1, 0, 1], [0, 1, 0, 0, 1, 1], [0, 1, 0, 1, 0, 1]]

 

5

 

1, 2, 5, 14, 42, 132, 429

(1)

 


Edit.

Download seq_edit.mw

To avoid repeated calls to Typesetting:-Settings , you can enter your equations through the procedure  below:

restart;
P:=proc(ode)
local t;
t:=indets(ode, name)[];
Typesetting:-Settings(usedot=false,prime=t,typesetprime=true):
ode;
end proc:

ode1:=P(diff(y(t),t$2)+diff(y(t),t)+y(t)= 0);
ode2:=P(diff(y(x),x$2)+diff(y(x),x)+y(x)= 0);

diff(diff(y(t), t), t)+diff(y(t), t)+y(t) = 0

 

diff(diff(y(x), x), x)+diff(y(x), x)+y(x) = 0

(1)

 


 

Download prime.mw

Use  assign  for this instead of  :=  :

restart;
for a from 1 to 2 do
assign(convert(cat("k",a),symbol)=a);
od;
k1, k2;

                                             1, 2

Here is another way of assignment through the seq command (multiple assignment), where  :=  doesn't work, but  assign  does:

restart;
seq(k||i, i=1..2) := seq(a, a=1..2);  # an error
assign(seq(k||i=i, i=1..2));  # OK
k1, k2;  # check

   Error, invalid left hand side in assignment
                              1, 2


 

restart;
assume(omega>0);assume(zeta>0 and zeta<1);
tf:=omega^2/(s^2+2*zeta*omega*s+omega^2);
y:=tf*1/s;
yt:=inttrans:-invlaplace(y,s,t);
dyt:=diff(yt,t);

solve(dyt=0,t, allsolutions);
about(_Z1);

omega^2/(2*omega*s*zeta+omega^2+s^2)

 

omega^2/((2*omega*s*zeta+omega^2+s^2)*s)

 

1-exp(-omega*zeta*t)*cos((-zeta^2+1)^(1/2)*omega*t)-zeta*exp(-omega*zeta*t)*sin((-zeta^2+1)^(1/2)*omega*t)/(-zeta^2+1)^(1/2)

 

exp(-omega*zeta*t)*(-zeta^2+1)^(1/2)*omega*sin((-zeta^2+1)^(1/2)*omega*t)+zeta^2*omega*exp(-omega*zeta*t)*sin((-zeta^2+1)^(1/2)*omega*t)/(-zeta^2+1)^(1/2)

 

Pi*_Z1/((-zeta^2+1)^(1/2)*omega)

 

Originally _Z1, renamed _Z1~:
  is assumed to be: integer

 

 


 

Download dyt.mw

Let's define new functions  Sin, Cos, Tan, Cot  for which arguments are assumed in degrees:

Sin:=x->sin(x*Pi/180):
Cos:=x->cos(x*Pi/180):
Tan:=x->tan(x*Pi/180):
Cot:=x->cot(x*Pi/180):

# Examples
Sin(30);
Tan(45);
Cos(30);

 

Probably this integral cannot be calculated symbolically (even for the specific values of the parameters). So calculate numerically.

Example:


 

restart;
t:=1: A:=2: omega:=3: tau:=4: phi:=5:
int( ((-A*omega*sin(omega*x+phi)*exp(-x/tau) - A*cos(omega*x+phi)*exp(-x/tau)/tau)^2 + 1)^(1/2), x=0..t );
int( ((-A*omega*sin(omega*x+phi)*exp(-x/tau) - A*cos(omega*x+phi)*exp(-x/tau)/tau)^2 + 1)^(1/2), x=0..t, numeric );

int(((-6*sin(3*x+5)*exp(-(1/4)*x)-(1/2)*cos(3*x+5)*exp(-(1/4)*x))^2+1)^(1/2), x = 0 .. 1)

 

3.482744646

(1)

 


 

Download int.mw

This can be done in many ways. Here are two options (long and short):


 

restart;
data:=[0,12,0,7,5,3,7,10,0,0,9,3,2,5,0,6]:
N:=0:
for d in data do
if d>=7 then N:=N+1 fi;
od:
N;

5

(1)

nops(select(`>=`, data, 7));

5

(2)

 


 

Download 1.mw


 

restart;
eq1:= (-k*I + 2*I + m)*sqrt(3) - 3*I*m - 3*k;
eq2:=eq1/2;
eq_given:= a*(k + I*m) + b;

match(eq2 = eq_given, {k,m}, 's');
s;

(-I*k+2*I+m)*3^(1/2)-(3*I)*m-3*k

 

(1/2)*(-I*k+2*I+m)*3^(1/2)-((3/2)*I)*m-(3/2)*k

 

a*(k+I*m)+b

 

true

 

{a = -((1/2)*I)*(3^(1/2)-3*I), a = -((1/2)*I)*3^(1/2)-3/2, b = I*3^(1/2)}

(1)

 


 

Download Q20200817_new.mw


 

restart;
Expr:=W__1 + W__2 = -sin(-beta + alpha)*((H^2 - h^2)*gamma + h^2*psi)/(2*sin(beta)*sin(alpha));
applyop(p->H^2*p,2,applyop(p->collect(expand(p/H^2),gamma),[2,3],Expr));

W__1+W__2 = -(1/2)*sin(-beta+alpha)*((H^2-h^2)*gamma+h^2*psi)/(sin(beta)*sin(alpha))

 

W__1+W__2 = -(1/2)*H^2*sin(-beta+alpha)*((1-h^2/H^2)*gamma+h^2*psi/H^2)/(sin(beta)*sin(alpha))

(1)

 


 

Download 1.mw

Example:

restart;
N:=8: # The number of the points
plot([seq([n/(N-1),ln(1+sin(Pi*n/(N-1)))], n=0..N-1)], legend = numerical, style = point, symbol = box, color = blue, symbolsize = 15);

 

First 42 43 44 45 46 47 48 Last Page 44 of 280